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In this paper we present a flexible deterministic plus stochastic model (DSM) approach for parametric speech analysis and synthesis with high quality. The novelty of the proposed speech processing system lies in its extended means to estimate the unvoiced stochastic component and to robustly handle the transformation of the glottal excitation source. It is therefore well suited as speech system within the context of Voice Transformation and Voice Conversion. The system is evaluated in the context of a voice quality transformation on natural human speech. The voice quality of a speech phrase is altered by means of resynthesizing the deterministic component with different pulse shapes of the glottal excitation source. A subjective listening test suggests that the speech processing system is able to successfully synthesize and arise to a listener the perceptual sensation of different voice quality characteristics. Additionally, improvements of the speech synthesis quality compared to a baseline method are demonstrated.

Introduction

In this paper we present a method to transform the deterministic part of the glottal excitation source. The main motivation of the following paper is the presentation of an improved method for coherent modification of the glottal pulse shape. The glottal pulse shape is generally accepted to reflect different phonation types of human voice production [START_REF] Childers | Vocal quality factors: analysis, synthesis, and perception[END_REF] and one of the important parameters determining the perceived voice quality that is strongly related to the vocal effort [START_REF] Kane | Speaker and language independent voice quality classification applied to unlabeled corpora of expressive speech[END_REF][START_REF] Liénard | Fine-grain voice strength estimation from vowel spectral cues[END_REF]. The terminology used in the following is describing the lax-tense dimension of the voice quality [START_REF] Kane | Speaker and language independent voice quality classification applied to unlabeled corpora of expressive speech[END_REF][START_REF] Laver | The Phonetic Description of Voice Quality[END_REF] distinguishing tense (pressed), modal (normal), and relaxed (breathy) voice qualities. Recent research in the speech community has notably improved the speech synthesis quality by explicitly modelling the deterministic and stochastic component of the glottal excitation source [START_REF] Drugman | The deterministic plus stochastic model of the residual signal and its applications[END_REF][START_REF] Cabral | Towards a better representation of the envelope modulation of aspiration noise[END_REF]. Advanced source-filter decomposition strategies as in [START_REF] Vincent | A new method for speech synthesis and transformation based on an arx-lf source-filter decomposition and hnm modeling[END_REF][START_REF] Cabral | Glottal spectral separation for parametric speech synthesis[END_REF][START_REF] Degottex | Mixed source model and its adapted vocal tract filter estimate for voice transformation and synthesis[END_REF] address finer details defined by extended voice production models for human speech. These approaches analyze an extended voice descriptor set to model their transformation and synthesis. The extended voice descriptor set consists of: the Vocal Tract Filter (VTF), the glottal pulse positions and shapes, and energies and a random component described by spectral and temporal envelopes. In this paper we present a novel speech analysis and synthesis system based on [START_REF] Degottex | Mixed source model and its adapted vocal tract filter estimate for voice transformation and synthesis[END_REF]. The proposed system is a Determin-Initial work on this problem was financed by a CIFRE contract between IRCAM and the Acapela Group. A part of the investigation was funded by the ANR Project ChaNTeR supporting voice quality conversion for singing synthesis. istic plus Stochastic Model (DSM). It extracts the unvoiced stochastic component from a speech signal by subtracting the corresponding voiced deterministic component [START_REF] Serra | Musical Sound Modeling with Sinusoids plus Noise[END_REF]. The proposed system separately models the stochastic and deterministic components and does therefore not correspond to the classical source and filter model. The contribution of the following research and the advancements compared to the baseline method lies in the extended means to estimate the unvoiced stochastic component, to robustly extract the VTF and to handle the variations in energy and signal behaviour implied with glottal source transformations. The paper is organized as follows. Section 2 presents the novel speech framework. Section 3 discusses the aspects of voice quality transformation. Section 4 introduces a state-of-the-art speech processing system. Section 5 presents a subjective evaluation based on a listening test of natural human speech. Section 6 concludes with the findings studied in this paper.

