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Voice quality transformation using an extended source-filter speech model

In this paper we present a flexible framework for parametric speech analysis and synthesis with high quality. It constitutes an extended source-filter model. The novelty of the proposed speech processing system lies in its extended means to use a Deterministic plus Stochastic Model (DSM) for the estimation of the unvoiced stochastic component from a speech recording. Further contributions are the efficient and robust means to extract the Vocal Tract Filter (VTF) and the modelling of energy variations. The system is evaluated in the context of two voice quality transformations on natural human speech. The voice quality of a speech phrase is altered by means of re-synthesizing the deterministic component with different pulse shapes of the glottal excitation source. A Gaussian Mixture Model (GMM) is used in one test to predict energies for the resynthesis of the deterministic and the stochastic component. The subjective listening tests suggests that the speech processing system is able to successfully synthesize and arise to a listener the perceptual sensation of different voice quality characteristics. Additionally, improvements of the speech synthesis quality compared to a baseline method are demonstrated.

INTRODUCTION

In this paper we present a method to transform the deterministic and stochastic part of the glottal excitation source. The main motivation of the following paper is the presentation of an improved method for coherent modifications of the glottal pulse shape. The glottal pulse shape is generally accepted to reflect different phonation types of human voice production [START_REF] Childers | Vocal quality factors: analysis, synthesis, and perception[END_REF] and different voice qualities being strongly related to the vocal effort [START_REF] Liénard | Fine-grain voice strength estimation from vowel spectral cues[END_REF]. The terminology used in the following is describing the lax-tense dimension of voice quality [START_REF] Laver | The Phonetic Description of Voice Quality[END_REF] distinguishing tense (pressed), modal (normal), and relaxed (breathy) voice qualities [START_REF] Kane | Speaker and language independent voice quality classification applied to unlabeled corpora of expressive speech[END_REF].

Recent research in the speech community has notably improved the speech synthesis quality by explicitly modelling the deterministic and stochastic component of the glottal excitation source [START_REF] Drugman | The deterministic plus stochastic model of the residual signal and its applications[END_REF][START_REF] Cabral | Towards a better representation of the envelope modulation of aspiration noise[END_REF]. Advanced source-filter decomposition strategies as in [START_REF] Vincent | A new method for speech synthesis and transformation based on an arx-lf source-filter decomposition and hnm modeling[END_REF][START_REF] Cabral | Glottal spectral separation for parametric speech synthesis[END_REF][START_REF] Degottex | Mixed source model and its adapted vocal tract filter estimate for voice transformation and synthesis[END_REF] address finer details defined by extended voice production models for human speech. These approaches analyze an extended feature set to model their transformation and synthesis. The extended feature set consists of: the VTF, the glottal pulse positions and shapes, the energies, and a random component described by spectral and temporal envelopes.

In this paper we present a novel speech analysis and synthesis system extending the source-filter model of [START_REF] Degottex | Mixed source model and its adapted vocal tract filter estimate for voice transformation and synthesis[END_REF]. The extension is based on using a DSM and further processing means. The deterministic part is estimated and subtracted from a speech signal to extract the stochastic part [START_REF] Serra | Musical Sound Modeling with Sinusoids plus Noise[END_REF]. The proposed system separately models the stochastic and deterministic components. It does therefore not correspond to the classical source-filter model. The contribution of the following research and the advancements compared to the baseline method lies in the extended means to estimate the unvoiced stochastic component, to robustly extract the VTF and to handle the variations in energy and signal behaviour implied with glottal source transformations.

The paper is organized as follows. Section 2 presents the novel speech framework. Section 3 discusses the aspects of voice quality transformation. Section 4 introduces the baseline state-of-the-art speech system. Section 5 presents a subjective evaluation based on a listening test of natural human speech. Section 6 concludes with the findings studied in this paper.

THE EXTENDED SOURCE-FILTER MODEL

The proposed speech analysis and synthesis system is designed for the utilization in advanced voice transformation and voice conversion applications. It is denoted PSY for Parametric Speech analysis, transformation and SYnthesis.

