Combinatorial Formula for the Hilbert Series of bigraded $S_n$-modules
Résumé
We introduce a combinatorial way of calculating the Hilbert series of bigraded $S_n$-modules as a weighted sum over standard Young tableaux in the hook shape case. This method is based on Macdonald formula for Hall-Littlewood polynomial and extends the result of $A$. Garsia and $C$. Procesi for the Hilbert series when $q=0$. Moreover, we give the way of associating the fillings giving the monomial terms of Macdonald polynomials to the standard Young tableaux.
Nous introduisons une méthode combinatoire pour calculer la série de Hilbert de modules bigradués de $S_n$ comme une somme pondérée sur les tableaux de Young standards à la forme crochet. Cette méthode se fonde sur la formule Macdonald pour les polynômes Hall-Littlewood et généralise un résultat de $A$. Garsia et $C$. Procesi pour la série de Hilbert dans le cas $q=0$. De plus, nous proposons une méthode pour associer aux tableaux de Young standards les remplissages des monômes des polynômes de Macdonald.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|
Loading...