The total Steiner $k$-distance for $b$-ary recursive trees and linear recursive trees - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2010

The total Steiner $k$-distance for $b$-ary recursive trees and linear recursive trees

Résumé

We prove a limit theorem for the total Steiner $k$-distance of a random $b$-ary recursive tree with weighted edges. The total Steiner $k$-distance is the sum of all Steiner $k$-distances in a tree and it generalises the Wiener index. The limit theorem is obtained by using a limit theorem in the general setting of the contraction method. In order to use the contraction method we prove a recursion formula and determine the asymptotic expansion of the expectation using the so-called Master Theorem by Roura (2001). In a second step we prove a transformation of the total Steiner $k$-distance of $b$-ary trees with weighted edges to arbitrary recursive trees. This transformation yields the limit theorem for the total Steiner $k$-distance of the linear recursive trees when the parameter of these trees is a non-negative integer.
Fichier principal
Vignette du fichier
dmAM0137.pdf (487.95 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01185577 , version 1 (20-08-2015)

Identifiants

Citer

Götz Olaf Munsonius. The total Steiner $k$-distance for $b$-ary recursive trees and linear recursive trees. 21st International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'10), 2010, Vienna, Austria. pp.527-548, ⟨10.46298/dmtcs.2779⟩. ⟨hal-01185577⟩

Collections

TDS-MACS
70 Consultations
731 Téléchargements

Altmetric

Partager

More