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Abstract Ecological modelling of increasingly more complex microbial pop-

ulations is necessary to reflect the highly functional and diverse behaviour

inherent to many systems found in reality. Anaerobic digestion is one such

process that has benefitted from the application of mathematical analysis not

only for characterising the biological dynamics, but also to investigate emer-

gent behaviour not apparent by simulation alone. Nevertheless, the standard
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modelling approach has been to describe biological systems using sets of dif-

ferential equations whose kinetics are generally described by some empirically

derived function of growth. The drawbacks of this are two-fold; the growth

functions are derived from empirical studies that may not be representative

of the system to be modelled and whose parameters may not have a mech-

anistic meaning, and mathematical analysis is restricted by a conformity to

an assumption of the dynamics. Here, we attempt to address these challenges

by investigating a generalised form of a three-tier chlorophenol mineralising

food-web previously only analysed numerically. We examine the existence and

stability of the identified steady-states and find that, without a decay term, the

system may be characterised analytically. However, it is necessary to perform

numerical analysis for the case when maintenance is included, but in both

cases we verify the discovery of two important phenomena; i) the washout

steady-state is always stable, and ii) the two other steady-states can be un-

stable according to the initial conditions and operating parameters.

Keywords Microbial modelling · Dynamical systems · Stability theory ·

Chlorophenol mineralisation · Anaerobic digestion

1 Introduction

The mathematical modelling of engineered biological systems has entered a

new era in recent years with the expansion and standardisation of existing

models aimed at collating disparate components of these processes and provide

scientists, engineers and practitioners with the tools to better predict, control
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and optimise them. These forms of mechanistic models emerged initially with

the Activated Sludge Models (Henze et al 1987, 1999) for wastewater treatment

processes, followed by the Anaerobic Digestion Model No. 1 (ADM1) (IWA

Task Group for Mathematical Modelling of Anaerobic Digestion Processes

2002) a few years later. The development of ADM1 was enabled largely due

to the possibilities for better identification and characterisation of functional

groups responsible for the discrete degradation steps operating in series within

anaerobic digesters. It describes a set of fairly complex stoichiometric and

kinetic functions representing the standard anaerobic process, remaining the

scientific benchmark to the present day, despite an general understanding of

its limitations in describing all necessary biochemical transformations. Indeed,

there has been a growing argument that the model should take advantage

of improved empirical understanding and extension of biochemical processes

included in its structure, to acquire a better trade-off between model realism

and complexity (Jeppsson et al 2013).

The ADM1 model is too complex to permit mathematical analysis of its

nonlinear dynamics and only numerical investigations are available (Bornhöft

et al 2013). Since the mathematical analysis of the model is intractable, many

authors were interested to more simple models that preserve biological mean-

ing whilst reducing the computational effort required to find mathematical

solutions of the model equations (Garćıa-Diéguez et al 2013; Hassam et al

2015). Whilst simpler models are approximations of real systems, it can be

beneficial to consider a reduced model to better understand biological phe-
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nomena of sub-processes without the need to consider extraneous system pa-

rameters and variables, which tend to make mathematical analysis intractable

and cumbersome. In their recent paper, Weedermann et al (2015) found an

unexpected biological phenomenon in their reduced system describing biogas

yield, in which the co-existence steady-state was sub-optimal with regard to

maximisation of biogas production. This highlights the benefit of performing

rigorous mathematical study of such systems in order test previously held

biological assumptions.

The most common models used to describe microbial systems are two-

tiered models, which take the form of a cascade of two biological reactions

where one substrate is consumed by one microorganism to produce a prod-

uct that serves as the main limiting substrate for a second microorganism.

When the second organism has no feedback on the first organism, the system

is known as commensalistic (Reilly 1974; Stephanopoulous 1981). The system

has a cascade structure and the number of steady-states and their stability as

a function of model inputs and parameters may be investigated (Benyahia et al

2012; Bernard et al 2001; Sbarciog et al 2010). When the growth of the first

organism is affected by the substrate produced by the second organism the

system is known as syntrophic. For instance, if the first organism is inhibited

by high concentrations of the product, the extent to which the first substrate

is degraded by the first organism depends on the efficiency of the removal

of the product by the second organism. The mathematical analysis of such

a model is more delicate than for commensalistic models, (see for instance
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(Burchard 1994; Kreikenbohm and Bohl 1986, 1988; Wilkinson et al 1974)

and the more recent papers (El-Hajji et al 2009; Heßeler et al 2006; Sari et al

2012; Volcke et al 2010)). An important and interesting extension should be

mentioned here: Weedermann et al (2013) proposed an 8-dimensional math-

ematical model, which includes syntrophy and inhibition, both mechanisms

considered by Bernard et al (2001) and El-Hajji et al (2010).

As an example of this for anaerobic digestion, a previous study investi-

gated the effect of maintenance on the stability of a two-tiered ‘food-chain’

comprising two species and two substrates (Xu et al 2011). Although the au-

thors were not able to determine the general conditions under which this four

dimensional syntrophic consortium was stable, further work has shown that a

model with generality can be used to answer the question posed, determining

that the two-tiered food-chain is always stable when maintenance is included

(Sari and Harmand 2014).

More recently, the model described by Xu et al (2011) was extended by

the addition of a third organism and substrate to create a three-tiered ‘food-

web’ (Wade et al 2015). In this model, the stability of some steady-states

could be determined analytically, but due to the complexity of the Jacobian

matrix for certain steady-states, local solutions were necessary using numerical

analysis, when considering the full system behaviour. Although the results

were important in revealing emergent properties of this extended model, the

motivation of this work is to show how the approach carried out in Sari and

Harmand (2014), can be applied to the three-tiered model from Wade et al
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(2015), to provide some general properties of that system. Our study does not

require that growth functions are of the specific form considered by Wade et al

(2015) and are valid for a large class of growth functions.

The paper is organised as follows. In Section 2, we present a description of

the model to be investigated, before providing an alternative reduction of its

structure than that given by Wade et al (2015), in Section 3. With Section 4 we

demonstrate the existence of the three steady-states and define four interesting

cases for specific parameter values that are investigated using the analytical

solutions, whilst also indicating the regions of existence of the steady-states

for the operating parameter values (dilution rate and substrate input concen-

tration). In Section 5 we perform local stability analysis of the steady-states

without maintenance, and in Section 6, perform a comprehensive numerical

stability analysis of the four cases for both the model with and without a decay

constant. We show that our approach leads to the discovery of five operating

regions, in which one leads to the possibility of instability of the positive steady

state, where all three organisms exist, a fact that has not be reported by Wade

et al (2015). Indeed, we prove that a stable limit-cycle can occur in this region.

Finally, in Section 7, we make comment on the role of the kinetic parameters

used in the four example cases, in maintaining stability, which points to the im-

portance of the relative aptitude of the two hydrogen consumers in sustaining

a viable chlorophenol mineralising community. In the Appendix we describe

the numerical method used in Section 6, give the assumptions on the growth

functions we used and the proofs of the results.
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2 The model

The model developed in Wade et al (2015) has six components, three substrate

(chlorophenol, phenol and hydrogen) and three biomass (chlorophenol, phenol

and hydrogen degraders) variables. The substrate and biomass concentrations

evolve according to the six-dimensional dynamical of ODEs

dXch

dt
= −DXch + Ychf0

(
Sch, SH2

)
Xch − kdec,chXch (1)

dXph

dt
= −DXph + Yphf1

(
Sph, SH2

)
Xph − kdec,phXph (2)

dXH2

dt
= −DXH2

+ YH2
f2
(
SH2

)
XH2

− kdec,H2
XH2

(3)

dSch

dt
= D

(
Sch,in − Sch

)
− f0

(
Sch, SH2

)
Xch (4)

dSph

dt
= D

(
Sph,in − Sph

)
+

224

208
(1− Ych) f0

(
Sch, SH2

)
Xch

− f1
(
Sph, SH2

)
Xph (5)

dSH2

dt
=
(
SH2,in − SH2

)
+

32

224

(
1− Yph

)
f1
(
Sph, SH2

)
Xph

−
16

208
f0
(
Sch, SH2

)
Xch − f2

(
SH2

)
XH2

(6)

where Sch and Xch are the chlorophenol substrate and biomass concentrations,

Sph and Xph those for phenol and SH2
and XH2

those for hydrogen; Ych, Yph

and YH2 are the yield coefficients, 224/208 (1− Ych) represents the part of

chlorophenol degraded to phenol, and 32/224 (1− Yph) represents the part of

phenol that is transformed to hydrogen. Growth functions take Monod form

with hydrogen inhibition acting on the phenol degrader and represented in f1

(see Eq. 7) as a product inhibition term.
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f0 (Sch, SH2
) =

km,chSch

KS,ch+Sch

SH2

KS,H2,c
+SH2

f1 (Sph, SH2
) =

km,phSph

KS,ph+Sph

1

1+
SH2
Ki,H2

f2 (SH2) =
km,H2SH2

KS,H2
+SH2

(7)

