Cover time of a random graph with given degree sequence - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2010

Cover time of a random graph with given degree sequence

Résumé

In this paper we establish the cover time of a random graph $G(\textbf{d})$ chosen uniformly at random from the set of graphs with vertex set $[n]$ and degree sequence $\textbf{d}$. We show that under certain restrictions on $\textbf{d}$, the cover time of $G(\textbf{d})$ is with high probability asymptotic to $\frac{d-1}{ d-2} \frac{\theta}{ d}n \log n$. Here $\theta$ is the average degree and $d$ is the $\textit{effective minimum degree}$. The effective minimum degree is the first entry in the sorted degree sequence which occurs order $n$ times.
Fichier principal
Vignette du fichier
dmAM0101.pdf (417.41 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01185603 , version 1 (20-08-2015)

Identifiants

Citer

Mohammed Abdullah, Colin Cooper, Alan Frieze. Cover time of a random graph with given degree sequence. 21st International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'10), 2010, Vienna, Austria. pp.1-20, ⟨10.46298/dmtcs.2804⟩. ⟨hal-01185603⟩

Collections

TDS-MACS
77 Consultations
728 Téléchargements

Altmetric

Partager

More