Analyzing a Weighted Digital Sum Variant - Archive ouverte HAL
Conference Papers Discrete Mathematics and Theoretical Computer Science Year : 2010

Analyzing a Weighted Digital Sum Variant

Abstract

Consider the following weighted digital sum (WDS) variant: write integer $n$ as $n=2^{i_1} + 2^{i_2} + \cdots + 2^{i_k}$ with $i_1 > i_2 > \cdots > i_k \geq 0$ and set $W_M(n) := \sum_{t=1}^k t^M 2^{i_t}$. This type of weighted digital sum arises (when $M=1$) in the analysis of bottom-up mergesort but is not "smooth'' enough to permit a clean analysis. We therefore analyze its average $TW_M(n) := \frac{1}{n}\sum_{j \gt n} W_M(j)$. We show that $TW_M(n)$ has a solution of the form $n G_M(\lg n) + d_M \lg ^M n + \sum\limits_{d=0}^{M-1}(\lg ^d n)G_{M,d}(\lg n)$, where $d_M$ is a constant and $G_M(u), G_{M,d}(u)$'s are periodic functions with period one (given by absolutely convergent Fourier series).
Fichier principal
Vignette du fichier
dmAM0107.pdf (713.14 Ko) Télécharger le fichier
Origin Publisher files allowed on an open archive
Loading...

Dates and versions

hal-01185583 , version 1 (20-08-2015)

Identifiers

Cite

Y. K. Cheung, Mordecai Golin. Analyzing a Weighted Digital Sum Variant. 21st International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'10), 2010, Vienna, Austria. pp.93-106, ⟨10.46298/dmtcs.2785⟩. ⟨hal-01185583⟩

Collections

TDS-MACS
58 View
830 Download

Altmetric

Share

More