Voice production model

PSY operates upon the following generic interpretation of the human voice production in the time domain:

s(n) = u(n) + v(n) = u(n) + i g(n, Pi) * δ(n -Pi) * c(n, Pi) (1)
The speech signal s(n) is represented by means of a stochastic (unvoiced) component u(n) and a deterministic (voiced) component v(n). The deterministic component contains the sequence of glottal pulses located at the time positions P i , each representing a Glottal Closure Instant (GCI) with index i. Each glottal pulse is represented by the glottal flow derivative g(n, P i ). The latter is convolved with a Dirac impulse at the GCI P i and the VTF that is active for the related position c(n, P i ). The Liljencrants-Fant (LF) model [START_REF] Fant | A fourparameter model of glottal flow[END_REF] is used to synthesize each g(n, P i ). The LF model is parameterized by a scalar shape parameter R d [START_REF] Fant | The lf-model revisited. transformation and frequency domain analysis[END_REF][START_REF] Fant | The voice source in connected speech[END_REF]. Changing R d continuously from lower to higher values will allow changing the LF pulse shape on a continuum from tense to relaxed voice qualities.

For being able to make spectral domain manipulations the speech signal model given in equ. 1 is processed in the spectral domain using the Short-Time Fourier transform (STFT). For brevity the coverage of a few consecutive glottal pulses g(n, P j ) will be denoted as g s (n) = j g(n, P j ) * δ(n -P j ) in the following. The summation over the GCI index j is set to comprise a signal segment of a few glottal pulses being covered by the Hanning window w h (n) of the STFT. Each pulse position is related to a slightly different VTF being supposed to be minimum phase [START_REF] Maia | Complex cepstrum factorization for statistical parametric synthesis[END_REF]. The glottal pulse shape and the VTF are assumed to not change within the window and are given approximately by the corresponding parameters in the window center. We further assume that the filtering processes implied by each convolutional operation between the signal components of equ. 1 involves impulse responses that are shorter than the window length. The STFT of the speech signal is then given by

S(ω, m) = U (ω, m) + V (ω, m) (2) 
= U (ω, m) + G(ω, m) • H(ω, m) • C(ω, m) (3) 
The STFT frame m is the position of the window center and ω is the frequency variable of the Discrete-Time Fourier Transform (DTFT). For brevity the dependency of all signal spectra with respect to m will be dropped in the following. U (ω) and V (ω) are the DTFT of the windowed voiced and unvoiced signals from equ. 1 assuming that g and c and the corresponding DTFT spectra G(ω) and C(ω) are quasi-stationary within the window. H(ω) is the spectral representation of the windowed Dirac impulse sequence δ(n -P i ). The radiation filter at lips and nostrils level R(ω) [START_REF] Fant | The source filter concept in voice production[END_REF] is not explicitly present in the PSY model since it is implicitly contained in the glottal flow derivative g(n) and the unvoiced component u(n).

Glottal source synthesis and VTF extraction

The LF shape parameter R d is estimated by the means proposed in [START_REF] Huber | Glottal source shape parameter estimation using phase minimization variants[END_REF][START_REF] Huber | On the use of voice descriptors for glottal source shape parameter estimation[END_REF]. Each GCI is estimated by the method described in [START_REF] Degottex | Joint estimate of shape and time-synchronization of a glottal source model by phase flatness[END_REF] and assigned the closest R d value which is estimated on the STFT time grid. The spectral envelope sequence T sig is estimated on the input signal s(n) using the True Envelope estimator of [START_REF] Röbel | On cepstral and all-pole based spectral envelope modelling with unknown model order[END_REF]. Another spectral envelope sequence T g is estimated on the synthesized glottal flow derivative sequence g s (n). The extraction of the VTF C(ω) is obtained by dividing T sig by T g . The utilization of T g in the full-band division is required to suppress the spectral ripples occurring for higher R d values [START_REF] Fant | The voice source in connected speech[END_REF][START_REF] Alessandro | Phase-based methods for voice source analysis[END_REF].

