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ABSTRACT

In this paper we present a flexible framework for paramet-
ric speech analysis and synthesis with high quality. It con-
stitutes an extended source-filter model. The novelty of
the proposed speech processing system lies in its extended
means to use a Deterministic plus Stochastic Model (DSM)
for the estimation of the unvoiced stochastic component
from a speech recording. Further contributions are the ef-
ficient and robust means to extract the Vocal Tract Filter
(VTF) and the modelling of energy variations. The sys-
tem is evaluated in the context of two voice quality trans-
formations on natural human speech. The voice quality
of a speech phrase is altered by means of re-synthesizing
the deterministic component with different pulse shapes of
the glottal excitation source. A Gaussian Mixture Model
(GMM) is used in one test to predict energies for the re-
synthesis of the deterministic and the stochastic compo-
nent. The subjective listening tests suggests that the speech
processing system is able to successfully synthesize and
arise to a listener the perceptual sensation of different voice
quality characteristics. Additionally, improvements of the
speech synthesis quality compared to a baseline method
are demonstrated.

1. INTRODUCTION

In this paper we present a method to transform the deter-
ministic and stochastic part of the glottal excitation source.
The main motivation of the following paper is the presen-
tation of an improved method for coherent modifications
of the glottal pulse shape. The glottal pulse shape is gen-
erally accepted to reflect different phonation types of hu-
man voice production [1] and different voice qualities be-
ing strongly related to the vocal effort [2]. The terminology
used in the following is describing the lax-tense dimension
of voice quality [3] distinguishing tense (pressed), modal
(normal), and relaxed (breathy) voice qualities [4].

Recent research in the speech community has notably im-
proved the speech synthesis quality by explicitly modelling
the deterministic and stochastic component of the glottal
excitation source [5, 6]. Advanced source-filter decompo-
sition strategies as in [7–9] address finer details defined
by extended voice production models for human speech.
These approaches analyze an extended feature set to model
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their transformation and synthesis. The extended feature
set consists of: the VTF, the glottal pulse positions and
shapes, the energies, and a random component described
by spectral and temporal envelopes.

In this paper we present a novel speech analysis and syn-
thesis system extending the source-filter model of [9]. The
extension is based on using a DSM and further processing
means. The deterministic part is estimated and subtracted
from a speech signal to extract the stochastic part [10]. The
proposed system separately models the stochastic and de-
terministic components. It does therefore not correspond
to the classical source-filter model. The contribution of
the following research and the advancements compared to
the baseline method lies in the extended means to estimate
the unvoiced stochastic component, to robustly extract the
VTF and to handle the variations in energy and signal be-
haviour implied with glottal source transformations.

The paper is organized as follows. Section 2 presents the
novel speech framework. Section 3 discusses the aspects
of voice quality transformation. Section 4 introduces the
baseline state-of-the-art speech system. Section 5 presents
a subjective evaluation based on a listening test of natu-
ral human speech. Section 6 concludes with the findings
studied in this paper.

2. THE EXTENDED SOURCE-FILTER MODEL

The proposed speech analysis and synthesis system is de-
signed for the utilization in advanced voice transformation
and voice conversion applications. It is denoted PSY for
Parametric Speech analysis, transformation and SYnthesis.

2.1 Voice production model
PSY operates upon the following generic interpretation of
the human voice production in the time domain:

s(n) = u(n) + v(n) = u(n) +
∑
i

g(n, Pi) ∗ δ(n− Pi) ∗ c(n, Pi) (1)

The speech signal s(n) is represented by means of a stochas-
tic (unvoiced) component u(n) and a deterministic (voiced)
component v(n). The deterministic component contains
the sequence of glottal pulses located at the time posi-
tions Pi, each representing a Glottal Closure Instant (GCI)
with index i. Each glottal pulse is represented by the glot-
tal flow derivative g(n, Pi). The latter is convolved with
a Dirac impulse at the GCI Pi and the VTF that is ac-
tive for the related position c(n, Pi). The Liljencrants-
Fant (LF) model [13] is used to synthesize each g(n, Pi).
The LF model is parameterized by a scalar shape parame-
ter Rd [14, 15]. Changing Rd continuously from lower to
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higher values will allow changing the LF pulse shape on a
continuum from tense to relaxed voice qualities.

