On additive combinatorics of permutations of ℤ<sub>n</sub> - Archive ouverte HAL
Article Dans Une Revue Discrete Mathematics and Theoretical Computer Science Année : 2014

On additive combinatorics of permutations of ℤn

Résumé

Let ℤn denote the ring of integers modulo n. A permutation of ℤn is a sequence of n distinct elements of ℤn. Addition and subtraction of two permutations is defined element-wise. In this paper we consider two extremal problems on permutations of ℤn, namely, the maximum size of a collection of permutations such that the sum of any two distinct permutations in the collection is again a permutation, and the maximum size of a collection of permutations such that no sum of two distinct permutations in the collection is a permutation. Let the sizes be denoted by s(n) and t(n) respectively. The case when n is even is trivial in both the cases, with s(n)=1 and t(n)=n!. For n odd, we prove (nφ(n))/2k≤s(n)≤n!· 2-(n-1)/2((n-1)/2)! and 2(n-1)/2·(n-1 / 2)!≤t(n)≤ 2k·(n-1)!/φ(n), where k is the number of distinct prime divisors of n and φ is the Euler's totient function.
Fichier principal
Vignette du fichier
dmtcs-16-2-3.pdf (292.31 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01185614 , version 1 (20-08-2015)

Identifiants

Citer

L. Sunil Chandran, Deepak Rajendraprasad, Nitin Singh. On additive combinatorics of permutations of ℤn. Discrete Mathematics and Theoretical Computer Science, 2014, Vol. 16 no. 2 (2), pp.35--40. ⟨10.46298/dmtcs.2074⟩. ⟨hal-01185614⟩

Collections

TDS-MACS
85 Consultations
1226 Téléchargements

Altmetric

Partager

More