Ordered increasing $k$-trees: Introduction and analysis of a preferential attachment network model
Abstract
We introduce a random graph model based on $k$-trees, which can be generated by applying a probabilistic preferential attachment rule, but which also has a simple combinatorial description. We carry out a precise distributional analysis of important parameters for the network model such as the degree, the local clustering coefficient and the number of descendants of the nodes and root-to-node distances. We do not only obtain results for random nodes, but in particular we also get a precise description of the behaviour of parameters for the $j$-th inserted node in a random $k$-tree of size $n$, where $j=j(n)$ might grow with $n$. The approach presented is not restricted to this specific $k$-tree model, but can also be applied to other evolving $k$-tree models.
Origin | Publisher files allowed on an open archive |
---|
Loading...