For being able to make spectral domain manipulations
the speech signal model given in equ. 1 is processed in
the spectral domain using the Short-Time Fourier trans-
form (STFT). For brevity the coverage of a few consec-
utive glottal pulses g(n, Pj) will be denoted as gs(n) =∑
j g(n, Pj) ∗ δ(n−Pj) in the following. The summation

over the GCI index j is set to comprise a signal segment
of a few glottal pulses being covered by the Hanning win-
dow wh(n) of the STFT. Each pulse position is related to
a slightly different VTF being supposed to be minimum
phase [12]. The glottal pulse shape and the VTF are as-
sumed to not change within the window and are given ap-
proximately by the corresponding parameters in the win-
dow center.

We further assume that the filtering processes implied by
each convolutional operation between the signal compo-
nents of equ. 1 involves impulse responses that are shorter
than the window length. The STFT of the speech signal is
then given by

S(ω,m) = U(ω,m) + V (ω,m) (2)

= U(ω,m) +G(ω,m) ·H(ω,m) · C(ω,m) (3)

The STFT frame m is the position of the window cen-
ter and ω is the frequency variable of the Discrete-Time
Fourier Transform (DTFT). For brevity the dependency of
all signal spectra with respect to m will be dropped in the
following. U(ω) and V (ω) are the DTFT of the windowed
voiced and unvoiced signals from equ. 1 assuming that
g and c and the corresponding DTFT spectra G(ω) and
C(ω) are quasi-stationary within the window. H(ω) is the
spectral representation of the windowed Dirac impulse se-
quence δ(n − Pi). The radiation filter at lips and nostrils
level R(ω) [11] is not explicitly present in the PSY model
since it is implicitly contained in the glottal flow derivative
g(n) and the unvoiced component u(n).

2.2 Glottal source synthesis and VTF extraction

The LF shape parameterRd is estimated by the means pro-
posed in [16, 17]. Each GCI is estimated by the method
described in [18] and assigned the closest Rd value which
is estimated on the STFT time grid. The spectral envelope
sequence Tsig is estimated on the input signal s(n) using
the True Envelope estimator of [19]. Another spectral en-
velope sequence Tg is estimated on the synthesized glottal
flow derivative sequence gs(n). The extraction of the VTF
C(ω) is obtained by dividing Tsig by Tg . The utilization
of Tg in the full-band division is required to suppress the
spectral ripples occurring for higher Rd values [15, 20].

2.3 Estimation of the unvoiced stochastic part

The separation of a speech signal s(n) into the contribu-
tions of the voiced v(n) and the unvoiced u(n) part is
based on the calculation of a residual of a sinusoidal model
[21]. The following algorithmic step estimate a) the un-
voiced residual ures(n) by deleting sinusoidal content from
s(n), b) uHP (n) by high-pass filtering ures(n), c) the un-
voiced signal u(n) by scaling uHP (n) in energy.

a) Re-Mixing with De-Modulation: This approach aims
to simplify the sinusoidal detection by de-modulating the
fundamental frequency F0 contour and the Hilbert ampli-
tude envelope H from s(n). The original F0 contour of
s(n) is warped to become flat by means of time varying
re-sampling using as target F ′0 the mean of the original
F0. The re-sampling operation changes locally and glob-
ally the time duration of all signal features. The effect will
be inverted after the extraction of the residual. The vary-
ing amplitude contour of s(n) is demodulated by means
of dividing the signal by its smoothed Hilbert transform
H (s(n)) similar as in [5,23]. The smoothing kernel is sim-
ply the Hanning window of duration 4/FT . This optimally
removes all envelope fluctuations that are related to the de-
terministic components. The resulting signal sflat(n) is
flat in amplitude envelope and F0 facilitating the detection
of sinusoids following [21]. It avoids even for relatively
high harmonic numbers the energy shift between voiced
and unvoiced components [22]. The sinusoidal content is
subtracted from sflat(n) and the demodulation steps are
inverted so that the original AM-FM modulation is recre-
ated. This generates the unvoiced residual signal ures(n).
b) Below FV U filter: Informal tests confirm that not all si-
nusoidal content could be precisely estimated and deleted
in the frequency band below the Voiced / Unvoiced Fre-
quency boundary FV U [24]. The FV U estimation is based
on the signal interpretation splitting the spectrum into two
bands. The lower frequency band below the FV U is de-
termined by the voiced component V (ω). The unvoiced
component U(ω) is located above the FV U . A high pass
filter is applied to delete remaining sinusoidal content from
Ures(ω) belowFV U . The filters cut-off frequency fc equals
the estimated FV U per STFT framem. A gain of 1 is set in
the filters passband equalling the stochastic frequency band
ω > ωV U . A linear ramp with a slope of mHP=-3 dB
per octave defines the high pass filtering in the filters stop-
band. The latter equals the deterministic frequency band
ω < ωV U . The experimental findings show that a heuristi-
cally defined threshold of mHP=-3 dB approximates rea-
sonably close enough the desired sinusoidal cancellation in
the high pass filtered unvoiced signal uHP (n).
c) Scale to Tsig level: The sinusoidal detection of step a)
may be erroneous for some signal segments such as fast
transients. The heuristic adaptation of step b) cannot be ex-
act for all cases. The scaling described in equ. 4 minimizes
the difference between the envelope Tunv of the stochastic
component UHP (ω) and the envelope Tsig of the signal
spectrum S(ω) above FV U up to the Nyquist frequency
Fnyq. The DFT bins found closest to the frequencies Fnyq
and FV U are denoted as knyq and respectively kV U .

