The number of Euler tours of a random $d$-in/$d$-out graph - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2010

The number of Euler tours of a random $d$-in/$d$-out graph

Résumé

In this paper we obtain the expectation and variance of the number of Euler tours of a random $d$-in/$d$-out directed graph, for $d \geq 2$. We use this to obtain the asymptotic distribution and prove a concentration result. We are then able to show that a very simple approach for uniform sampling or approximately counting Euler tours yields algorithms running in expected polynomial time for almost every $d$-in/$d$-out graph. We make use of the BEST theorem of de Bruijn, van Aardenne-Ehrenfest, Smith and Tutte, which shows that the number of Euler tours of a $d$-in/$d$-out graph is the product of the number of arborescences and the term $[(d-1)!]^n/n$. Therefore most of our effort is towards estimating the asymptotic distribution of the number of arborescences of a random $d$-in/$d$-out graph.
Fichier principal
Vignette du fichier
dmAM0109.pdf (330.06 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01185585 , version 1 (20-08-2015)

Licence

Identifiants

Citer

Páidí Creed, Mary Cryan. The number of Euler tours of a random $d$-in/$d$-out graph. 21st International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'10), 2010, Vienna, Austria. pp.117-128, ⟨10.46298/dmtcs.2787⟩. ⟨hal-01185585⟩

Collections

TDS-MACS
108 Consultations
806 Téléchargements

Altmetric

Partager

More