DSM-based Parametric Re-Synthesis

The proposed speech analysis and synthesis system is designed for the utilization as a basic component in the context of advanced voice transformation applications. It is denoted PaReSy for Parametric speech analysis Re-Synthesis.

Voice production model

PaReSy operates upon the following generic interpretation of the human voice production

s(n) = u(n) + v(n) = u(n) + i g(n, Pi) * c(n, Pi) * δ(n -Pi) (1)
Here s(n) is the speech signal that is represented by means of a stochastic (unvoiced) component u(n) and a deterministic (voiced) component v(n). The deterministic component contains the sequence of glottal pulses that are located at the time positions Pi that each represent a Glottal Closure Instant (GCI) with index i. Each glottal pulse is represented in terms of the glottal flow derivative g(n, Pi) and is convolved with the Vocal Tract Filter (VTF) that is active for the related position c(n, Pi) and a Dirac impulse at the GCI Pi. Using this model we make the following assumptions: The VTF c(n, Pi) is supposed to be minimum phase [START_REF] Maia | Complex cepstrum factorization for statistical parametric synthesis[END_REF]. The glottal pulse derivative g(n, Pi) is used to represent the glottal pulse using the Liljencrants-Fant (LF) model, and the effect of the lip radiation [START_REF] Fant | A four-parameter model of glottal flow[END_REF]. The LF model is parameterized by a scalar shape parameter R d [START_REF] Fant | The lf-model revisited. transformation and frequency domain analysis[END_REF][START_REF]The voice source in connected speech[END_REF], which is estimated as described in [START_REF] Huber | Glottal source shape parameter estimation using phase minimization variants[END_REF][START_REF] Huber | On the use of voice descriptors for glottal source shape parameter estimation[END_REF]. Changing R d continuously from lower to higher values will allow changing the LF pulse shape on a continuum from tense to relaxed voice qualities. For being able to make spectral domain manipulations the speech signal model given in equ. [START_REF] Childers | Vocal quality factors: analysis, synthesis, and perception[END_REF] is processed in the spectral domain using the short time Fourier transform (STFT). An efficient STFT representation requires further approximations.

The sliding (Hanning) window w h (n) that is used to calculate the STFT selects a signal segment covering a few consecutive glottal pulses g(n, Pi) each related to a slightly different VTF. Here we will assume that both the glottal pulse shape and the VTF do not change within the window and are given approximately by the corresponding parameters in the window center. We further assume that the filtering processes implied by each convolutional operation between the signal components of equ.

(1) is involving impulse responses that are shorter than the window length. The STFT of the speech signal is then given by

S(ω, m) = U (ω, m) + V (ω, m) (2) = (U (ω, m) + G(ω, m)C(ω, m)H(ω, m)) (3) 
Here m is the position of the window center and ω the frequency variable of the discrete time Fourier transform (FT). For brevity the dependency of all signal spectra with respect to m will be dropped in the follwoing. U (ω) and V (ω) are the FT of the windowed voiced and unvoiced signals from equ. (1) under the assumption that g and c and the corresponding FT spectra G(ω) and C(ω) are quasi stationary within the window. The radiation filter at lips and nostrils level R(ω) is not explicitly present in the PaReSy model, but implicitly represented in the glottal flow derivative G(ω) and the unvoiced component U (ω).