Estimation of the unvoiced stochastic part

The separation of a speech signal s(n) into the contributions of the voiced v(n) and the unvoiced u(n) part is based on the calculation of a residual of a sinusoidal model [START_REF] Zivanovic | Adaptive threshold determination for spectral peak classification[END_REF]. The following algorithmic step estimate a) the unvoiced residual u res (n) by deleting sinusoidal content from s(n), b) u HP (n) by high-pass filtering u res (n), c) the unvoiced signal u(n) by scaling u HP (n) in energy.

a) Re-Mixing with De-Modulation: This approach aims to simplify the sinusoidal detection by de-modulating the fundamental frequency F 0 contour and the Hilbert amplitude envelope H from s(n). The original F 0 contour of s(n) is warped to become flat by means of time varying re-sampling using as target F 0 the mean of the original F 0 . The re-sampling operation changes locally and globally the time duration of all signal features. The effect will be inverted after the extraction of the residual. The varying amplitude contour of s(n) is demodulated by means of dividing the signal by its smoothed Hilbert transform H (s(n)) similar as in [START_REF] Drugman | The deterministic plus stochastic model of the residual signal and its applications[END_REF][START_REF] Pantazis | Improving the modeling of the noise part in the harmonic plus noise model of speech[END_REF]. The smoothing kernel is simply the Hanning window of duration 4/F T . This optimally removes all envelope fluctuations that are related to the deterministic components. The resulting signal s f lat (n) is flat in amplitude envelope and F 0 facilitating the detection of sinusoids following [START_REF] Zivanovic | Adaptive threshold determination for spectral peak classification[END_REF]. It avoids even for relatively high harmonic numbers the energy shift between voiced and unvoiced components [START_REF] Alessandro | Effectiveness of a periodic and aperiodic decomposition method for analysis of voice sources[END_REF]. The sinusoidal content is subtracted from s f lat (n) and the demodulation steps are inverted so that the original AM-FM modulation is recreated. This generates the unvoiced residual signal u res (n). b) Below F V U filter: Informal tests confirm that not all sinusoidal content could be precisely estimated and deleted in the frequency band below the Voiced / Unvoiced Frequency boundary F V U [START_REF] Drugman | Maximum voiced frequency estimation: Exploiting amplitude and phase spectra[END_REF]. The F V U estimation is based on the signal interpretation splitting the spectrum into two bands. The lower frequency band below the

F V U is de- termined by the voiced component V (ω). The unvoiced component U (ω) is located above the F V U .
A high pass filter is applied to delete remaining sinusoidal content from U res (ω) below F V U . The filters cut-off frequency f c equals the estimated F V U per STFT frame m. A gain of 1 is set in the filters passband equalling the stochastic frequency band ω > ω V U . A linear ramp with a slope of m HP =-3 dB per octave defines the high pass filtering in the filters stopband. The latter equals the deterministic frequency band ω < ω V U . The experimental findings show that a heuristically defined threshold of m HP =-3 dB approximates reasonably close enough the desired sinusoidal cancellation in the high pass filtered unvoiced signal u HP (n). c) Scale to T sig level: The sinusoidal detection of step a) may be erroneous for some signal segments such as fast transients. The heuristic adaptation of step b) cannot be exact for all cases. The scaling described in equ. 4 minimizes the difference between the envelope T unv of the stochastic component U HP (ω) and the envelope T sig of the signal spectrum S(ω) above F V U up to the Nyquist frequency F nyq . The DFT bins found closest to the frequencies F nyq and F V U are denoted as k nyq and respectively k V U .

η = 1 knyq -k V U K=knyq k=k V U T dB sig (k) -T dB unv (k) T w unv = Tunv • (1 -k V U /knyq) • 10 η/20 (4)
η equals the mean difference in dB between T sig and the spectral envelope T unv .The scaling of T unv is weighted by the time-varying ratio of F V U versus F nyq as a regularization term to avoid a too high energy scaling. The multiplication of a white noise spectrum with T w unv (ω) synthesizes with the STFT the unvoiced signal u(n).

GMM-based F V U prediction

The spectral fading synthesis presented in the following section 2.6.2 requires a transformed F V U value, with the operator indicating a transformation. F V U is predicted using a modified GMM approach detailed in [START_REF] Huber | On the use of voice descriptors for glottal source shape parameter estimation[END_REF][START_REF] Lanchantin | Dynamic model selection for spectral voice conversion[END_REF][START_REF] Lanchantin | Objective evaluation of the dynamic model selection method for spectral voice conversion[END_REF]. The GMM model M is trained on the voice descriptor set d=[R d ,F 0 ,H1-H2,E voi ,E unv ] and the reference value r = F V U . H1-H2 refers to the amplitude difference in dB of the first two harmonic sinusoidal partials. E voi and E unv are the Root-Mean-Square (RMS) based energy measures of the voiced and unvoiced signal parts which will be introduced in the following section. The prediction function

