Asymptotics of Decomposable Combinatorial Structures of Alg-Log Type With Positive Log Exponent - Archive ouverte HAL Access content directly
Conference Papers Discrete Mathematics and Theoretical Computer Science Year : 2010

Asymptotics of Decomposable Combinatorial Structures of Alg-Log Type With Positive Log Exponent

Abstract

We consider the multiset construction of decomposable structures with component generating function $C(z)$ of alg-log type, $\textit{i.e.}$, $C(z) = (1-z)^{-\alpha} (\log \frac{1}{ 1-z})^{\beta}$. We provide asymptotic results for the number of labeled objects of size $n$ in the case when $\alpha$ is positive and $\beta$ is positive and in the case $\alpha = 0$ and $\beta \geq 2$. The case $0<-\alpha <1$ and any $\beta$ and the case $\alpha > 0$ and $\beta = 0$ have been treated in previous papers. Our results extend previous work of Wright.
Fichier principal
Vignette du fichier
dmAM0120.pdf (310.36 Ko) Télécharger le fichier
Origin Publisher files allowed on an open archive
Loading...

Dates and versions

hal-01185597 , version 1 (20-08-2015)

Identifiers

Cite

Zhicheng Gao, David Laferrière, Daniel Panario. Asymptotics of Decomposable Combinatorial Structures of Alg-Log Type With Positive Log Exponent. 21st International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'10), 2010, Vienna, Austria. pp.289-302, ⟨10.46298/dmtcs.2798⟩. ⟨hal-01185597⟩

Collections

TDS-MACS
58 View
531 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More