η =
1

knyq - kV U

K=knyq∑
k=kV U

(
T dBsig (k) - T dBunv(k)

)
T wunv = Tunv · (1 - kV U/knyq) · 10

η/20

(4)

η equals the mean difference in dB between Tsig and the
spectral envelope Tunv .The scaling of Tunv is weighted by
the time-varying ratio of FV U versus Fnyq as a regulariza-
tion term to avoid a too high energy scaling. The multipli-
cation of a white noise spectrum with T wunv(ω) synthesizes
with the STFT the unvoiced signal u(n).



2.4 GMM-based FV U prediction
The spectral fading synthesis presented in the following
section 2.6.2 requires a transformed F ′V U value, with the
operator ′ indicating a transformation. F ′V U is predicted
using a modified GMM approach detailed in [17, 25, 26].
The GMM modelM is trained on the voice descriptor set
d=[Rd,F0,H1-H2,Evoi,Eunv] and the reference value r =
FV U . H1-H2 refers to the amplitude difference in dB of
the first two harmonic sinusoidal partials. Evoi and Eunv
are the Root-Mean-Square (RMS) based energy measures
of the voiced and unvoiced signal parts which will be in-
troduced in the following section. The prediction function

F (d) =

Q∑
q=1

p
d
qd · [µ

r
q + Σ

rd
q Σ

dd−1

q (d− µdq)] (5)

is derived fromM by the definition of equ. 5, with Q=15
being the number of utilized Gaussian mixture components.
An initial F pV U value is predicted from F (d). An error
GMM modelMerr is trained on the modelling error

εM = 2
√

(FV U − FpV U )2 (6)

serving as reference value rε=εM , and on the voice de-
scriptor set d. The transformed descriptor counterpart d′
contains the original F0 contour but transformed values for
the remaining voice descriptors: d′=[R′d,F0,H ′1-H ′2,E′voi,
E′unv]. The GMM-based modelling to predict a F ′V U con-
tour from the feature sets d and d′ is described by:

F
p
V Uµ

=M (F (d)) (7)

F
′p
V Uµ

=M
(
F (d
′
)
)

(8)

F
p
V Uσ

=Merr (Ferr(d)) (9)

F
′p
V Uσ

=Merr

(
Ferr(d

′
)
)

(10)

F
′
V U = F

′p
V Uµ

+ (FV U − FpV Uµ ) · F
′p
V Uσ

/F
p
V Uσ

. (11)

Each trained model pairM andMerr is utilized to predict
via their derived prediction functions F and Ferr the mean
prediction value F pV Uµ (F

′p
V Uµ

) and the predicted standard

deviation F pV Uσ (F
′p
V Uσ

) from descriptor set d (from the
transformed set d′). The true prediction value would equal
F pV Uµ if no model error occurs: εM=0. The calculation
of F ′V U from the transformed d′ and the original voice de-
scriptor set d is defined by equ. 11. It evaluates the dif-
ference between the original FV U and the predicted F pV Uµ
value. The difference result is normalized by the ratio of
the original and transformed standard deviations F

′p
V Uσ

and
F pV Uσ of the modelled data distribution, and corrected by

the transformed predicted mean value F
′p
V Uµ

.