Glottal source synthesis and VTF extraction

The glottal shape parameter R d is estimated using the best phase minimization variant proposed in [START_REF] Huber | Glottal source shape parameter estimation using phase minimization variants[END_REF]. It constructs the error lattice for the Viterbi smoothing proposed in [START_REF] Huber | On the use of voice descriptors for glottal source shape parameter estimation[END_REF]. The resulting R d estimation is calculated on the STFT time grid but assigned to the closest GCI which are derived using the method described in [START_REF] Degottex | Joint estimate of shape and time-synchronization of a glottal source model by phase flatness[END_REF]. The spectral envelope sequence Tsig is estimated on the input signal s(n) using the True Envelope estimator described in [START_REF] Röbel | On cepstral and all-pole based spectral envelope modelling with unknown model order[END_REF]. Another spectral envelope sequence Tg is estimated on the synthesized glottal pulse derivative sequence i g(n, Pi) * δ(n -Pi). The extraction of the vocal tract filter C(ω) is obtained by means of the full-band division of Tsig by Tg. The utilization of Tg in the division is required to suppress the spectral ripples occurring for higher R d values [START_REF]The voice source in connected speech[END_REF][START_REF] Alessandro | Phase-based methods for voice source analysis[END_REF].

Estimation of the unvoiced stochastic component

The separation of a speech signal into the contributions of the voiced deterministic V (ω) and the unvoiced stochastic component U (ω) is based on the calculation of a residual of a sinusoidal model. Using the sinusoidal model has the advantage that pulse shape errors that are due to the rather limited coverage of the R d parameterization of the LF model will not lead to an increase in the unvoiced component. The following two algorithmic steps a) and b) below present a means to robustly extract the unvoiced component Ures(n) of the signal s(n). a) Remix with demodulation: This approach aims to simplify the sinusoidal detection by de-modulating the F0 contour and the Hilbert amplitude envelope H from the signal s(n). First the original F0 contour of s(n) is warped to become flat by means of time varying re-sampling using as target F0 the mean of the original fundamental frequency contour. The resampling operation will locally and globally change the time duration of all signal features, which however is not a problem because the effect can be inverted after the extraction of the residual. The varying amplitude contour of s(n) is demodulated by means of dividing the signal by its smoothed Hilbert transform H (s(n)) similar as in [START_REF] Pantazis | Improving the modeling of the noise part in the harmonic plus noise model of speech[END_REF][START_REF] Drugman | The deterministic plus stochastic model of the residual signal and its applications[END_REF]. Here however, the smoothing kernel is simply the Hanning window of duration exactly equal to 4/FT which will optimally remove all envelope fluctuations that are related to the deterministic components. The resulting signal s f lat (n) is flat in amplitude envelope and fundamental frequency facilitat-ing the detection of sinusoids following [START_REF] Zivanovic | Adaptive threshold determination for spectral peak classification[END_REF] even for relatively high harmonic numbers avoiding energy shift between voiced and unvoiced components [START_REF] Alessandro | Effectiveness of a periodic and aperiodic decomposition method for analysis of voice sources[END_REF]. The sinusoidal content is subtracted from s f lat (n) and the demodulation steps are inverted so that the the original AM-FM modulation is recreated. This generates the unvoiced residual signal ures(n). b) Scale to Tsig level and noise excitation: The sinusoidal detection of step a) may be erroneous for some signal segments such as fast transients. The scaling described in equ. 4 minimizes the difference between the unvoiced stochastic signal spectrum Ures(ω) and the observed signal spectrum S(ω) above the Voiced / Unvoiced Frequency boundary ωV U [START_REF] Drugman | Maximum voiced frequency estimation: Exploiting amplitude and phase spectra[END_REF] up to the Nyquist frequency ωnyq:

η = 1 ωnyq -ω V U ωnyq ω V U T dB sig (ω)-T dB unv (ω) dω Tunv(ω) = Tunv(ω)(1-ω V U /ωnyq) • 10 η/20 . (4) 
Here the dependency with m has been neglected. η equals the mean difference in dB between Tsig and the spectral envelope Tunv estimated on U (ω). The scaling of Tunv is additionally weighted by the time-varying ratio of FV U versus Fnyq. The multiplication of the STFT of a white noise signal with the envelope Tunv(ω) generates the unvoiced signal STFT U (ω).

