Asymptotics of Decomposable Combinatorial Structures of Alg-Log Type With Positive Log Exponent - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2010

Asymptotics of Decomposable Combinatorial Structures of Alg-Log Type With Positive Log Exponent

Résumé

We consider the multiset construction of decomposable structures with component generating function $C(z)$ of alg-log type, $\textit{i.e.}$, $C(z) = (1-z)^{-\alpha} (\log \frac{1}{ 1-z})^{\beta}$. We provide asymptotic results for the number of labeled objects of size $n$ in the case when $\alpha$ is positive and $\beta$ is positive and in the case $\alpha = 0$ and $\beta \geq 2$. The case $0<-\alpha <1$ and any $\beta$ and the case $\alpha > 0$ and $\beta = 0$ have been treated in previous papers. Our results extend previous work of Wright.
Fichier principal
Vignette du fichier
dmAM0120.pdf (310.36 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01185597 , version 1 (20-08-2015)

Identifiants

Citer

Zhicheng Gao, David Laferrière, Daniel Panario. Asymptotics of Decomposable Combinatorial Structures of Alg-Log Type With Positive Log Exponent. 21st International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'10), 2010, Vienna, Austria. pp.289-302, ⟨10.46298/dmtcs.2798⟩. ⟨hal-01185597⟩

Collections

TDS-MACS
73 Consultations
655 Téléchargements

Altmetric

Partager

More