2.5 Energy modelling

2.5.1 Energy maintenance

A simple RMS measure FRMS evaluates the effective en-
ergy valueE on the linear amplitude spectrumAlin=|Y (ω)|
of any arbitrary signal spectrum Y (ω). The RMS energy
measures are estimated in PSY as defined in equ. 12:

FRMS(Alin, k) =
√

1/K · Σk (Alin(k)2)

Esig = FRMS(|S(ω)|)
Eunv = FRMS(|U(ω)|)
Evoi = Esig − Eunv

(12)

Esig and Eunv reflect the RMS energies measured on the
signal S(ω) and the unvoiced component U(ω). Evoi is
expressed as their difference to represent the RMS energy
of the voiced component V (ω). A transformed R

′gci
d con-

tour causes an altered energy value E′voi measured on the
transformed voiced part V ′(ω). The high (low) pass fil-
tering applied to U(ω) (V (ω)) explained in section 2.6.2
generates as well an energy change. The energy re-scaling
to the original energy measures defined by equ. 13 ensures
that their energy is maintained:

Evoi = FRMS(|V (ω)|) Eunv = FRMS(|U(ω)|)

E
′
voi = FRMS(|V ′(ω)|) E

′
unv = FRMS(|U ′(ω)|)

V
′
(ω)· = Evoi/E

′
voi U

′
(ω)· = Eunv/E

′
unv

(13)

2.5.2 GMM-based energy prediction

The original voice descriptor set DE consists of the voice
descriptors DE=[Rd, F0, FV U , H1-H2]. The transformed
voice descriptor H ′1-H ′2 is measured on the magnitude
spectrum of |S′(ω)| in dB. The predicted F ′V U value is
retrieved from the signal S′(ω) and the GMM model of
section 2.4. The original and not transformed voice de-
scriptor F0 is added to the energy modelling due to its high
correlation with the other voice descriptors. The manually
transformed R′d, the re-estimated H ′1-H ′2, the predicted
F ′V U and the original F0 descriptors define the transformed
voice descriptor set D′E = [R′d, F0, F

′
V U , H

′1-H ′2]. Each
energy model receives for training its corresponding ref-
erence feature R defined in equ. 11. The energy mod-
elsMvoi andMunv are used via their functions F voi and
Funv , along with their corresponding error modelsMvoi

err

and Munv
err and error functions F voierr and Funverr to predict

the RMS-based energy measures Epvoi and Epunv .

2.6 Synthesis

2.6.1 Time domain mixing

The straight-forward mixing in the time domain adds the
synthesized unvoiced stochastic waveform u(n) to the syn-
thesized voiced deterministic waveform v(n). The time
domain mixing operates thus full-band without any restric-
tion on the signal bandwidth. It will be evaluated in section
5.1 together with the GMM-based prediction and scaling of
the voiced and unvoiced signal energies.

2.6.2 Spectral fading synthesis

The PSY synthesis variant "Spectral fading" is designed to
handle voice quality transformations by suppressing pos-
sibly occurring artefacts. A short summary discusses here
the impact of Rd on the spectral slope required to under-
stand the motivation for the spectral fading synthesis pre-
sented in this section. The spectral slope is strongly corre-
lated with Rd. Altering Rd affects the spectral slope. Ref-
erences to an extensive analysis of the spectral correlates
of Rd can be found in [14, 15, 20, 27, 28]. A more relaxed
voice quality is reflected by higherRd values and is related
to a sinusoidal-like glottal flow derivative which generates
higher spectral slopes. A more tense voice quality is pa-
rameterized by lower Rd values and relates to an impulse-
like glottal flow derivative which produces lower spectral
slopes. A lower (higher) spectral slope indicates that more