F (d) = Q q=1 p d q d • [µ r q + Σ rd q Σ dd -1 q (d -µ d q )] (5) 
is derived from M by the definition of equ. 5, with Q=15 being the number of utilized Gaussian mixture components. An initial F p V U value is predicted from F (d). An error GMM model M err is trained on the modelling error

M = 2 (F V U -F p V U ) 2 (6) 
serving as reference value r = M , and on the voice descriptor set d. The transformed descriptor counterpart d contains the original F 0 contour but transformed values for the remaining voice descriptors:

d =[R d ,F 0 ,H 1-H 2,E voi , E unv ].
The GMM-based modelling to predict a F V U contour from the feature sets d and d is described by:

F p V U µ = M (F (d)) (7) 
F p V U µ = M F (d ) (8) 
F p V U σ = Merr (Ferr(d)) (9) 
F p V U σ = Merr Ferr(d ) (10) 
F V U = F p V U µ + (F V U -F p V U µ ) • F p V U σ /F p V U σ . (11) 
Each trained model pair M and M err is utilized to predict via their derived prediction functions F and F err the mean prediction value F p V U µ (F p V U µ ) and the predicted standard deviation F p V U σ (F p V U σ ) from descriptor set d (from the transformed set d ). The true prediction value would equal F p V U µ if no model error occurs: M =0. The calculation of F V U from the transformed d and the original voice descriptor set d is defined by equ. 11. It evaluates the difference between the original F V U and the predicted F p V U µ value. The difference result is normalized by the ratio of the original and transformed standard deviations F p V U σ and F p V U σ of the modelled data distribution, and corrected by the transformed predicted mean value F p V U µ .

Energy modelling

Energy maintenance

A simple RMS measure F RM S evaluates the effective energy value E on the linear amplitude spectrum A lin =|Y (ω)| of any arbitrary signal spectrum Y (ω). The RMS energy measures are estimated in PSY as defined in equ. 12:

F RM S (A lin , k) = 1/K • Σ k (A lin (k) 2 ) Esig = F RM S (|S(ω)|) Eunv = F RM S (|U (ω)|) Evoi = Esig -Eunv (12) 
E sig and E unv reflect the RMS energies measured on the signal S(ω) and the unvoiced component U (ω). E voi is expressed as their difference to represent the RMS energy of the voiced component V (ω). A transformed R gci d contour causes an altered energy value E voi measured on the transformed voiced part V (ω). The high (low) pass filtering applied to U (ω) (V (ω)) explained in section 2.6.2 generates as well an energy change. The energy re-scaling to the original energy measures defined by equ. 13 ensures that their energy is maintained:

Evoi = F RM S (|V (ω)|) Eunv = F RM S (|U (ω)|) E voi = F RM S (|V (ω)|) E unv = F RM S (|U (ω)|) V (ω)• = Evoi/E voi U (ω)• = Eunv/E unv (13) 

GMM-based energy prediction

The original voice descriptor set D E consists of the voice descriptors

D E =[R d , F 0 , F V U , H1-H2].
The transformed voice descriptor H 1-H 2 is measured on the magnitude spectrum of |S (ω)| in dB. The predicted F V U value is retrieved from the signal S (ω) and the GMM model of section 2.4. The original and not transformed voice descriptor F 0 is added to the energy modelling due to its high correlation with the other voice descriptors. The manually transformed R d , the re-estimated H 1-H 2, the predicted F V U and the original F 0 descriptors define the transformed voice descriptor set

D E = [R d , F 0 , F V U , H 1-H 2]
. Each energy model receives for training its corresponding reference feature R defined in equ. 11. The energy models M voi and M unv are used via their functions F voi and F unv , along with their corresponding error models M voi err and M unv err and error functions F voi err and F unv err to predict the RMS-based energy measures E p voi and E p unv .

Synthesis

Time domain mixing

The straight-forward mixing in the time domain adds the synthesized unvoiced stochastic waveform u(n) to the synthesized voiced deterministic waveform v(n). The time domain mixing operates thus full-band without any restriction on the signal bandwidth. It will be evaluated in section 5.1 together with the GMM-based prediction and scaling of the voiced and unvoiced signal energies.

