Combinatorial formulas for ⅃-coordinates in a totally nonnegative Grassmannian, extended abstract, extended abstract - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2009

Combinatorial formulas for ⅃-coordinates in a totally nonnegative Grassmannian, extended abstract, extended abstract

Résumé

Postnikov constructed a decomposition of a totally nonnegative Grassmannian $(Gr _{kn})_≥0$ into positroid cells. We provide combinatorial formulas that allow one to decide which cell a given point in $(Gr _{kn})_≥0$ belongs to and to determine affine coordinates of the point within this cell. This simplifies Postnikov's description of the inverse boundary measurement map and generalizes formulas for the top cell given by Speyer and Williams. In addition, we identify a particular subset of Plücker coordinates as a totally positive base for the set of non-vanishing Plücker coordinates for a given positroid cell.
Fichier principal
Vignette du fichier
dmAK0169.pdf (101.71 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01185398 , version 1 (20-08-2015)

Licence

Identifiants

Citer

Kelli Talaska. Combinatorial formulas for ⅃-coordinates in a totally nonnegative Grassmannian, extended abstract, extended abstract. 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009), 2009, Hagenberg, Austria. pp.825-832, ⟨10.46298/dmtcs.2706⟩. ⟨hal-01185398⟩

Collections

TDS-MACS
119 Consultations
714 Téléchargements

Altmetric

Partager

More