A kicking basis for the two column Garsia-Haiman modules - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2009

A kicking basis for the two column Garsia-Haiman modules

Résumé

In the early 1990s, Garsia and Haiman conjectured that the dimension of the Garsia-Haiman module $R_{\mu}$ is $n!$, and they showed that the resolution of this conjecture implies the Macdonald Positivity Conjecture. Haiman proved these conjectures in 2001 using algebraic geometry, but the question remains to find an explicit basis for $R_{\mu}$ which would give a simple proof of the dimension. Using the theory of Orbit Harmonics developed by Garsia and Haiman, we present a "kicking basis" for $R_{\mu}$ when $\mu$ has two columns.
Fichier principal
Vignette du fichier
dmAK0109.pdf (130.73 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01185424 , version 1 (20-08-2015)

Identifiants

Citer

Sami Assaf, Adriano Garsia. A kicking basis for the two column Garsia-Haiman modules. 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009), 2009, Hagenberg, Austria. pp.103-114, ⟨10.46298/dmtcs.2732⟩. ⟨hal-01185424⟩

Collections

TDS-MACS
63 Consultations
703 Téléchargements

Altmetric

Partager

More