Riffle shuffles of a deck with repeated cards - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2009

Riffle shuffles of a deck with repeated cards

Résumé

We study the Gilbert-Shannon-Reeds model for riffle shuffles and ask 'How many times must a deck of cards be shuffled for the deck to be in close to random order?'. In 1992, Bayer and Diaconis gave a solution which gives exact and asymptotic results for all decks of practical interest, e.g. a deck of 52 cards. But what if one only cares about the colors of the cards or disregards the suits focusing solely on the ranks? More generally, how does the rate of convergence of a Markov chain change if we are interested in only certain features? Our exploration of this problem takes us through random walks on groups and their cosets, discovering along the way exact formulas leading to interesting combinatorics, an 'amazing matrix', and new analytic methods which produce a completely general asymptotic solution that is remarkable accurate.
Fichier principal
Vignette du fichier
dmAK0108.pdf (220.97 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01185425 , version 1 (20-08-2015)

Identifiants

Citer

Sami Assaf, Persi Diaconis, K. Soundararajan. Riffle shuffles of a deck with repeated cards. 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009), 2009, Hagenberg, Austria. pp.89-102, ⟨10.46298/dmtcs.2733⟩. ⟨hal-01185425⟩

Collections

TDS-MACS
78 Consultations
819 Téléchargements

Altmetric

Partager

More