Here, apart from the four operating (or control) parameters, which are the

inflowing concentrations Sch,in, Sph,in, SH2,in and the dilution rate D, that

can vary, all others have biological meaning and are fixed depending on the

organisms and substrate considered. We use the following simplified notations

in (Eqs. 1-6)

X0 = Xch, X1 = Xph, X2 = XH2

S0 = Sch, S1 = Sph, S2 = SH2

Sin
0 = Sch,in, Sin

1 = Sph,in, Sin
2 = SH2,in

Y0 = Ych, Y1 = Yph, Y2 = YH2

Y3 =
224

208
(1− Ych) , Y4 =

32

224
(1− Yph) , Y5 =

16

208

a0 = kdec,ch, a1 = kdec,ph, a2 = kdec,H2

With these notations Eqs. 1-6 can be written as follows
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dX0

dt
= −DX0 + Y0f0 (S0, S2)X0 − a0X0 (8)

dX1

dt
= −DX1 + Y1f1 (S1, S2)X1 − a1X1 (9)

dX2

dt
= −DX2 + Y2f2 (S2)X2 − a2X2 (10)

dS0

dt
= D

(
Sin
0 − S0

)
− f0 (S0, S2)X0 (11)

dS1

dt
= D

(
Sin
1 − S1

)
+ Y3f0 (S0, S2)X0 − f1 (S1, S2)X1 (12)

dS2

dt
= D

(
Sin
2 − S2

)
+ Y4f1 (S1, S2)X1 − Y5f0 (S0, S2)X0

− f2 (S2)X2 (13)

In Wade et al (2015), this model is reduced to a dimensionless form that sig-

nificantly reduces the number of parameters describing the dynamics. In this

paper we do not assume that the growth functions f0, f1 and f2 have the

specific analytical expression (Eq. 7). We will only assume that the growth

functions satisfy properties that are listed in Appendix C. Therefore, we can-

not benefit from the dimensionless rescaling used by Wade et al (2015), because

this rescaling uses some kinetics parameters of the specific growth functions

(Eq. 7), while we work with general unspecified growth functions. In Section 3

we consider another rescaling that does not use the kinetics parameters. Fur-

thermore, we restrict our analysis to the case where we only have one substrate

addition to the system, such that: Sin0 > 0, Sin1 = 0, and Sin2 = 0.

3 Model reduction

To ease the mathematical analysis, we can rescale the system (Eqs. 8-13) using

the following change of variables adapted from Sari and Harmand (2014):
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x0 =
Y3Y4
Y0

X0, x1 =
Y4
Y1
X1, x2 =

1

Y2
X1

s0 = Y3Y4S0, s1 = Y4S1, s2 = S2

We obtain the following system

dx0

dt
= −Dx0 + µ0 (s0, s2)x0 − a0x0 (14)

dx1

dt
= −Dx1 + µ1 (s1, s2)x1 − a1x1 (15)

dx2

dt
= −Dx2 + µ2 (s2)x2 − a2x2 (16)

ds0

dt
= D

(
sin0 − s0

)
− µ0 (s0, s2)x0 (17)

ds1

dt
= −Ds1 + µ0 (s0, s2)x0 − µ1 (s1, s2)x1 (18)

ds2

dt
= −Ds2 + µ1 (s1, s2)x1 − ωµ0 (s0, s2)x0 − µ2 (s2)x2 (19)

where the inflowing concentration is

sin0 = Y3Y4S
in
0 , (20)

the growth functions are

µ0(s0, s2) = Y0f0

(
s0
Y3Y4

, s2

)
µ1(s1, s2) = Y1f1

(
s1
Y4
, s2

)
µ2(s2) = Y2f2(s2)

(21)

and

ω =
Y5
Y3Y4

=
1

2(1− Y0)(1− Y1)
(22)
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The benefit of our rescaling is that it permits to fix in Eqs. 14-19 all yield

coefficients to one except that denoted by ω and defined by (Eq. 22), and to

discuss the existence and stability with respect to this sole parameter.

Using Eq. 21 and the growth functions (Eq. 7), we obtain the model

(Eqs. 14-19) with the following Monod-type growth functions

µ0 (s0, s2) = m0s0
K0+s0

s2
L0+s2

µ1 (s1, s2) = m1s1
K1+s1

1
1+s2/Ki

µ2 (s2) = m2s2
K2+s2

(23)

where

m0 = Y0km,ch, K0 = Y3Y4Ks,ch, L0 = KS,H2,c

m1 = Y1km,ph, K1 = Y4Ks,ph, Ki = Ki,H2
(24)

m2 = Y2km,H2
, K2 = KS,H2

For the numerical simulations we will use the nominal values in Table 1 given

in Wade et al (2015).

4 Existence of steady-states

A steady-state of Eqs. 14-19 is obtained by setting the right-hand sides equal

to zero:
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Parameters Nominal values Units

km,ch 29 kgCODS/kgCODX/d

KS,ch 0.053 kgCOD/m3

Ych 0.019 kgCODX/kgCODS

km,ph 26 kgCODS/kgCODX/d

KS,ph 0.302 kgCOD/m3

Yph 0.04 kgCODX/kgCODS

km,H2
35 kgCODS/kgCODX/d

KS,H2
2.5×10−5 kgCOD/m3

KS,H2,c 1.0×10−6 kgCOD/m3

YH2
0.06 kgCODX/kgCODS

kdec,i 0.02 d−1

KI,H2
3.5×10−6 kgCOD/m3

Table 1 Nominal parameter values.

[µ0 (s0, s2)−D − a0]x0 = 0 (25)

[µ1 (s1, s2)−D − a1]x1 = 0 (26)

[µ2 (s2)−D − a2]x2 = 0 (27)

D
(
sin0 − s0

)
− µ0 (s0, s2)x0 = 0 (28)

−Ds1 + µ0 (s0, s2)x0 − µ1 (s1, s2)x1 = 0 (29)

−Ds2 + µ1 (s1, s2)x1 − ωµ0 (s0, s2)x0 − µ2 (s2)x2 = 0 (30)

A steady-state exists (or is said to be ‘meaningful’) if, and only if, all its

components are non-negative.
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Lemma 1 The only steady-state of Eqs. 14-19, for which x0 = 0 or x1 = 0,

is the steady-state

SS1 = (x0 = 0, x1 = 0, x2 = 0, s0 = sin0 , s1 = 0, s2 = 0)

where all species are washed out. This steady-state always exists. It is always

stable.

(a) (b) (c)

s2 s2 s2

µ1(+∞, s2)

µ0(+∞, s2)

ψ(s2) ψ(s2)

D + a0
D + a1

F2(D)

F1(D)

sin0

F1(D)

s02 s12 s02 s12 s02 s12
s2 s2

M2(D + a2)
6 s[2 s]2

Fig. 1 Graphical definitions. (a): s02 and s12. (b) : ψ(s2), s2, F1(D) and F2(D). (c): s[2 and

s]2

From the previous Lemma we deduce that besides the steady-state SS1,

the system can have at most two other steady-states.

SS2: x0 > 0, x1 > 0 and x2 = 0, where species x2 is washed out while

species x0 and and x1 exist.

SS3: x0 > 0, x1 > 0, and x2 > 0, where all populations are maintained.

In the following we describe the steady-states SS2 and SS3 of Eqs. 14-

19 with the Monod-type growth functions (Eq. 23). The general case with

unspecified growth function is provided in Appendix C, with proofs given in

Appendix D. We use the following notations:
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Let s2 be fixed, we define the function M0(y, s2) as follows : for all y ∈[
0, µ0(+∞, s2) = m0s2

L0+s2

)
, we let

M0(y, s2) =
K0y

m0s2
L0+s2

− y

Notice that y 7→ M0(y, s2) is the inverse function of the function s0 7→

µ0(s0, s2), that is to say, for all s0 ≥ 0, s2 ≥ 0 and y ∈ [0, µ0(+∞, s2))

s0 = M0(y, s2)⇐⇒ y = µ0(s0, s2) (31)

Let s2 be fixed, we define the function M1(y, s2) as follows : for all y ∈[
0, µ1(+∞, s2) = m1

1+s2/Ki

)
, we let

M1(y, s2) =
K1y
m1

1+s2/Ki
− y

Notice that y 7→ M1(y, s2) is the inverse function of the function s1 7→

µ1(s1, s2), that is to say, for all s1 ≥ 0, s2 ≥ 0 and y ∈ [0, µ1(+∞, s2))

s1 = M1(y, s2)⇐⇒ y = µ1(s1, s2) (32)

We define the function M2(s2) as follows : for all y ∈ [0, µ2(+∞) = m2),

we let

M2(y) =
K2y

m2 − y

Notice that y 7→ M2(y) is the inverse function of the function s2 7→ µ2(s2),

that is to say, for all s2 ≥ 0 and y ∈ [0, µ2(+∞))

s2 = M2(s2)⇐⇒ y = µ2(s2) (33)

Using the functions M0, M1 and M2 we define the following function: Let
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(a) (b) (c) (d)

Fig. 2 Graphs of s02(D) and s12(D) (in black) and M2(D) (in red) and graphical depiction

of I1 = [0, D1), where D1 is the solution of s02(D) = s12(D), and I2. (a): I2 = [0, D2)

where D2 is the solution of M2(D) = s12(D). (b) : I2 = [0, D2) where D2 is the solution of

M2(D) = s02(D). (c): I2 is empty. (d) : I2 = (D2min, D2max) where D2min and D2max are

the solutions of M2(D) = s02(D) and M2(D) = s12(D), respectively.