(less) sinusoidal content can be observed in higher fre-
quency regions. The voice quality transformation to change
an original speech recording having a modal voice quality
to a more tense voice character has to extend the quasi-
harmonic sequence of sinusoidals above the FV U . Con-
trariwise, a transformation to a more relaxed voice qual-
ity needs to reduce the sinusoidal content. A modification
of the glottal excitation source required for voice quality
transformations implies a FV U modification. The altered
F ′V U frequency has to be naturally represented by prop-
erly joining the voiced V (ω) and unvoiced U(ω) signal
components. The transformation of the original Rgcid con-
tour used to extract C(ω) introduces an energy variation
in the re-synthesis of a transformed V ′(ω). However, even
with the energy maintenance of section 2.5 the alteration
of a modal to a very tense voice quality may result into
sinusoidal content being of higher energy than the noise
part at Fnyq . This sets F ′V U = Fnyq and causes audi-
ble artefacts. F ′V U is therefore predicted using the method
described in section 2.4. Additionally, the spectral fading
method employs two spectral filters to cross fade V (ω) and
U(ω) around F ′V U . The spectral band around FV U is com-
prised of a mix of both deterministic V (ω) and stochastic
U(ω) signal content. A low pass filter PL fades out the
voiced part V (ω) and a high pass filter PH fades in the
unvoiced part U(ω) with increasing frequency. The linear
ramps with a slope ofmLP=-96 dB andmHP=-48 dB per
octave define the steepness of both filters. A higher value
is chosen for mLP since the F ′V U prediction may be very
high for very tense voice qualities. A less steep fade out
filter would not be effective enough.

3. VOICE QUALITY TRANSFORMATION

The study of [29] on the Just Noticable Differences (JND)
of human auditory perception reports that changes in higher
(lower) value regions of the Open Quotient OQ (the asym-
metry coefficient αm) require longer distances of ∆OQ
(∆αm) to arise the sensation of a voice quality change in
the perception of a listener. We spread according to that
experimental results the original Rgcid contour into several
R
′gci
d contours with positive and negative offsets cover-

ing the complete Rd range such that lower ∆Rd steps are
placed in lower and higher ∆Rd steps in higher Rd value
regions. One example is illustrated in fig. 1 on the phrase
employed for the evaluation in section 5. Table 1 shows
the mean Rµd values of the original Rd contour with index
0, and respectively 3 positive and 3 negative µ values for
each voice quality change. Rσ

2

d lists their variance σ2. It
increases with increasingRd to reflect the objective of hav-
ing to apply higher ∆Rd steps with higher Rd values. The
Rd mean difference column ∆Rµd reflects the mean ∆Rd
steps measured between each row index on the Rµd values
to show that also the mean difference increases with in-
creasing Rµd from a tense to a relaxed voice quality.

4. BASELINE METHOD SVLN

The method called ”Separation of the Vocal tract with the
Liljencrants-Fant model plus Noise” detailed in [9, 30, 31]

Figure 1: Generated R
′gci
d contour examples

Voice quality (index) Rµd Rσ
2

d ∆Rµd
Very relaxed (+3) 3.5109 0.9031 -0.8397

Relaxed (+2) 2.6711 0.7825 -0.6597
Modal to relaxed (+1) 2.0114 0.3631 -0.4442

Modal (original) (0) 1.5673 0.1937
Tense to modal (-1) 1.1936 0.0941 -0.3737

Tense (-2) 0.8601 0.0341 -0.3335
Very tense (-3) 0.5704 0.0154 -0.2898

Table 1: Rd mean, variance and mean difference values

represents the baseline method on whose means the pro-
posed system PSY is build upon. The main differences
are the VTF representation, the energy model and the esti-
mation of the stochastic component. SVLN constructs the
latter by high pass filtering white noise, applying an am-
plitude modulation parameterized by the glottal pulse se-
quence, and cross fading between consecutive synthesized
noise segments. The gain σg measures the energy level at
FV U while analysis to control the stochastic energy at the
synthesis step. SVLN synthesizes glottal pulses with the
LF model in the spectral domain to extract C(ω) below
FV U . The VTF above FV U is taken from the signals spec-
tral envelope. SVLN facilitates advanced pitch transposi-
tion or voice quality transformations while maintaining a
high synthesis quality [9, 32].

5. EVALUATION

The evaluation section presents the results of two listening
tests conducted on natural human speech of the Hispanic
speaker "Fernando" speaking French. The voice quality
assessment examines how well both synthesis systems are
able to produce different voice quality characteristics. Test
participants were asked to rate different synthesized voice
qualities according to the same indices as in table 1. Each
phrase is rated as well on their synthesis quality according
to the Mean Opinion Scale (MOS).