Energy modelling

A simple Root-Mean-Square (RMS) measure FRMS evaluates the effective energy value E on the linear amplitude spectrum A lin =|Y (ω)| of any arbitrary signal spectrum Y (ω). The RMS energy measures are estimated in PaReSy as defined in equ. ( 5):

F RM S (A lin , k) = 1/K • Σ K (A lin (k) 2 ) Esig = F RM S (|S(ω)(t)|) Eunv = F RM S (|U (ω)(t)|) Evoi = Esig -Eunv (5) 
Esig and Eunv measure the RMS energy of signal S(ω) and the unvoiced component U (ω). The energy Evoi of the voiced component V (ω) is expressed as their difference. A transformed R d contour causes an altered energy value E voi measured on the transformed voiced component V (ω), with the operator indicating a transformation. The high (low) pass filtering applied to U (ω) (V (ω)) explained in section 2.6 generates as well an energy change. A re-scaling of the energy to the original energy measures ensures their maintenance.

GMM-based FV U prediction

The spectral fading synthesis presented in the following section 2.6 requires a transformed F V U frequency value. F V U is predicted using a modified GMM approach detailed in [START_REF] Lanchantin | Dynamic model selection for spectral voice conversion[END_REF][START_REF]Objective evaluation of the dynamic model selection method for spectral voice conversion[END_REF][START_REF] Huber | On the use of voice descriptors for glottal source shape parameter estimation[END_REF]].

The GMM model M is trained on the voice descriptor set d=[R d ,F0, H1-H2,Evoi, Eunv] and the FV U reference value r. The descriptors of d are chosen due to their high correlation with r. H1-H2 refers to the amplitude difference in dB of the first two harmonic sinusoidal partials. The prediction function

F (d) = Q q=1 p d q (d) • [µ r q + Σ rd q Σ dd -1 q (d -µ d q )] (6) 
is derived from M by the definition of equ. 6, with Q=15 being the number of utilized Gaussian mixture components. An initial F p V U value prediction is computed from F (d). An error GMM model Merr is trained on the modelling error

M = 2 (F V U -F p V U ) 2 (7) 
serving as reference value r = M , and on the voice descriptor set d. The transformed descriptor counterpart d contains the original F0 contour but transformed values for the remaining voice descriptors:

d =[R d , F0, H 1-H 2, E voi , E unv ].
The GMM-based modelling to predict a F V U contour from the voice descriptor sets d and d is defined by the following equations:

F p V U µ = M (F (d)) (8) 
F p V U µ = M F (d ) (9) 
F p V U σ = Merr (Ferr(d)) (10) 
F p V U σ = Merr Ferr(d ) (11) 
F V U = F p V U µ + (F V U -F p V U µ ) • F p V U σ /F p V U σ (12) 
Each trained model pair M and Merr is utilized to predict via their derived prediction functions F and Ferr the mean prediction value F p V U µ and the predicted standard deviation F p V U σ from descriptor set d, and likewise for the transformed set d .

The "true" prediction value would equal F p V U µ if no model error occurs: M =0. The calculation of F V U from the transformed d and the original voice descriptor set d is defined by equ. 12. It evaluates the difference between the original FV U and the predicted F p V U µ value. The difference result is normalized by the ratio of the original and transformed standard deviations F p V U σ and F p V U σ of the modelled data distribution, and corrected by the transformed predicted mean value F p V U µ .