ω < 1. Let

ψ(s2) = M0(D + a0, s2) +
M1(D + a1, s2) + s2

1− ω
(34)

Notice that ψ is defined if, and only if,

D + a0 < µ0(+∞, s2) and D + a1 < µ1(+∞, s2)

which is equivalent to

s02(D) < s2 < s12(D)

where

s02(D) =
L0(D + a0)

m0 −D − a0
, s12(D) =

Ki(m1 −D − a1)

D + a1

are the solutions of equations

µ0(+∞, s2) = D + a0, µ1(+∞, s2) = D + a1 (35)
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respectively, see Fig. 1 (a). Straightforward calculations show that

ψ(s2, D) =
K0(D + a0)

m0 −D − a0
L0 + s2

s2 − s02(D)
+

K1(Ki+s2)
s12(D)−s2 + s2

1− ω

Therefore, ψ(s2) > 0 for s02 < s2 < s12 (see Fig. 1 (b)),

lim
s2→s02

ψ(s2) = lim
s2→s12

ψ(s2) = +∞

and

d2ψ

ds22
=

2K0(D + a0)

m0 −D − a0
L0 + s02(D)(
s2 − s02(D)

)3 − 2K1(Ki + s12(D))

(1− ω)
(
s12(D)− s2

)3
Hence, d

2ψ
ds22

> 0 for all s2 ∈ (s02(D), s12(D)), so that the function s2 7→ ψ(s2, D)

is convex and, thus, it has a unique minimum s2(D), see Fig. 1 (b).

Let ω < 1. We define the function

F1(D) = inf
s2∈(s02,s12)

ψ(s2) = ψ (s2) (36)

as shown in Fig. 1 (b). The minimum s2(D) is a solution of an algebraic

equation of degree 4 in s2. Although mathematical software, such as Maple,

cannot give its solutions explicitly with respect to the parameters, s2(D) could

be obtained analytically since algebraic equations of degree 4 can theoretically

be solved by quadratures. We do not try to obtain such an explicit formula.

However, if the biological parameters are fixed, the function s2(D) and, hence,

F1(D) = ψ(s2(D), D), can be obtained numerically.

The function F1(D) is defined as long as s02(D) < s12(D). Assuming that

s02(0) < s12(0), F1(D) is defined for 0 ≤ D < D1, where D1 is the positive

solution of s02(D) = s12(D) (see Fig. 2). Therefore, D1 is a solution of the the

second order algebraic equation L0(D+a0)
m0−D−a0 = Ki(m1−D−a1)

D+a1
. We denote by

I1 = {D : s02(D) < s12(D)} (37)
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the set on which F1(D) is defined.

Let ω < 1. We define the functions

F2(D) = ψ (M2(D + a2)) (38)

F3(D) =
dψ

ds2
(M2(D + a2)) (39)

Since M2 and ψ are given explicitly by Eq. 33 and Eq. 34, respectively, the

functions F2(D) and F3(D) are given explicitly with respect to the biological

parameters in Eq. 23. The functions F2(D) and F3(D) are defined for D such

that s02(D) < M2(D) < s12(D), that is to say, for D such that

L0(D + a0)

m0 −D − a0
<

K2(D + a2)

m2 −D − a2
<
Ki(m1 −D − a1)

D + a1

We denote by

I2 = {D ∈ I1 : s02(D) < M2(D) < s12(D)} (40)

the subset of I1 on which F2(D) and F3(D) are defined. For all for D ∈ I2,

F1(D) ≤ F2(D). The equality F1(D) = F2(D) holds if, and only if, M2(D +

a2) = s2(D) that is, dψ
ds2

(M2(D + a2)) = 0. Therefore, F1(D) = F2(D) holds

if, and only if, F3(D) = 0. We define

I3 = {D ∈ I2 : F3(D) < 0}

Since D 7→ s02(D) is increasing and D 7→ s12(D) is decreasing, and assuming

s02(0) < s12(0), the domain of definition I1 of F1(D) is an interval I1 = [0, D1),

where D1 is the solution of s02(D) = s12(D), see Fig. 2. A necessary condition

of existence of SS2 is 0 < D < D1.
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For the domain of definition I2 of F2(D), several cases can be distinguished.

I2 is an interval I2 = [0, D2), where D2 is the solution of M2(D) = s12(D), see

Fig. 2(a), or the solution of equation M2(D) = s02(D), see Fig. 2(b). I2 is

empty, see Fig. 2(c). I2 is an interval I2 = (D2min, D2max) where D2min and

D2max are the solutions of M2(D) = s02(D) and M2(D) = s12(D) respectively,

see Fig. 2(d). A necessary condition of existence of SS3 is D ∈ I2. Cases (a)–

(d) are obtained with the numerical parameter values listed in Table 2 and 3.

KS,H2,c ai D1 D2 D3

(a) 1.0× 10−6 0.02 0.432 0.373 0.058

0 0.452 0.393 0.078

(b) 4.0× 10−6 0.02 0.329 0.236 I3 = I2

0 0.349 0.256 I3 = I2

(c) 7.0× 10−6 0.02 0.287 I2 = ∅

0 0.303 I2 = ∅

Table 2 Parameter values for cases (a), (b) and (c) of Fig. 2. Unspecified parameter values

are as in Table 1. The table gives the values of D1, D2 and D3 where I1 = [0, D1), I2 =

[0, D2) and I3 = [0, D3)

We can state now the necessary and sufficient conditions of existence of

SS2 and SS3.

Lemma 2 If ω ≥ 1 then SS2 does not exist. If ω < 1 then SS2 exists if, and

only if, sin0 ≥ F1(D). Therefore, a necessary condition for the existence of SS2

is that D ∈ I1, where I1 is defined by Eq. 37. If sin0 ≥ F1(D) then each solution
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ai D1 D2min D2max D3

(d) 0.02 0.238 0.101 0.198 0.161

0 0.258 0.121 0.218 0.181

Table 3 Parameter values for case (d) of Fig. 2: KS,H2,c = 1.2 × 10−5, KS,H2
= 0.5 ×

10−5 and km,H2
= 5. Unspecified parameter values are as in Table 1. The table gives

the values of D1, D2min, D2max and D3 where I1 = [0, D1), I2 = (D2min, D2max) and

I3 = (D2min, D3).

s2 of equation

ψ(s2) = sin0 , s2 ∈ (s02, s
1
2) (41)

gives a steady-state SS2 = (x0, x1, x2 = 0, s0, s1, s2) where

s0 = M0(D + a0, s2), s1 = M1(D + a1, s2)

x0 =
D

D + a0
(sin0 − s0), x1 =

D

D + a1
(sin0 − s0 − s1) (42)

Lemma 3 If ω ≥ 1 then SS3 does not exist. If ω < 1 then SS3 exists if, and

only if, sin0 > F2(D). Therefore, a necessary condition of existence of SS3 is

that D ∈ I2, where I2 is defined by Eq. 40. If sin0 > F2(D) then the steady-state

SS3 = (x0, x1, x2, s0, s1, s2) is given by

s0 = M0(D + a0,M2(D + a2))

s1 = M1(D + a1,M2(D + a2))

s2 = M2(D + a2) (43)

and

x0 =
D

D + a0
(sin0 − s0), x1 =

D

D + a1
(sin0 − s0 − s1)

x2 =
D

D + a2

(
(1− ω)(sin0 − s0)− s1 − s2

)
(44)
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Remark 1 If sin0 > F1(D) then Eq. 41 has exactly two solutions denoted by s[2

and s]2 and such that, see Fig. 1(c),

s02 < s[2 < s2 < s]2 < s12

If sin0 = F0(D) then s02 < s[2 = s2 = s]2 < s12.

To these solutions, s[2 and s]2, correspond two steady-states of SS2, which

are denoted by SS2[ and SS2]. These steady-states coalesce when sin0 = F0(D).

Since F1(D) ≤ F2(D), the condition sin0 > F2(D) for the existence of

the positive steady-state SS3 implies that the condition sin0 > F2(D) for the

existence of the two steady-states SS2[ and SS2] is satisfied. Therefore, if SS3

exists then SS2[ and SS2] exist and are distinct. If sin0 = F2(D) then SS3

coalesces with SS2[ if F3(D) < 0, and with SS2] if F3(D) > 0, respectively.