Spectral fading synthesis

The PSY synthesis variant "Spectral fading" is designed to handle voice quality transformations by suppressing possibly occurring artefacts. A short summary discusses here the impact of R d on the spectral slope required to understand the motivation for the spectral fading synthesis presented in this section. The spectral slope is strongly correlated with R d . Altering R d affects the spectral slope. References to an extensive analysis of the spectral correlates of R d can be found in [START_REF] Fant | The lf-model revisited. transformation and frequency domain analysis[END_REF][START_REF] Fant | The voice source in connected speech[END_REF][START_REF] Alessandro | Phase-based methods for voice source analysis[END_REF][START_REF] Doval | The spectrum of glottal flow models[END_REF][START_REF] Doval | The spectrum of glottal flow models[END_REF]. A more relaxed voice quality is reflected by higher R d values and is related to a sinusoidal-like glottal flow derivative which generates higher spectral slopes. A more tense voice quality is parameterized by lower R d values and relates to an impulselike glottal flow derivative which produces lower spectral slopes. A lower (higher) spectral slope indicates that more (less) sinusoidal content can be observed in higher frequency regions. The voice quality transformation to change an original speech recording having a modal voice quality to a more tense voice character has to extend the quasiharmonic sequence of sinusoidals above the F V U . Contrariwise, a transformation to a more relaxed voice quality needs to reduce the sinusoidal content. A modification of the glottal excitation source required for voice quality transformations implies a F V U modification. The altered F V U frequency has to be naturally represented by properly joining the voiced V (ω) and unvoiced U (ω) signal components. The transformation of the original R gci d contour used to extract C(ω) introduces an energy variation in the re-synthesis of a transformed V (ω). However, even with the energy maintenance of section 2.5 the alteration of a modal to a very tense voice quality may result into sinusoidal content being of higher energy than the noise part at F nyq . This sets F V U = F nyq and causes audible artefacts. F V U is therefore predicted using the method described in section 2.4. Additionally, the spectral fading method employs two spectral filters to cross fade V (ω) and U (ω) around F V U . The spectral band around F V U is comprised of a mix of both deterministic V (ω) and stochastic U (ω) signal content. A low pass filter P L fades out the voiced part V (ω) and a high pass filter P H fades in the unvoiced part U (ω) with increasing frequency. The linear ramps with a slope of m LP =-96 dB and m HP =-48 dB per octave define the steepness of both filters. A higher value is chosen for m LP since the F V U prediction may be very high for very tense voice qualities. A less steep fade out filter would not be effective enough.

VOICE QUALITY TRANSFORMATION

The study of [START_REF] Henrich | Just noticeable differences of open quotient and asymmetry coefficient in singing voice[END_REF] on the Just Noticable Differences (JND) of human auditory perception reports that changes in higher (lower) value regions of the Open Quotient OQ (the asymmetry coefficient α m ) require longer distances of ∆OQ (∆α m ) to arise the sensation of a voice quality change in the perception of a listener. We spread according to that experimental results the original R gci d contour into several R gci d contours with positive and negative offsets covering the complete R d range such that lower ∆R d steps are placed in lower and higher ∆R d steps in higher R d value regions. One example is illustrated in fig. 1 on the phrase employed for the evaluation in section 5. Table 1 shows the mean R µ d values of the original R d contour with index 0, and respectively 3 positive and 3 negative µ values for each voice quality change. R σ 2 d lists their variance σ 2 . It increases with increasing R d to reflect the objective of having to apply higher ∆R d steps with higher R d values. The R d mean difference column ∆R µ d reflects the mean ∆R d steps measured between each row index on the R µ d values to show that also the mean difference increases with increasing R µ d from a tense to a relaxed voice quality.