Spectral fading synthesis

The PaReSy synthesis variant "Spectral fading" is designed to handle voice quality transformations by suppressing possibly occurring artefacts. Here a short summary discusses the impact of R d on the spectral slope required to understand the motivation for the spectral fading synthesis presented in this section. The glottal source shape parameter R d is strongly correlated with the spectral slope. R d changes lead to changes of the spectral slope. References to an extensive analysis of the spectral correlates of R d can be found in [START_REF] Fant | The lf-model revisited. transformation and frequency domain analysis[END_REF][START_REF]The voice source in connected speech[END_REF][START_REF] Doval | The spectrum of glottal flow models[END_REF][START_REF] Doval | The spectrum of glottal flow models[END_REF][START_REF] Alessandro | Phase-based methods for voice source analysis[END_REF]. A more relaxed voice quality is reflected by higher R d values and is related to a sinusoidal-like glottal flow derivative which generates higher spectral slopes. A more tense voice quality is parameterized by lower R d values and related to an impulse-like glottal flow derivative which produces lower spectral slopes. A lower (higher) spectral slope indicates that more (less) sinusoidal content can be observed in higher frequency regions. The voice quality transformation to change an original speech recording having a modal voice quality to a more tense voice character has to extend the quasi-harmonic sequence of sinusoidals above the FV U . Contrariwise, a transformation to a more relaxed voice quality needs to reduce the sinusoidal content. A modification of the glottal excitation source required for voice quality transformations implies thus a FV U modification. The altered F V U frequency has to be naturally represented by properly joining the voiced V (ω) and unvoiced U (ω) signal components. The transformation of the original R d contour used to extract C(ω) introduces an energy variation in the re-synthesis of a transformed V (ω). However, even with the energy maintenance of section 2.4 the alteration of a modal to a very tense voice quality may result into sinusoidal content being of higher energy than the noise part at Fnyq. This sets F V U = Fnyq and causes audible artefacts. Therefore F V U is predicted using the method described in section 2.5. Additionally, the spectral fading method employs two spectral filters to cross fade V (ω) and U (ω) at the F V U frequency. The spectral band around FV U is comprised of a mix of both voiced deterministic V (ω) and unvoiced stochastic U (ω) components. A low pass filter PL fades out the voiced component V (ω) and a high pass filter PH fades in the unvoiced component U (ω) with increasing frequency. The linear ramps with a slope of mLP =-96 dB and mHP =-48 dB per octave define the steepness of the low pass PL and respectively the high pass PH filter. A higher value is chosen for mLP since the F V U prediction may be very high for very tense voice qualities. A less steep fade out filter would not be effective enough to suppress artefacts.

Voice quality transformation

The study of [START_REF] Henrich | Just noticeable differences of open quotient and asymmetry coefficient in singing voice[END_REF] on the Just Noticable Differences (JND) of human auditory perception reports that changes in higher (lower) value regions of Open Quotient OQ (asymmetry coefficient αm) require longer distances of ∆OQ (∆αm) to arise the sensation of a voice quality change in the perception of a listener. We spread according to that hypothesis the original R d contour into several R d contours with positive and negative offsets covering the complete R d range such that lower ∆R d steps are placed in lower and higher ∆R d steps in higher R d value regions. One example is illustrated in fig.

(1) on the phrase em- 

Evaluation

This sections presents the results of a listening test conducted on natural human speech of French speaker "Fernando" having an Hispanic accent. The baseline method SVLN of section 4 and the proposed method PaReSy of section 2 received the same voice descriptors R d , F0 and FV U as pre-estimated input to analyze C(ω). Please note that SVLN requires to smooth the voice descriptor contours. Due to the energy measure at FV U it cannot handle value changes varying too quickly in short-time segments [START_REF] Degottex | Glottal source and vocal tract separation[END_REF]. For this test a median smoothing filter covering 100 ms was applied. The PaReSy spectral fading synthesis variant presented in 2.6 requires the FV U prediction of section 2.5. An example is depicted in fig.

(2). The transformed R d 5) exhibits partially highest ratings up to an excellent synthesis quality of 5 for all but the "relaxed" and "very relaxed" voice quality characteristics with index +2 and +3. The evaluated mean synthesis quality MOSµ=2.82 of 

Conclusions

The findings presented with the subjective listening test of section 5 suggest that the proposed novel speech analysis and synthesis system is able to analyze an input speech phrase such that different re-synthesized versions carry the perception of different voice quality characteristics. Its assessed synthesis quality received partially very good judgements for minor changes in voice quality. Major voice quality changes are appraised of moderate quality for both the baseline and the proposed method.