Remark 2 Using Eq. 20, the conditions sin0 > F1(D) and sin0 > F2(D) of

existence of the steady-state SS2 and SS3 respectively are equivalent to the

conditions

Sch,in >
F1(D)

Y3Y4
and Sch,in >

F2(D)

Y3Y4

respectively, expressed with respect to the inflowing concentration Sch,in.

Our aim now is to describe the operating diagram : The operating diagram

shows how the system behaves when we vary the two control parameters Sch,in

and D in Eqs. 1-6. According to Remark 2, the curve Γ1 of equation

Sch,in =
1

Y 3Y 4
F1(D) (45)



Generalised approach to modelling a three-tiered microbial food-web 21

is the border to which SS2 exists, and the curve Γ2 of equation

Sch,in =
1

Y 3Y 4
F2(D) (46)

is the border to which SS3 exists, see Fig. 3. If we want to plot the operating

diagram we must fix the values of the biological parameters. In the remainder

of the Section we plot the operating diagrams corresponding to cases (a)–(d)

depicted in Fig. 2.

(i)
J1

J2

J3

J1

J3

J4

D D

Sch,in Sch,in

Γ1

@@R

Γ2

6
Γ1

@@R

Γ2
@@I

(ii)
J1

J2

J3

J1

J3

J4 J5

D D

Sch,in Sch,in

Γ1

?

Γ2
6

Γ3

��	

Γ1

@@RΓ2

@@R
Γ3

@@I

Fig. 3 The curves Γ1 (black), Γ2 (red) and Γ3 (green) for case (a). (i) : regions of steady-

state existence, with maintenance. On the right, a magnification for 0 < D < D3 = 0.058

showing the region J4. (ii) : regions of steady-state existence and their stability, without

maintenance. On the right, a magnification for 0 < D < D3 = 0.078 showing the regions J4

and J5.
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Region Steady states

J1 SS1

J2 ∪ J4 SS1, SS2[, SS2]

J3 SS1, SS2[, SS2], SS3

Table 4 Existence of steady-states in the regions of the operating diagrams of Fig. 3(i) and

Fig. 6(i).

4.1 Operating diagram: case (a)

This case corresponds to the parameter values used by Wade et al (2015). We

have seen in Table 2 that the curves Γ1 and Γ2 are defined for D < D1 and

D < D2, respectively and that they are tangent forD = D3, whereD1 = 0.432,

D2 = 0.373 and D3 = 0.058. Therefore, they separate the operating plane

(Sch,in, D) into four regions, as shown in Fig. 3(i), labelled J1, J2 and J3 and

J4.

The results are summarised in Table 4, which shows the existence of the

steady-states SS1, SS2 and SS3 in the regions of the operating diagram in Fig.

3(i).

4.2 Operating diagram: case (b)

This case corresponds to the parameter values used by Wade et al (2015),

except that KS,H2,c is changed from 1.0 × 10−6 to 4.0 × 10−6. We have seen

in Table 2 that the curves Γ1 and Γ2 are defined for D < D1 and D < D2,

respectively and F1(D) < F2(D) for all D < D2, where D1 = 0.329 and
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(i)
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Fig. 4 The curves Γ1 (black), Γ2 (red) and Γ3 (green) for case (b). (i) : regions of steady-

state existence, with maintenance. (ii) : regions of steady-state existence and their stability,

without maintenance. On the right, a magnification for 0 < D < 0.1

Region Steady states

J1 SS1

J4 SS1, SS2[, SS2]

J3 SS1, SS2[, SS2], SS3

Table 5 Existence of steady-states in the regions of the operating diagram of Fig 4(i).

D2 = 0.236. Therefore, they separate the operating plane (Sch,in, D) in three

regions, as shown in Fig. 4(i), labelled J1, J3 and J4.

The results are summarised in Table 5, which shows the existence of the

steady-states SS1, SS2 and SS3 in the regions of the operating diagram in Fig.

4(i). Note that the region J2 has disappeared.
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(i)

J1
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J4

D D

Sch,in Sch,in

Γ1
6

Γ1
-

(ii)

J1

J4

J1

J4

D D

Sch,in Sch,in

Γ1
6

Γ1
-

Fig. 5 The curve Γ1 for case (c). (i) : regions of steady-state existence, with maintenance.

(ii) : regions of steady-state existence. without maintenance and their stability. On the right,

a magnification for 0 < D < 0.1.

Region Steady states

J1 SS1

J4 SS1, SS2[, SS2]

Table 6 Existence of steady-states in the regions of the operating diagram of Fig 5(i).

4.3 Operating diagram: case (c)

This case corresponds to the parameter values used by Wade et al (2015),

except that KS,H2,c is changed from 1.0 × 10−6 to 7.0 × 10−6. We have seen

in Table 2 that the curve Γ1 is defined for D < D1 = 0.287 and that I2 is

empty so that SS3 does not exist. Therefore, Γ1 separates the operating plane

(Sch,in, D) in two regions, as shown in Fig. 5(i), labelled J1 and J4.
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The results are summarised in Table 6, which shows the existence of the

steady-states SS1 and SS2 in the regions of the operating diagram in Fig. 5(i).

Note that the region J3 of existence of SS3 has disappeared.

(i)

J1
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J1

J4

D D
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?

Γ2
6

Γ1
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(ii)
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J2

J5

J3

J4

J1

J4

D D

Sch,in Sch,in

Γ1

?

Γ2
6

Γ3

?

Γ1
�

Fig. 6 The curves Γ1 (black), Γ2 (red) and Γ3 (green) for case (d). (i) : regions of steady-

state existence, with maintenance. (ii) : regions of steady-state existence and their stability,

without maintenance. On the right, a magnification for 0 < D < 0.1.

4.4 Operating diagram: case (d)

We end this discussion on the role of kinetic parameters by the presentation of

this case, which presents a new behaviour that did not occur in the preceding

cases: there exists D2min such that for D < D2min the system cannot have a

positive steady-state SS3. This case corresponds to the parameter values used

by Wade et al (2015), except that three of them are changed as indicated in

Table 3. This table shows that the curves Γ1 and Γ2 are defined for D < D1
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and D2min < D < D2max and that they are tangent for D = D3, where

D1 = 0.238, D2min = 0.101, D2max = 0.198 and D3 = 0.161. Therefore, Γ1

and Γ2 separate the operating plane (Sch,in, D) in four regions, as shown in

Fig. 6(i), labelled J1, J2, J3 and J4. The results are summarised in Table 4,

which shows the existence of the steady-states SS1, SS2 and SS3 in the regions

of the operating diagram in Fig. 6(i).

4.5 Stability of steady-states

We know that SS1 is always stable. The analytical study of the stability of

SS2 and SS3 is very difficult because the conditions for Routh-Hurwitz in the

6-dimensional case are intractable. For this reason we will consider in Section 5

the question of the stability only in the case without maintenance, since the

system reduces to a 3-dimensional. The general case will be considered only

numerically in Section 6.

5 Local stability without maintenance

When maintenance is not considered in the model, the steady-states SS1, SS2

and SS3 are given by

1. SS1 = (0, 0, 0, sin0 , 0, 0)

2. SS2 = (x0, x1, 0, s0, s1, s2) where s2 a solution of equation

sin0 = ψ(s2) = M0(D, s2) +
M1(D, s2) + s2

1− ω
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and

s0 = M0(D, s2), s1 = M1(D, s2)

x0 = sin0 − s0, x1 = sin0 − s0 − s1 (47)

3. SS3 = (x0, x1, x2, s0, s1, s2) where

s2 = M2(D), s0 = M0(D, s2), s1 = M1(D, s2)

x0 = sin0 − s0, x1 = sin0 − s0 − s1 (48)

x2 = (1− ω)
(
sin0 − s0

)
− s1 − s2

Proposition 1 Let SS2 = (x0, x1, 0, s0, s1, s2) be a steady-state. Then SS2 is

stable if, and only if, µ2(s2) < D and dψ
ds2

> 0.

Therefore, SS2[ is always unstable and SS2] is stable if, and only if, µ2(s2) < D.

This last condition is equivalent to M2(D) > s]2, which implies that F3(D) > 0.

Hence, if SS3 exists then SS2] is necessarily unstable. Therefore, SS2] is stable

if, and only if, F3(D) > 0 and SS3 does not exist.

Proposition 2 Let SS3 = (x0, x1, x2, s0, s1, s2) be a steady-state. If F3(D) ≥

0 then SS3 is stable as long as it exists. If F3(D) < 0 then SS3 can be unstable.

The instability of SS3 occurs in particular when s2 is sufficiently close to s[2,

that is to say SS3 is sufficiently close to SS2[.