The baseline method SVLN of section 4 and the proposed
method PSY of section 2 received the same features Rgcid ,
F0 and FV U as pre-estimated input to analyze their cor-
responding VTF C(ω). Please note that SVLN requires
to smooth the voice descriptor contours. Due to the energy
measure at FV U it cannot handle value changes varying too



quickly in short-time segments [30]. For this test a median
smoothing filter covering 100 ms was applied.

5.1 Manual Rd offsets and time domain mixing

A preliminary listening test has been conducted by 6 sound
processing experts internally in the laboratory. The listen-
ing test is available online via: Manual offset test 1 .

Figure 2: Manual R
′gci
d offsets, step size Rd±0.25

Fig. 2 depicts the original Rgcid contour in the middle
shown in cyan colour, and six additional R

′gci
d contours.

Each positive and negative mean offset constitutes an em-
pirically determined Rd offset of Rd±0.25 to the previ-
ous contour in its respective direction. The offset amount
was chosen such that an Rgcid offset contour reaches an Rd
range border [0.1 5.0]. In this example theRgcid offset -0.75
saturates around ∼1.50 seconds on the lower Rd border.

Figure 3: Voice quality ratings - TD mixing

Fig. 3 depicts the voice quality ratings for both speech
systems. The horizontal grey lines at both ends (whiskers)
are set to show the minimum and maximum value for each
evaluation. The horizontal red (violet) lines reflect the mean

1 Speaker Fernando: http://stefan.huber.rocks/phd/tests/RdMisterF/

(median) voice quality ratings of all participants per test
phrase. The dialog grey dashed line exemplifies their ideal
placement if each test participant would have been able
to perceptually associate each synthesized voice quality
example to its corresponding voice quality characteristic.
The mean deviation value δµ=0.95 for PSY expresses the
disagreement of the listeners, being ideally δµ=0.00. PSY
received very low mean deviation δµ values for more tense
voice qualities. The stronger the original modal voice qual-
ity is transformed towards a more relaxed voice quality the
less well could the participants identify its perceptual sen-
sation. Drawing a regression line through each mean value
shown in red horizontal lines per rated Rd offset would re-
sult in a less step line than the ideal one depicted as grey
dashed line. A higher mean deviation value δµ=1.12 as
compared to PSY is shown for the baseline method SVLN
in fig. 3. It indicates that the listeners could less well cap-
ture the different synthesized voice qualities and associate
them with the corresponding offset indices. Clear voice
quality associations can be concluded for both systems.

Figure 4: MOS synthesis quality ratings - TD mixing

The MOS synthesis quality result are shown in fig. 4. PSY
exhibits partially highest ratings up to an excellent synthe-
sis quality of 5 for all but the very tense and very relaxed
voice quality characteristics with the Rd offsets ±0.75.
Contrariwise, the voice qualities very tense and tense are
partially rated with the lowest MOS synthesis quality poor.
The mean synthesis quality MOSµ=2.67 of SVLN is com-
parably lower than MOSµ=3.60 for PSY. The very tense
voice quality of SVLN received comparably lower MOS
ratings than its other synthesizedRd offsets. Stronger voice
quality changes are assessed with less good MOS synthe-
sis qualities for both systems. PSY received in general a
lower deviation from the true voice quality rating and a
higher MOS synthesis quality compared to SVLN.
Fig. 5 illustrates the voice quality and the MOS synthe-
sis quality ratings for the PSY synthesis variant using an

http://stefan.huber.rocks/phd/tests/RdMisterF/
http://stefan.huber.rocks/phd/tests/RdMisterF/


Figure 5: Test results - PSY energy scaling

additional energy scaling. The voiced V (ω) and unvoiced
U(ω) component are scaled by the respective RMS ener-
gies predicted from a dedicated GMM energy model for
each part. Please note that the two Rd offsets -0.75 for a
very tense and -0.50 for a tense voice quality had to be ex-
cluded from the test for PSY (GMM). The predicted RMS
energy contours resulted into amplitudes in the time do-
main being outside the valid range [-1 1]. In general it can
be observed that the GMM-based energy scaling of PSY
received roughly similar voice and MOS synthesis quality
ratings as the standard PSY method. This suggests that the
GMM predicted energy contours for the voiced V (ω) and
unvoiced U(ω) parts do neither increase nor decrease the
synthesis quality and the voice quality characteristic to a
significant extent.