Figure 1 :

 1 Figure 1: Generated R d contour examples ployed for the evaluation in section 5. Table (1) shows the mean R µ d values of the original R d contour with index 0, and respectively 3 positive and 3 negative µ values for each voice quality change. R σ 2 d lists their variance σ 2 . It increases with increasing R d to reflect the hypothesis of having to apply higher ∆R d steps with higher R d values. The R µ d (diff) column reflects the mean ∆R d steps measured between each row index on the R µ d values. As well the µ difference increases with increasing R µ d .Table 1: R d value example for voice quality transformation Voice quality (index) R µ
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 23 Figure 2: PaReSy FV U prediction excerpt contours and the original R d contour were employed by both systems for synthesis. Following the voice production model of equ. (3), a transformed glottal pulse G R d (ω) leads to a transformed reconstructed signal S (ω). The unvoiced component U (ω) remains unmodified. 11 participants rated each speech phrase according to the voice quality characteristics given in the first column of table (1). The voice quality assessment examines how well both synthesis systems are able to produce different voice quality characteristics. A second evaluation metric examines the synthesis quality on the Mean Opinion Score (MOS) scale. Fig. (3) depicts the voice quality ratings for the

Figure 4 :Figure 5 :

 45 Figure 4: Voice quality rating results for SVLN roughly the ideal dashed grey line with the deviations increasing with higher changes. The MOS synthesis quality evaluation

Figure 6 :

 6 Figure 6: MOS synthesis quality rating results for SVLN SVLN shown in fig. (6) is comparably lower than MOSµ=3.38 for PaReSy. Stronger voice quality changes are assessed with less good MOS synthesis qualities for both systems. In general, PaReSy received a lower deviation from the true voice quality rating and a higher MOS synthesis quality compared to SVLN, shown in table[START_REF] Kane | Speaker and language independent voice quality classification applied to unlabeled corpora of expressive speech[END_REF].

Table 1 :

 1 R d value example for voice quality transformationThe method called "Separation of the Vocal tract with the Liljencrants-Fant model plus Noise" detailed in[START_REF] Degottex | Glottal source and vocal tract separation[END_REF][START_REF] Degottex | Pitch transposition and breathiness modification using a glottal source model and its adapted vocal-tract filter[END_REF][START_REF] Degottex | Mixed source model and its adapted vocal tract filter estimate for voice transformation and synthesis[END_REF] represents the baseline method on whose means the proposed system PaReSy is build upon. The main difference lies in the VTF representation, the energy model and the estimation of the stochastic noise component. SVLN constructs the latter by high pass filtering white noise, applying an amplitude modulation parameterized by the glottal pulse sequence, and cross fading between consecutive synthesized noise segments. The gain σg measures the energy level at FV U at analysis to control the stochastic energy at the synthesis step. SVLN synthesizes glottal pulses with the LF model in the spectral domain to extract C(ω) below FV U . The VTF above FV U is taken from the signals spectral envelope. SVLN facilitates voice quality transformations while maintaining a high synthesis quality[START_REF] Lanchantin | A hmm-based speech synthesis system using a new glottal source and vocal-tract separation method[END_REF][START_REF] Degottex | Mixed source model and its adapted vocal tract filter estimate for voice transformation and synthesis[END_REF].

	Voice quality (index)	R µ d	R σ 2 d	R µ d (diff)
	Very relaxed (+3) 3.5109 0.9031	-0.8397
	Relaxed (+2) 2.6711 0.7825	-0.6597
	Modal to relaxed (+1) 2.0114 0.3631	-0.4442
	Modal (original) (0) 1.5673 0.1937	
	Tense to modal (-1) 1.1936 0.0941	-0.3737
	Tense (-2) 0.8601 0.0341	-0.3335
	Very tense (-3) 0.5704 0.0154	-0.2898
	4. Baseline method SVLN

Table 2 :

 2 Voice quality (VQ) and MOS sound quality ratings Method ∆ VQµ ∆ VQ 2

			σ	MOSµ MOSσ
	PaReSy	0.8312	0.6858 3.3766 0.9880
	SVLN	0.9740	0.5967 2.8182 0.7462