The condition F3(D) ≥ 0 is equivalent to dψ
ds2

(M2(D)) ≥ 0, that is to say

s2 = M2(D) ∈ [s2, s
]
2). If dψ

ds2
< 0, that is to say s2 ∈ (s[2, s2), then SS3 can be

unstable.
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When D is such that F3(D) < 0, the determination of the boundary be-

tween the regions of stability and instability of SS3 needs to examine the

Routh-Hurwitz condition of stability for SS3. For this purpose we define the

following functions. Let SS3 = (x0, x1, x2, s0, s1, s2) be a steady-state. Let

E=
∂µ0
∂s0

, F=
∂µ0
∂s2

, G=
∂µ1
∂s1

, H=− ∂µ1∂s2
, I=

dµ2
ds2

evaluated at the steady-state SS3 defined by (48), that is to say, for

s2 = M2(D), s0 = M0(D, s2), s1 = M1(D, s2)

For D ∈ I3 and sin0 > F2(D), we define

F4

(
D, sin0

)
= (EIx0x2 + [E(G+H)− (1− ω)FG]x0x1)f2

+ (Ix2 + (G+H)x1 + ωFx0)GIx1x2 (49)

where f2 = Ix2+(G+H)x1+(E+ωF )x0. Notice that to compute F4

(
D, sin0

)
,

we must replace x0, x1, x2, s0, s1 and s2 by their values at SS3, given by (48).

Hence, this function depends on the operating parameters D and sin0 . For each

fixed D ∈ I3, F
(
D, sin0

)
is polynomial in sin0 of degree 3 and tends to +∞ when

sin0 tends to +∞. Therefore, it is necessarily positive for large enough sin0 . The

values of the operating parameters D and sin0 for which F
(
D, sin0

)
is positive

correspond to the stability of SS3 as shown in the following proposition.

Proposition 3 Let SS3 = (x0, x1, x2, s0, s1, s2) be a steady-state. If F3(D) <

0 then SS3 is stable if, and only if, F4

(
D, sin0

)
> 0.

The results on the existence of steady states (with or without maintenance)

of Lemma 1, Lemma 2 and Lemma 3, and their stability (without maintenance)

of Prop 1, Prop 2 and Prop 3, are summarised in Table 7.
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Existence Stability

SS1 Always exists Always stable

SS2[ sin0 > F1(D) Always unstable

SS2] sin0 > F1(D) F3(D) > 0 and sin0 < F2(D)

SS3 sin0 > F2(D) F3(D) ≥ 0 or

F3(D) < 0 and F4

(
D, sin0

)
> 0

Table 7 Existence (with or without maintenance) and stability (without maintenance) of

steady-states.

5.1 Operating diagram: case (a)

This case corresponds to the parameter values used by Wade et al (2015)

but without maintenance. We see from Table 2 that the curves Γ1 and Γ2 of

the operating diagram, given by Eq. 45 and Eq. 46, respectively, are defined

now for D < D1 = 0.452 and D < D2 = 0.393, respectively and that they

are tangent for D = D3 = 0.078. Beside these curves, we plot also on the

operating diagram of Fig. 3(ii), the curve Γ3 of equation

F4 (D,Y3Y4Sch,in) = 0 (50)

According to Prop. 3, this curve is defined for D < D3 = 0.078 and it separates

the region of existence of SS3 into two subregions labelled J3 and J5, such

that SS3 is stable in J3 and unstable in J5. The other regions J1, J2 and J4

are defined as in the previous section. The operating diagram is shown Fig.

3(ii). It looks very similar to Fig. 3(i), except near the origin, as it is indicated

in the magnification for 0 < D < D3 = 0.078. From Table 7, we deduce the

following result
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Region SS1 SS2[ SS2] SS3

J1 S

J2 S U S

J3 S U U S

J4 S U U

J5 S U U U

Table 8 Existence and stability of steady-states in the regions of the operating diagrams

of Fig. 3(ii) and Fig. 6(ii).

Proposition 4 Table 8 shows the existence and stability of the steady-states

SS1, SS2 and SS3 in the regions of the operating diagram in Fig. 3(ii).

5.2 Operating diagram: case (b)

We see from Table 2 that the curves Γ1 and Γ2 are defined now for D < D1 =

0.349 and D < D2 = 0.256, respectively and that F1(D) < F2(D) for all D.

Beside these curves, we plot also on the operating diagram of Fig. 4(ii), the

curve Γ3 of equation (Eq. 50) which separates the region of existence of SS3

into two subregions labelled J3 and J5, such that SS3 is stable in J3 and

unstable in J5. Therefore, the curves Γ1, Γ2 and Γ3 separate the operating

plane (Sch,in, D) into four regions, as shown in Fig. 4(ii), labelled J1, J3, J4

and J5.

Proposition 5 Table 9 shows the existence and stability of the steady-states

SS1, SS2 and SS3 in the regions of the operating diagram in Fig. 4(ii)
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Region SS1 SS2[ SS2] SS3

J1 S

J3 S U U S

J4 S U U

J5 S U U U

Table 9 Existence and stability of steady-states in the regions of the operating diagram of

Fig. 4(ii).

Region SS1 SS2[ SS2] SS3

J1 S

J4 S U U

Table 10 Existence and stability of steady-states in the regions of the operating diagram

of Fig. 5(ii).

5.3 Operating diagram: case (c)

We see from Table 2 that Γ1 is defined for D < D1 = 0.303 and that I2 is

empty so that SS3 does not exist. Therefore, Γ1 separates the operating plane

(Sch,in, D) into two regions, as shown in Fig. 5(ii), labelled J1 and J4.

Proposition 6 Table 10 shows the existence and stability of the steady-states

SS1, SS2 and SS3 in the regions of the operating diagram in Fig. 5(ii).

5.4 Operating diagram: case (d)

We see in Table 3 that the curves Γ1 and Γ2 are defined for D < D1 and

D2min < D < D2max and that they are tangent for D = D3, where D1 = 0.258
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and D2min = 0.121, D2max = 0.218 and D3 = 0.181. Beside these curves, we

plot also on the operating diagram of Fig. 6(ii), the curve Γ3 defined by Eq. 50,

which separates the region of existence of SS3 into two subregions labelled J3

and J5, such that SS3 is stable in J3 and unstable in J5. Therefore, the

curves Γ1, Γ2 and Γ3 separate the operating plane (Sch,in, D) into five regions,

as shown in Fig. 6(ii), labelled J1, J2, J3, J4 and J5.

Proposition 7 Table 8 shows the existence and stability of the steady-states

SS1, SS2 and SS3 in the regions of the operating diagram in Fig. 6(ii).

6 Numerical analysis to confirm and extend the analytical results

The aim of this section is to study numerically (the method is explained in

Appendix A) the existence and stability of the steady-states SS2 and SS3. We

obtain numerically the operating diagrams that were described in Sections 4

and 5. The results in this section confirm the results on existence of the steady-

states obtained in Section 4 in the case with or without maintenance and the

results of stability obtained in Section 5 in the case without maintenance.

These results permit also to elucidate the problem of the local stability of SS2

and SS3, which was left open in Section 4.5.

6.1 Operating diagram: case (a)

We endeavoured to find numerically the operating conditions under which SS3

is unstable, previously unreported by Wade et al (2015). Given that we have
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determined analytically in Proposition 2 that when SS3 is close to SS2[ it

becomes unstable, we performed numerical simulations with the parameters

defined in Table 1 over an operating region similar to that shown in Fig. 2

from Wade et al (2015) whilst also satisfying our conditions. In Fig. 7 we show

the case when maintenance is excluded. When magnified, we observe more

clearly that region J5 does exist for the conditions described above, and also

note that the region J4 occurs in a small area between J1 and J5, which

corresponds to the results shown in Fig. 3(ii), and is in agreement with Propo-

sition 4. In Fig. 8 we confirm that region J5 does exist for the conditions

described above, when maintenance is included, but could not be determined

analytically, the curve Γ3 is absent in Fig. 3(i). Furthermore, we demonstrate

that a Hopf bifurcation occurs along the boundary of F3(D) for values of

D < D3 by selecting values of Sch,in (indicated by (α) − (δ) in Fig. 8) at a

fixed dilution rate of 0.01 d−1, and running dynamic simulations for 10000 d.

The three-dimensional phase plots, with the axes representing biomass con-

centrations, are shown in Fig. 9, and show that as Sch,in approaches J3 from

J5, emergent periodic orbits are shown to diminish to a stable limit cycle at

the boundary (see Appendix B for proof). Subsequently, increasing Sch,in to

J3 results in the orbit reducing to a fixed point equilibrium at SS3.

6.2 Operating diagram: case (b)

Whilst the numerical parameters chosen for this work are taken from the orig-

inal study (Wade et al 2015), there somewhat arbitrary nature leaves room
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��	
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?
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Fig. 7 Numerical analysis for the existence and stability of steady-states for case (a), with-

out maintenance. On the right, a magnification for 0 < D < 0.16.