BASELINE METHOD SVLN

The method called "Separation of the Vocal tract with the Liljencrants-Fant model plus Noise" detailed in [START_REF] Degottex | Mixed source model and its adapted vocal tract filter estimate for voice transformation and synthesis[END_REF][START_REF] Degottex | Glottal source and vocal tract separation[END_REF][START_REF] Degottex | Pitch transposition and breathiness modification using a glottal source model and its adapted vocal-tract filter[END_REF]] represents the baseline method on whose means the proposed system PSY is build upon. The main differences are the VTF representation, the energy model and the estimation of the stochastic component. SVLN constructs the latter by high pass filtering white noise, applying an amplitude modulation parameterized by the glottal pulse sequence, and cross fading between consecutive synthesized noise segments. The gain σ g measures the energy level at F V U while analysis to control the stochastic energy at the synthesis step. SVLN synthesizes glottal pulses with the LF model in the spectral domain to extract C(ω) below F V U . The VTF above F V U is taken from the signals spectral envelope. SVLN facilitates advanced pitch transposition or voice quality transformations while maintaining a high synthesis quality [START_REF] Degottex | Mixed source model and its adapted vocal tract filter estimate for voice transformation and synthesis[END_REF][START_REF] Lanchantin | A hmmbased speech synthesis system using a new glottal source and vocal-tract separation method[END_REF].

EVALUATION

The evaluation section presents the results of two listening tests conducted on natural human speech of the Hispanic speaker "Fernando" speaking French. The voice quality assessment examines how well both synthesis systems are able to produce different voice quality characteristics. Test participants were asked to rate different synthesized voice qualities according to the same indices as in table 1. Each phrase is rated as well on their synthesis quality according to the Mean Opinion Scale (MOS).

The baseline method SVLN of section 4 and the proposed method PSY of section 2 received the same features R gci d , F 0 and F V U as pre-estimated input to analyze their corresponding VTF C(ω). Please note that SVLN requires to smooth the voice descriptor contours. Due to the energy measure at F V U it cannot handle value changes varying too quickly in short-time segments [START_REF] Degottex | Glottal source and vocal tract separation[END_REF]. For this test a median smoothing filter covering 100 ms was applied.

Manual R d offsets and time domain mixing

A preliminary listening test has been conducted by 6 sound processing experts internally in the laboratory. The listening test is available online via: Manual offset test 1 . (median) voice quality ratings of all participants per test phrase. The dialog grey dashed line exemplifies their ideal placement if each test participant would have been able to perceptually associate each synthesized voice quality example to its corresponding voice quality characteristic. The mean deviation value δ µ =0.95 for PSY expresses the disagreement of the listeners, being ideally δ µ =0.00. PSY received very low mean deviation δ µ values for more tense voice qualities. The stronger the original modal voice quality is transformed towards a more relaxed voice quality the less well could the participants identify its perceptual sensation. Drawing a regression line through each mean value shown in red horizontal lines per rated R d offset would result in a less step line than the ideal one depicted as grey dashed line. A higher mean deviation value δ µ =1.12 as compared to PSY is shown for the baseline method SVLN in fig. 3. It indicates that the listeners could less well capture the different synthesized voice qualities and associate them with the corresponding offset indices. Clear voice quality associations can be concluded for both systems. The MOS synthesis quality result are shown in fig. 4. PSY exhibits partially highest ratings up to an excellent synthesis quality of 5 for all but the very tense and very relaxed voice quality characteristics with the R d offsets ±0.75. Contrariwise, the voice qualities very tense and tense are partially rated with the lowest MOS synthesis quality poor. The mean synthesis quality MOS µ =2.67 of SVLN is comparably lower than MOS µ =3.60 for PSY. The very tense voice quality of SVLN received comparably lower MOS ratings than its other synthesized R d offsets. Stronger voice quality changes are assessed with less good MOS synthesis qualities for both systems. PSY received in general a lower deviation from the true voice quality rating and a higher MOS synthesis quality compared to SVLN. Fig. 5 illustrates the voice quality and the MOS synthesis quality ratings for the PSY synthesis variant using an In general it can be observed that the GMM-based energy scaling of PSY received roughly similar voice and MOS synthesis quality ratings as the standard PSY method. This suggests that the GMM predicted energy contours for the voiced V (ω) and unvoiced U (ω) parts do neither increase nor decrease the synthesis quality and the voice quality characteristic to a significant extent.

