The distribution of the number of small cuts in a random planar triangulation - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2010

The distribution of the number of small cuts in a random planar triangulation

Résumé

We enumerate rooted 3-connected (2-connected) planar triangulations with respect to the vertices and 3-cuts (2-cuts). Consequently, we show that the distribution of the number of 3-cuts in a random rooted 3-connected planar triangulation with $n+3$ vertices is asymptotically normal with mean $(10/27)n$ and variance $(320/729)n$, and the distribution of the number of 2-cuts in a random 2-connected planar triangulation with $n+2$ vertices is asymptotically normal with mean $(8/27)n$ and variance $(152/729)n$. We also show that the distribution of the number of 3-connected components in a random 2-connected triangulation with $n+2$ vertices is asymptotically normal with mean $n/3$ and variance $\frac{8}{ 27}n$ .
Fichier principal
Vignette du fichier
dmAM0119.pdf (244.81 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01185596 , version 1 (20-08-2015)

Identifiants

Citer

Zhicheng Gao, Gilles Schaeffer. The distribution of the number of small cuts in a random planar triangulation. 21st International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'10), 2010, Vienna, Austria. pp.277-288, ⟨10.46298/dmtcs.2797⟩. ⟨hal-01185596⟩
177 Consultations
699 Téléchargements

Altmetric

Partager

More