(α) (β) (γ) (δ)

J1

J2

J3

J4

J5

D

Sch,in

Fig. 8 Numerical analysis for the existence and stability of steady-states for case (a), with

maintenance. This is a magnification for 0 < D < 0.1, showing the presence and extent of

region J5 undetectable by the analytical method. The coordinates labelled (α) − (δ) are

subsequently used to simulate the system dynamics, as shown in the proceeding Fig. 9.

to explore the impact of the parameters on the existence and stability of the

steady-states. Case (b), discussed in Sections 4.2 and 5.2, involves a small in-

crease to the half-saturation constant (or inverse of substrate affinity), KS,H2,c,
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Fig. 9 Three-dimensional phase plane diagrams of the biomass dynamics for t = 10000 d,

showing initial (green dot) and final (red dot) conditions for a dilution rate, D = 0.01 d−1

and chlorophenol input, Sch,in (kgCOD/m3) of α) 0.01 - the system converges to SS1, β)

0.097 - the system enters a periodic orbit of increasing amplitude, ultimately converging to

SS1, γ) 0.10052 - the system is close to a stable limit cycle, δ) 0.16 - the system undergoes

damped oscillations and converges to SS3.

of the chlorophenol degrader on hydrogen. Following the same approach as

with the preceding case, we confirm in Fig. 10(i) the Proposition 5 in the

scenario without maintenance. Furthermore, the extension of this proposition

with maintenance included, corresponding to the existence and stability of all

three steady-states given in Table 9, is show in Fig 10(ii). It shows the region

J5 that cannot be obtained analytically (cf. Fig. 4(i)). In both cases, region

J2 has disappeared, as observed analytically. Additionally, the ideal condition

J3, where all organisms are present and stable, diminishes.
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6.3 Operating diagram: case (c)

Here, KS,H2,c, was further increased and confirm the Proposition 6, where the

function SS3 never exist and SS2 never stable for the case without mainte-

nance. The extension of this proposition to the case with maintenance, shown

in Table 10, produce similar results as shown in the comparison of Figs. 11(i)

and (ii).

6.4 Operating diagram: case (d)

With the final investigated scenario, where km,H2 < km,ch and KS,H2 <

KS,H2,c, we observe once again the presence of all operating regions, J1 −J5,

without and with maintenance, as shown in Fig. 12. It can be seen that regions

J4 and J5 increase at low dilution rates across a much larger range of Sch,in

than in the default case (a), and the desired condition (stable SS3) is restricted

to a much narrower set of D.

As with the previous cases, the numerical analysis for case (d) confirms

the Proposition 7 without maintenance and its extension to the case with

maintenance, indicated in Table 8.

7 The role of kinetic parameters

Finally, we give brief consideration to the characterisation of the four cases

discussed in the preceding sections. The main difference between cases (a) or

(b) and cases (c) or (d) is that, for small values of D, the coexistence steady-
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Fig. 10 Numerical analysis for the existence and stability of steady-states for case (b). (i)

: without maintenance. (ii) : with maintenance.
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Fig. 11 Numerical analysis for the existence and stability of steady-states for case (c). (i) :

without maintenance. (ii) : with maintenance. On the right, a magnification for 0 < D < 0.1.

state SS3 can exist for cases (a) and (b), but cannot exist for cases (c) or (d).

The cases (a) or (b) occur if and only if s02(0) < M2(0) holds or s02(0) = M2(0)



38 Tewfik Sari, Matthew J. Wade

J1 J2
J3

J4

J5

(i)
D

Sch,in

J1
J2
J3

J4

J5

(ii)

D

Sch,in

Fig. 12 Numerical analysis for the existence and stability of steady-states for case (d). (i)

: without maintenance. (ii) : with maintenance.

and
ds02
dD (0) < dM2

dD (0) hold, that is to say

L0a0
m0 − a0

<
K2a2
m2 − a2

or (51)

L0a0
m0 − a0

=
K2a2
m2 − a2

and
L0m0

(m0 − a0)2
<

K2m2

(m2 − a2)2
(52)

The cases (c) or (d) occur if and only if s02(0) > M2(0) holds or s02(0) = M2(0)

and
ds02
dD (0) > dM2

dD (0) hold, that is to say

L0a0
m0 − a0

>
K2a2
m2 − a2

or (53)

L0a0
m0 − a0

=
K2a2
m2 − a2

and
L0m0

(m0 − a0)2
>

K2m2

(m2 − a2)2
(54)

Notice that it is easy to make the difference between case (c) and case (d):

the first occurs when M2(D1) < s02(D1) and the second when M2(D1) >

s02(D1). Since D1 is the positive solution of the algebraic quadratic equa-

tion s02(D) = s12(D), it is possible to have an expression for D1 with respect

to the biological parameters. However, this is a complicated expression in-

volving many parameters and the preceding conditions M2(D1) < s02(D1) or

M2(D1) > s02(D1) have no biological interpretation. We simply remark here
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that the function s02(D) has a vertical asymptote for D = m0 − a0 and the

function M2(D) has a vertical asymptote for D = m2 − a2. Therefore, if

m0 − a0 < m2 − a2 then case (c) occurs, so that a necessary (but not suffi-

cient) condition for case (d) to occur is m0−a0 > m2−a2. If m2 is sufficiently

small then case (d) can occur.

The observations from the numerical analysis suggest that the role of the

chlorophenol degrader as a secondary hydrogen scavenger is critical in main-

taining full chlorophenol mineralisation and system stability, particularly at

higher dilution rates, as shown by comparing cases (c) and (d) . More signifi-

cantly, the results coupled with the parameter relationships shown in Eqs. 51-

54, highlight the necessary conditions under which the ideal case (SS3 stable)

is achieved and, in general, this is a coupling of the two key parameters describ-

ing the half-saturation constant and maximum specific growth rates between

the two hydrogen competitors.

8 Conclusions

In this work we have generalised a simplified mechanistic model describing the

anaerobic mineralisation of chlorophenol in a two-step food-web. We are able

to show complete analytical solutions describing the existence and stability of

the steady-states in the case that maintenance is excluded from the system,

whilst with a decay term present, purely analytical determination of stability

is not possible.
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We confirm the findings of previous numerical analysis by Wade et al (2015)

that with chlorophenol as the sole input substrate, three steady-states are pos-

sible. However, the analysis goes further and we determine that under certain

operating conditions, two of these steady-states (SS2 and SS3) can become

stable, whilst SS1 always exists and is always stable. Furthermore, without

maintenance we can explicitly determine the stability of the system, and form

analytical expressions of the boundaries between the different stability regions.

As the boundary of J3 is not open to analytical determination in the case

with maintenance, we determined numerically (substituting the general growth

function with the classical Monod-type growth kinetics) the existence and sta-

bility of the system over a range of practical operating conditions (dilution rate

and chlorophenol input). For comparison and confirmation, we also performed

this for the case without maintenance and found the same regions in both

cases, with variations only in their shape and extent. For example, whilst the

boundary between J1 and J4 terminates at the origin without maintenance,

with maintenance it is located at F1(0)/Y3Y4 ≈ 0.0195. More interestingly, the

addition of a decay term results in an extension of the SS3 unstable steady-

state, reducing the potential for successful chlorophenol demineralisation at

relatively low dilution rates and substrate input concentrations. Additionally,

we show that at the boundary between J3 and J5, a Hopf bifurcation occurs

and a limit cycle in SS3 emerges.

Finally, we gave an example of how the model could be used to probe the

system to answer specific questions regarding model parameterisation. Here we
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have indicated that a switch in dominance between two organisms competing

for hydrogen results in the system becoming unstable and a loss in viability.

This is perhaps intuitive to microbiologists, but here it has been proven using

mathematical analysis, and could be used to determine critical limits of the

theoretical parameter values in shifting between a stable and unstable system.

Whilst parameters are not arbitrary in real organisms, the potential for micro-

bial engineering or synthetic biology to manipulate the properties of organisms

makes this observation all the more pertinent.
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A Numerical methods

We consider sets of operating parameters (D and Sch,in) for each of the three steady-

states, and using Matlab, the complex polynomials for each steady-state can be solved by

substitution of parameter values (see Table 1) into the explicit solution. By investigating the

signs of the solutions and the eigenvalues, respectively, we determine which steady-states are

meaningful and stable. By exploring a localised region of suitable operating parameters, we

then generate a phase plot showing where each steady-state is stable, bistable or unstable.
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B Proof for Hopf Bifurcation

In Section 6, we show the operating diagrams with the parameters given in Table 1, and

determine numerically that as the parameter Sch,in increases at a fixed dilution rate (D =

0.01 d−1), the system bifurcates through several stability domains. We claim that as we

cross the boundary between regions J5 and J3, we observe a Hopf bifurcation, and, in J5,

close to the boundary with J3, a limit cycle appears. In order to test this numerically, we

checked the real parts of the six eigenvalues at each point along the transect shown in Fig 8

(10000 points in total), and plotted their values. Fig 13 indicates the conditions for a Hopf

bifurcation are satisfied as eigenvalues 2 and 3 both change their sign when passing through

the coordinate (0, 0.1034) and the real part of all eigenvalues 1, 4 and 6 remain negative.
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Fig. 13 Real parts of the eigenvalues determined at D = 0.01 and Sch,in = [0.08, 0.12], in

the case with maintenance. The red vertical lines indicate the location where the eigenvalue

crosses zero.
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C General case

As mentioned at the end of Section 2 our study does not require that growth functions are

of Monod type (Eq. 23). Actually, the results are valid for a more general class of growth

functions satisfying the following conditions, which concur with those given by Eq. 23:

H1 For all s0 > 0 and s2 > 0 then 0 < µ0 (s0, s2) < +∞ and µ0 (0, s2) = 0, µ0 (s0, 0) = 0.