Method ∆ VQµ ∆ VQσ2 MOSµ MOSσ2

PSY 0.9524 0.6644 3.5952 1.1457
PSY (GMM) 0.6667 0.4722 3.8333 0.8056

SVLN 1.1190 0.7239 2.6667 0.5079

Table 2: Voice quality (VQ) and MOS sound quality

Table 2 summarizes the mean deviation ∆ VQµ and its
variance ∆ VQσ2 from the optimal voice quality rating in
the first two columns. The corresponding mean and vari-
ance of the MOS sound quality ratings are listed in the last
two columns. The three synthesis approaches PSY time
domain mixing in the first row, PSY time domain mixing
using the additional GMM energy scaling of section 2.5.2,
and the baseline method SVLN are compared. The lower
VQ and higher MOS values for PSY (GMM) are partially a
result of having omitted the two voice quality transforma-
tions towards a tense and very tense voice quality. The ex-
pectation for these two omitted test cases is that they would
have decreased the good test results for PSY (GMM).

5.2 Transformed R
′gci
d contours and spectral fading

The PSY spectral fading synthesis variant presented in 2.6.2
requires the FV U prediction of section 2.4. An example is
depicted in fig. 6. The transformed R

′gci
d contours and the

Figure 6: FV U prediction excerpt for PSY synthesis

original Rgcid contour of fig. 1 were employed by both sys-
tems for synthesis. Following the voice production model
of equ. 2.1, a transformed glottal pulse G′(ω) leads to
a transformed reconstructed signal S′(ω). The unvoiced
componentU(ω) remains unmodified. 11 participants rated
each speech phrase by SVLN and PSY. Please note that the
PSY energy prediction variant is due to the too huge scal-
ing for tense voice qualities omitted. The listening test is
available online via: Transformed R

′gci
d test 2 .

Figure 7: Voice quality ratings - Spectral fading

Fig. 7 shows again the voice quality ratings for both speech
systems. The mean deviation value δµ=0.83 for PSY is
lower than the corresponding δµ=0.97 for the SVLN. Clear
voice quality associations can be concluded for both sys-
tems following closely the ideal dashed line. The devia-
tions increase with higher transformations.

2 Speaker Fernando: http://stefan.huber.rocks/phd/tests/vqMisterF/

http://stefan.huber.rocks/phd/tests/vqMisterF/
http://stefan.huber.rocks/phd/tests/vqMisterF/


Figure 8: MOS synthesis quality ratings - Spectral fading

The MOS synthesis quality evaluation for PSY shown in
fig. 8 exhibits partially highest ratings up to an excellent
synthesis quality of 5 for all but the "relaxed" and "very
relaxed" voice quality characteristics with index +2 and
+3. The evaluated mean synthesis quality MOSµ=2.82
of SVLN is comparably lower than MOSµ=3.38 for PSY.
Stronger voice quality changes are assessed with less good
MOS synthesis qualities for both systems. PSY received in
general a lower deviation from the true voice quality rating
and a higher MOS synthesis quality related to the baseline
method SVLN, shown in table 3.

Method ∆ VQµ ∆ VQσ2 MOSµ MOSσ2

PSY 0.8312 0.6858 3.3766 0.9880
SVLN 0.9740 0.5967 2.8182 0.7462

Table 3: Voice quality (VQ) and MOS sound quality

6. CONCLUSIONS

The findings presented with the subjective listening test of
section 5 suggest that the proposed novel speech analy-
sis and synthesis system PSY is able to analyze an input
speech phrase such that different re-synthesized versions
carry the perception of different voice quality characteris-
tics. Its assessed synthesis quality received partially very
good judgements for minor changes in voice quality. Ma-
jor voice quality changes are appraised of moderate quality
for both the baseline and the proposed method. However,
further work is required to render the GMM energy predic-
tion applicable for all cases. Please note that the proposed
speech framework will be integrated as system to synthe-
size singing voices within the ANR project ChaNTeR 3 .

3 ChaNTeR: anasynth.ircam.fr/home/projects/anr-project-chanter/
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