Method

∆ VQ µ ∆ VQ σ 2 summarizes the mean deviation ∆ VQ µ and its variance ∆ VQ σ2 from the optimal voice quality rating in the first two columns. The corresponding mean and variance of the MOS sound quality ratings are listed in the last two columns. The three synthesis approaches PSY time domain mixing in the first row, PSY time domain mixing using the additional GMM energy scaling of section 2.5.2, and the baseline method SVLN are compared. The lower VQ and higher MOS values for PSY (GMM) are partially a result of having omitted the two voice quality transformations towards a tense and very tense voice quality. The expectation for these two omitted test cases is that they would have decreased the good test results for PSY (GMM). The MOS synthesis quality evaluation for PSY shown in fig. 8 exhibits partially highest ratings up to an excellent synthesis quality of 5 for all but the "relaxed" and "very relaxed" voice quality characteristics with index +2 and +3. The evaluated mean synthesis quality MOS µ =2.82 of SVLN is comparably lower than MOS µ =3.38 for PSY. Stronger voice quality changes are assessed with less good MOS synthesis qualities for both systems. PSY received in general a lower deviation from the true voice quality rating and a higher MOS synthesis quality related to the baseline method SVLN, shown in table 3 

CONCLUSIONS

The findings presented with the subjective listening test of section 5 suggest that the proposed novel speech analysis and synthesis system PSY is able to analyze an input speech phrase such that different re-synthesized versions carry the perception of different voice quality characteristics. Its assessed synthesis quality received partially very good judgements for minor changes in voice quality. Major voice quality changes are appraised of moderate quality for both the baseline and the proposed method. However, further work is required to render the GMM energy prediction applicable for all cases. Please note that the proposed speech framework will be integrated as system to synthesize singing voices within the ANR project ChaNTeR 3 .

3 ChaNTeR: anasynth.ircam.fr/home/projects/anr-project-chanter/
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 1 Figure 1: Generated R gci d contour examples

Figure 2 :

 2 Figure 2: Manual R gci d offsets, step size R d ±0.25

Fig. 2

 2 Fig. 2 depicts the original R gci d contour in the middle shown in cyan colour, and six additional R gci d contours. Each positive and negative mean offset constitutes an empirically determined R d offset of R d ±0.25 to the previous contour in its respective direction. The offset amount was chosen such that an R gci d offset contour reaches an R d range border [0.1 5.0]. In this example the R gci d offset -0.75 saturates around ∼1.50 seconds on the lower R d border.
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 3 Figure 3: Voice quality ratings -TD mixing

Figure 4 :

 4 Figure 4: MOS synthesis quality ratings -TD mixing

Figure 5 :

 5 Figure 5: Test results -PSY energy scaling

5. 2 Figure 6 :

 26 Figure 6: F V U prediction excerpt for PSY synthesis original R gci d contour of fig. 1 were employed by both systems for synthesis. Following the voice production model of equ. 2.1, a transformed glottal pulse G (ω) leads to a transformed reconstructed signal S (ω). The unvoiced component U (ω) remains unmodified. 11 participants rated each speech phrase by SVLN and PSY. Please note that the PSY energy prediction variant is due to the too huge scaling for tense voice qualities omitted. The listening test is available online via: Transformed R gci d test 2 .
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 7 Figure 7: Voice quality ratings -Spectral fading

Fig. 7

 7 Fig.7shows again the voice quality ratings for both speech systems. The mean deviation value δ µ =0.83 for PSY is lower than the corresponding δ µ =0.97 for the SVLN. Clear voice quality associations can be concluded for both systems following closely the ideal dashed line. The deviations increase with higher transformations.

Figure 8 :

 8 Figure 8: MOS synthesis quality ratings -Spectral fading

Table 1 :

 1 R d mean, variance and mean difference values

Table 2 :

 2 2 MOS µ MOS σ 2 Voice quality (VQ) and MOS sound quality

	PSY	0.9524	0.6644 3.5952	1.1457
	PSY (GMM)	0.6667	0.4722 3.8333	0.8056
	SVLN	1.1190	0.7239 2.6667	0.5079
	Table			

Table 3 :

 3 . Method ∆ VQ µ ∆ VQ σ 2 MOS µ MOS σ 2 Voice quality (VQ) and MOS sound quality

	PSY	0.8312	0.6858 3.3766	0.9880
	SVLN	0.9740	0.5967 2.8182	0.7462

Speaker Fernando: http://stefan.huber.rocks/phd/tests/vqMisterF/
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