H2 For all s1 > 0 and s2 ≥ 0 then 0 < µ1 (s1, s2) < +∞ and µ1 (0, s2) = 0.

H3 For all s2 > 0 then 0 < µ2 (s2) < +∞ and µ2(0) = 0.

H4 For all s0 > 0 and s2 > 0,

∂µ0

∂s0
(s0, s2) > 0,

∂µ0

∂s2
(s0, s2) > 0.

H5 For all s1 > 0 and s2 > 0,

∂µ1

∂s1
(s1, s2) > 0,

∂µ1

∂s2
(s1, s2) < 0.

H6 For all s2 > 0,
dµ2

ds2
(s2) > 0.

H7 The function s2 7→ µ0(+∞, s2) is monotonically increasing and the function s2 7→

µ1(+∞, s2) is monotonically decreasing.

We use Eq. 31, Eq. 32 and Eq. 33 to define M0(y, s2), M1(y, s2) and M2(y), respectively.

Lemma 4 Let s2 ≥ 0 be fixed. There exists a unique function

y ∈ [0, µ0(+∞, s2)) 7→M0(y, s2) ∈ [0,+∞),

such that for s0 ≥ 0, s2 ≥ 0 and y ∈ [0, µ0(+∞, s2)), we have

s0 = M0(y, s2)⇐⇒ y = µ0(s0, s2) (55)

Lemma 5 Let s2 ≥ 0 be fixed. There exists a unique function

y ∈ [0, µ1(+∞, s2)) 7→M1(y, s2) ∈ [0,+∞),

such that for s1 ≥ 0, s2 ≥ 0 and y ∈ [0,∈ [0, µ1(+∞, s2)), we have

s1 = M1(y, s2)⇐⇒ y = µ1(s1, s2) (56)
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Lemma 6 There exists a unique function

y ∈ [0, µ2(+∞)) 7→M2(y) ∈ [0,+∞),

such that, for s2 ≥ 0 and y ∈ [0, µ2(+∞)) we have

s2 = M2(y)⇐⇒ y = µ2(s2) (57)

We use Eq. 35 to define the functions s12(D) and s12(D)

Lemma 7 For D+ a0 < µ0(+∞,+∞) and D+ a1 < µ1(+∞, 0) there exist unique values

s02 and s12 such that

µ0(+∞, s02) = D + a0, µ1(+∞, s12) = D + a1 (58)

Let ω < 1. We use Eq. 34 to define ψ(s2, D) in the general case: we let ψ : (s02, s
1
2) −→ R

defined by

ψ(s2) = M0(D + a0, s2) +
M1(D + a1, s2) + s2

1− ω
, (59)

It should be noted that ψ(s2) > 0 for s02 < s2 < s12. From Eq. 55, Eq. 56 and Eq. 58 we

deduce that

M0(D + a0, s
0
2) = +∞, M1(D + a1, s

1
2) = +∞

Therefore, we have

lim
s2→s02

ψ(s2) = lim
s2→s12

ψ(s2) = +∞

Hence, the function ψ(s2), which is positive and tends to +∞ at the extremities of the

interval (s02, s
1
2), has a minimum value on this interval. We add the following assumption:

H8 The function ψ has a unique minimum s2 on the interval
(
s02, s

1
2

)
and dψ

ds2
(s2) is negative

on
(
s02, s2

)
and positive on

(
s2, s12

)
, respectively.

The function ψ together with the values s02, s12 and s2 all depend on D. However, to

avoid cumbersome notations we will use the more precise notations ψ(s2, D), s02(D), s12(D)

and s2(D) only if necessary.
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We use Eq. 36, Eq. 38 and Eq. 39 to define F1(D), F2(D) and F3(D) in the general

case:

F1(D) = inf
s2∈(s02,s

1
2)
ψ(s2) = ψ (s2) (60)

F2(D) = ψ (M2(D + a2)) (61)

F3(D) =
dψ

ds2
(M2(D + a2)) (62)

The function F1(D) is defined for

D ∈ I1 = {D ≥ 0 : s02(D) < s12(D)}

The function F2(D) and F3(D) are defined for

D ∈ I2 = {D ∈ I1 : s02(D) < M2(D + a2) < s12(D)}

For all for D ∈ I2, F1(D) ≤ F2(D). The equality F1(D) = F2(D) holds if, and only if,

M2(D + a2) = s2(D) that is, dψ
ds2

(M2(D + a2)) = 0, that is if, and only if, F3(D) = 0.

As it will be shown in Appendix D, the Lemmas 2 and 3, stated in Section 5 in the

particular case of the Monod type growth functions (Eq. 23), are true in the general case of

growth functions satisfying assumptions H1–H8.

D Proofs

In this Section we give the proofs of the results. In these proofs, we do not assume that the

growth function are of Monod type (Eq. 23). We only assume that the growth functions

satisfy H1–H8.

D.1 Existence of steady-states

Proof [Lemma 1] Assume first that x0 = 0. Then, as a consequence of Eq. 28, we have

s0 = sin0 and, as a consequence of Eq. 29, we have

Ds1 + µ1(s1, s2)x1 = 0
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which implies s1 = 0 and µ1(s1, s2)x1 = 0. Therefore, as a consequence of Eq. 26 we have

x1 = 0. Replacing x0 = 0 and x1 = 0 in Eq. 30, we have

Ds2 + µ2(s2)x2 = 0

which implies s2 = 0 and µ2(s2)x2 = 0. Therefore, as a consequence of Eq. 27 we have

x2 = 0. Hence, the steady-state is SS1.

Assume now that x1 = 0. Then, as a consequence of Eq. 30, we have

Ds2 + ωµ0(s0, s2)x0 + µ2(s2)x2 = 0

which implies s2 = 0, µ0(s0, s2)x0 = 0 and µ2(s2)x2 = 0. Therefore, as a consequence

of Eq. 25, we have x0 = 0. As shown previously this implies that the steady-state is SS1.

Evaluated at SS1 the Jacobian matrix of Eqs. 14-19 is

−D − a0 0 0 0 0 0

0 −D − a1 0 0 0 0

0 0 −D − a2 0 0 0

0 0 0 −D 0 0

0 0 0 0 −D 0

0 0 0 0 0 −D


Thus, SS1 is stable. ut

Proof [Lemma 2] Since x0 > 0 and x1 > 0, then, as a consequence of Eq. 25 and Eq. 26, we

have

µ0(s0, s2) = D + a0, µ1(s1, s2) = D + a1

Hence, we have

s0 = M0(D + a0, s2), s1 = M1(D + a1, s2) (63)

Using Eq. 28 and Eq. 29, we have Eq. 42. Using Eq. 30 we have

−s2 + (sin0 − s0 − s1)− ω(sin0 − s0) = 0 (64)
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If ω ≥ 1 this equation has no solution. If ω < 1 this equation is equivalent to

sin0 = s0 +
s1 + s2

1− ω
.

Using Eq. 63 we see that s2 must be a solution of Eq. 41. Since s1 > 0 and s2 > 0 then,

from Eq. 64 we have necessarily

s1 + s2 = (1− ω)(sin0 − s0) > 0

so that sin0 − s0 > 0. From Eq. 42 we deduce that x0 > 0. Since sin0 − s0 > 0 and s2 > 0

then, from Eq. 64 we have necessarily

ω(sin0 − s0) + s2 = sin0 − s0 − s1 > 0

so that sin0 − s0 − s1 > 0 From Eq. 42 we deduce that x1 > 0. ut

Proof [Lemma 3] Since x0 > 0, x1 > 0 and x2 > 0, then, as a consequence of Eq. 25, Eq. 26)

and Eq. 27, we have

µ0(s0, s2) = D + a, µ1(s1, s2) = D + b, µ2(s2) = D + c

Hence, s0, s1 and s2 are given by Eq. 43. Using Eq. 28, Eq. 29 and Eq. 30 we have Eq. 44.

For x2 to be positive it is necessary that s0, s1 and s2 satisfy the condition

(1− ω)(sin0 − s0) > s1 + s2, (65)

If ω ≥ 1 this equation has no solution. If ω < 1 this equation is equivalent to the condition

sin0 > s0 +
s1 + s2

1− ω
.

