The degree distribution in unlabelled $2$-connected graph families - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2010

The degree distribution in unlabelled $2$-connected graph families

Résumé

We study the random variable $X_n^k$, counting the number of vertices of degree $k$ in a randomly chosen $2$-connected graph of given families. We prove a central limit theorem for $X_n^k$ with expected value $\mathbb{E}X_n^k \sim \mu_kn$ and variance $\mathbb{V}X_n^k \sim \sigma_k^2n$, both asymptotically linear in $n$, for both rooted and unrooted unlabelled $2$-connected outerplanar or series-parallel graphs.
Fichier principal
Vignette du fichier
dmAM0132.pdf (433.07 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01185571 , version 1 (20-08-2015)

Identifiants

Citer

Veronika Kraus. The degree distribution in unlabelled $2$-connected graph families. 21st International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'10), 2010, Vienna, Austria. pp.453-472, ⟨10.46298/dmtcs.2773⟩. ⟨hal-01185571⟩

Collections

TDS-MACS
101 Consultations
698 Téléchargements

Altmetric

Partager

More