Ordered increasing $k$-trees: Introduction and analysis of a preferential attachment network model - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2010

Ordered increasing $k$-trees: Introduction and analysis of a preferential attachment network model

Résumé

We introduce a random graph model based on $k$-trees, which can be generated by applying a probabilistic preferential attachment rule, but which also has a simple combinatorial description. We carry out a precise distributional analysis of important parameters for the network model such as the degree, the local clustering coefficient and the number of descendants of the nodes and root-to-node distances. We do not only obtain results for random nodes, but in particular we also get a precise description of the behaviour of parameters for the $j$-th inserted node in a random $k$-tree of size $n$, where $j=j(n)$ might grow with $n$. The approach presented is not restricted to this specific $k$-tree model, but can also be applied to other evolving $k$-tree models.
Fichier principal
Vignette du fichier
dmAM0138.pdf (356.13 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01185576 , version 1 (20-08-2015)

Identifiants

Citer

Alois Panholzer, Georg Seitz. Ordered increasing $k$-trees: Introduction and analysis of a preferential attachment network model. 21st International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'10), 2010, Vienna, Austria. pp.549-564, ⟨10.46298/dmtcs.2778⟩. ⟨hal-01185576⟩

Collections

TDS-MACS
92 Consultations
623 Téléchargements

Altmetric

Partager

More