Using Eq. 43, this condition is the same as

sin0 > ψ (M2(D + a2)) = F2(D)

Therefore, from Eq. 65 we have sin0 − s0 > 0 and sin0 − s0 − s1 > 0, so that x0 > 0 and

x1 > 0. ut
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D.2 Stability of steady-states

We use the change of variables

z0 = s0 + x0, z1 = s1 + x1 − x0, z2 = s2 + x2 + ωx0 − x1 (66)

Therefore, Eqs. 14-19, with a0 = a1 = a2 = 0, become

dx0

dt
= −Dx0 + µ0 (z0 − x0, z2 − ωx0 + x1 − x2)x0 (67)

dx1

dt
= −Dx1 + µ1 (z1 + x0 − x1, z2 − ωx0 + x1 − x2)x1 (68)

dx2

dt
= −Dx2 + µ2 (z2 − ωx0 + x1 − x2)x2 (69)

dz0

dt
= D

(
sin0 − z0

)
(70)

dz1

dt
= −Dz1 (71)

dz2

dt
= −Dz2 (72)

In the variables (x0, x1, x2, z0, z1, z2) where z1, z2 and z3 are defined by Eq. 66, the steady-

states SS1, SS2 and SS3 are given by

1. SS1 = (0, 0, 0, sin0 , 0, 0)

2. SS2 = (x0, x1, 0, sin0 , 0, 0), where x0 and x1 are defined by Eq. 47.

3. SS3 = (x0, x1, x2, sin0 , 0, 0), where x0, x1 and x2 are defined by Eq. 48.

Let (x0, x1, x2, sin0 , 0, 0) be a steady-state. The Jacobian matrix of Eqs. 67-72 has the

block triangular form

J =

J1 J2

0 J3


where

J1 =


µ0 −D − (E + ωF )x0 Fx0 −Fx0

(G+ ωH)x1 µ1 −D − (G+H)x1 Hx1

−ωIx2 Ix2 µ2 −D − Ix2



J2 =


Ex0 0 Fx0

0 Gx1 −Hx1

0 0 Ix2

 , J3 =


−D 0 0

0 −D 0

0 0 −D


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and

E =
∂µ0

∂s0
, F =

∂µ0

∂s2
, G =

∂µ1

∂s1
, H = −

∂µ1

∂s2
, I =

dµ2

ds2

are evaluated at the steady-state.

Since J is a block triangular matrix, its eigenvalues are −D (with multiplicity 3) together

with the eigenvalues of the 3× 3 upper-left matrix J1. Note that we have used the opposite

sign for the partial derivative H = −∂µ1/∂s2, so that all constants involved in the compu-

tation become positive, which will simplify the analysis of the characteristic polynomial of

J1.

Proof [Proposition 1] Evaluated at SS2, the matrix J1 is

J1 =


−(E + ωF )x0 Fx0 −Fx0

(G+ ωH)x1 −(G+H)x1 Hx1

0 0 µ2 −D


Since J1 is a block triangular matrix, its eigenvalues are simply µ2 −D, together with the

eigenvalues of the 2×2 upper-left matrix. Note that the trace of this 2×2 matrix is negative.

Hence, its eigenvalues are of negative real part if, and only if, its determinant is positive,

that is if, and only if,

E(G+H)− (1− ω)FG > 0 (73)

Using

∂M0

∂s2
= −

∂µ0

∂s2

[
∂µ0

∂s0

]−1

= −F/E

∂M1

∂s2
= −

∂µ1

∂s2

[
∂µ1

∂s0

]−1

= H/G

we deduce from

ψ(s2) = M0(D, s2) +
M1(D, s2) + s2

1− ω

that

dψ

ds2
=
∂M0

∂s2
+

∂M0
∂s2

+ 1

1− ω
= −

F

E
+

H
G

+ 1

1− ω

Hence,

dψ

ds2
=
E(G+H)− (1− ω)FG

(1− ω)EG
(74)
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Therefore, the condition of stability, (Eq. 73), is equivalent to dψ
ds2

> 0. Hence, we have

proved that SS2 is stable if, and only if, µ2(s2) < D and dψ
ds2

> 0. ut

Proof [Proposition 2] Evaluated at SS3, the matrix J1 is

J1 =


−(E + ωF )x0 Fx0 −Fx0

(G+ ωH)x1 −(G+H)x1 Hx1

−ωIx2 Ix2 −Ix2


The characteristic polynomial is given by

λ3 + f2λ
2 + f1λ+ f0 = 0 (75)

where

f2 = Ix2 + (G+H)x1 + (E + ωF )x0 (76)

f1 = ∆x0x1 + EIx0x2 +GIx1x2 (77)

f0 = EGIx0x1x2 (78)

and ∆ = E(G+H)− (1− ω)FG.

To satisfy the Routh-Hurwitz criteria, we require fi > 0, for i = 0, 1, 2 and f1f2−f0 > 0.

Notice that

f1f2 − f0 = (EIx0x2 +∆x0x1)f2

+ (Ix2 + (G+H)x1 + ωFx0)GIx1x2 (79)

We always have f0 > 0 and f2 > 0.

From Eq. 74 we deduce that ∆ = (1 − ω)EG dψ
ds2

. Therefore, if F3(D) ≥ 0, that is to

say dψ
ds2
≥ 0, then ∆ > 0. Hence, f1 > 0 and f1f2 − f0 > 0, so that SS3 is stable

On the other hand, if dψ
ds2

< 0 and x2 is very small, which occurs when SS3 is very close

to SS2[, then f2 has the sign of ∆ since the term with x2 is negligible compared to the term

∆x0x1:

f2 = ∆x0x1 + (EIx0 + xGIx1)x2 < 0

Thus, SS3 is unstable. ut
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Proof [Proposition 3] Since we always have f0 > 0 and f2 > 0, from the previous proof it

follows that SS3 is stable if, and only if, f1f2 − f0 > 0. Indeed, this condition implies that

we have also f1 > f0/f2 > 0. Using Eq. 49 and Eq. 79, we see that

f1f2 − f0 = F4

(
D, sin0

)

Therefore, the condition f1f2 − f0 > 0 is equivalent to F4

(
D, sin0

)
> 0. ut

D.3 Operating diagrams

Proof [Proposition 4] We know that SS1 always exist and is stable. We know that SS2[ is

unstable if it exists. Using Table 7 and Remark 2, we obtain the following results

– J1 is defined by D ≥ D1 or 0 < D < D1 and Sch,in < F1(D)/Y3Y4. Therefore, SS1 is

the only existing steady state in this region.

– J2 if defined by D3 < D < D1 and F1(D)/Y3Y4 < Sch,in < F2(D)/Y3Y4. Therefore,

both steady state SS2 exist and SS2] is stable since F3(D) > 0.

– J3 if defined by 0 < D < D2 and F2(D)/Y3Y4 < Sch,in and F4

(
D,Sch,in/Y3Y4

)
> 0

when 0 < D < D3. Therefore, SS3 exists and is stable, both steady state SS2 exist and

SS2] is unstable since F3(D) < 0..

– J4 if defined by 0 < D < D3 and F1(D)/Y3Y4 < Sch,in < F2(D)/Y3Y4. Therefore, both

steady state SS2 exist and SS2] is unstable since F3(D) < 0.

– J5 if defined by 0 < D < D3, F2(D)/Y3Y4 < Sch,in and F4

(
D,Sch,in/Y3Y4

)
< 0.

Therefore, SS3 exists and is unstable and both steady state SS2 exist and SS2] is unstable

since F3(D) < 0..

ut

Proof [Propositions 5, 6 and 7] The result follows from Table 7 and Remark 2. The details

are as in the proof of Proposition 5. ut
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D.4 General case

Proof [Lemma 4] Let s2 ≥ 0 be fixed. By H4, the function

s0 ∈ [0,+∞) 7→ µ0(s0, s2) ∈ [0, µ0(+∞, s2))

is monotonically increasing. Hence, it has an inverse function denoted by

y ∈ [0, µ0(+∞, s2)) 7→M0(y, s2) ∈ [0,+∞),

such that for all s0 ≥ 0, s2 ≥ 0 and y ∈ [0, µ0(+∞, s2)) (55) holds. ut

Proof [Lemma 5] Let s2 ≥ 0 be fixed. By H5, the function

s1 ∈ [0,+∞) 7→ µ1(s1, s2) ∈ [0, µ1(+∞, s2))

is monotonically increasing. Hence, it has an inverse function denoted by

y ∈ [0, µ1(+∞, s2)) 7→M1(y, s2) ∈ [0,+∞),

such that for all s1 ≥ 0, s2 ≥ 0 and y ∈ [0,∈ [0, µ1(+∞, s2)) (56) holds. ut

Proof [Lemma 6] By H6, the function s2 ∈ [0,+∞) 7→ µ2(s2) ∈ [0, µ2(+∞)) is monotoni-

cally increasing. Hence, it has an inverse function denoted by

y ∈ [0, µ2(+∞)) 7→M2(y) ∈ [0,+∞),

such that, for all s2 ≥ 0 and y ∈ [0, µ2(+∞)) (57) holds. ut

Proof [Lemma 7] By H7, for D + a0 < µ0(+∞,+∞) and D + a1 < µ1(+∞, 0) there exist

unique values s02 and s12 such that Eq. 58 holds, see Fig. 1(a). ut
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