Combinatorial aspects of pyramids of one-dimensional pieces of fixed integer length - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2010

Combinatorial aspects of pyramids of one-dimensional pieces of fixed integer length

Résumé

We consider pyramids made of one-dimensional pieces of fixed integer length $a$ and which may have pairwise overlaps of integer length from $1$ to $a$. We give a combinatorial proof that the number of pyramids of size $m$, i.e., consisting of $m$ pieces, equals $\binom{am-1}{m-1}$ for each $a \geq 2$. This generalises a well known result for $a=2$. A bijective correspondence between so-called right (or left) pyramids and $a$-ary trees is pointed out, and it is shown that asymptotically the average width of pyramids equals $\sqrt{\frac{\pi}{2} a(a-1)m}$.
Fichier principal
Vignette du fichier
dmAM0111.pdf (420.13 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01185593 , version 1 (20-08-2015)

Identifiants

Citer

Bergfinnur Durhuus, Søren Eilers. Combinatorial aspects of pyramids of one-dimensional pieces of fixed integer length. 21st International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'10), 2010, Vienna, Austria. pp.143-158, ⟨10.46298/dmtcs.2794⟩. ⟨hal-01185593⟩

Collections

TDS-MACS
93 Consultations
594 Téléchargements

Altmetric

Partager

More