
HAL Id: hal-01185286
https://hal.science/hal-01185286v1

Submitted on 19 Aug 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Performance evaluation of a peer-to-peer backup system
using buffering at the edge

Anne-Marie Kermarrec, Erwan Le Merrer, Nicolas Le Scouarnec, Romaric
Ludinard, Patrick Maillé, Gilles Straub, Alexandre van Kempen

To cite this version:
Anne-Marie Kermarrec, Erwan Le Merrer, Nicolas Le Scouarnec, Romaric Ludinard, Patrick Maillé,
et al.. Performance evaluation of a peer-to-peer backup system using buffering at the edge. Computer
Communications, 2014, 52, pp.71 - 81. �10.1016/j.comcom.2014.06.002�. �hal-01185286�

https://hal.science/hal-01185286v1
https://hal.archives-ouvertes.fr

Performance evaluation of a peer-to-peer backup system
using buffering at the edge

Anne-Marie Kermarrecb, Erwan Le Merrera, Nicolas Le Scouarneca,
Romaric Ludinardb, Patrick Mailléc, Gilles Strauba, Alexandre Van

Kempena

aTechnicolor
bINRIA Rennes

cInstitut Telecom, Telecom Bretagne

Abstract

The availability of end devices of peer-to-peer storage and backup systems
has been shown to be critical for usability and for system reliability in prac-
tice. This has led to the adoption of hybrid architectures composed of both
peers and servers. Such architectures mask the instability of peers thus
approaching the performances of client-server systems while providing scal-
ability at a low cost. In this paper, we advocate the replacement of such
servers by a cloud of residential gateways, as they are already present in
users’ homes, thus pushing the required stable components at the edge of
the network. In our gateway-assisted system, gateways act as buffers be-
tween peers, compensating for their intrinsic instability. We model such a
system, for quick dimensioning and estimation of gains. We then evaluate
our proposal using statistical distributions based on real world traces, as well
as a trace of residential gateways for availability (that we have collected and
now make available). Results show that the time required to backup data
in the network is substantially improved, as it drops from days to a few
hours. As gateways are becoming increasingly powerful in order to enable
new services, we expect such a proposal to be leveraged on a short term
basis.

Keywords: Storage, Backup, Availability, Peer-to-peer.

1. Introduction

While digital data clearly dominates, backup is of the utmost impor-
tance. More specifically, online (i.e. off-site) backup is often preferred over

Preprint submitted to Computer Communications June 6, 2014

simple backup on external devices as it ensures data persistence regard-
less of the damage cause (e.g. failures, burglars or even fires). To enable
their deployment, online backup systems should run in the background and
provide reasonable performances so that archives can be stored safely in
reasonable time. While cloud backup systems are increasingly adopted by
users (e.g., justcloud, SugarSync, Egnyte HybridCloud, Amazon S3 or Drop-
Box), their peer-to-peer alternatives, potentially offering virtually unlimited
storage for backup [1, 2], are still not appealing enough performance-wise,
as e.g. retrieval times for saved data can be an order of magnitude higher
that the time required for direct download [3]. A particularly illustrative
example is the Wuala case: the Wuala company gained fame by proposing a
peer-assisted (advertised as fully peer-to-peer) and practical storage service;
nevertheless, this technical choice was abandoned to move to a centralized
architecture [4], probably for cost/performance matters. Beside this initial
example and academic systems, we are not aware of a peer-to-peer storage
system deployed at large scale for common needs.

Indeed, peer-to-peer backup systems are limited by the low to medium
availabilities of participating peers and by the slow up-links of peers’ net-
work connections. This limits the amount of data that peers can transfer
and places peer-to-peer systems way behind datacenter-based systems [5].
Not only this may impact the reliability of the stored content but also this
does not provide a convenient system for users. We focus on this perfor-
mance problem and investigate a new way of performing efficient backup on
commodity hardware in a fully peer-to-peer way. Other specific issues with
peer-to-peer solutions include security or QoS [6], but are out of the scope
of this article.

In this article, we propose a new architecture for peer-to-peer backup,
where residential gateways are turned into a stable buffering layer between
the peers and the Internet. The residential gateways are ideal to act as stable
buffers: they lay at the edge of the network between the home network
and the Internet, and are highly available since they remain powered-on
most of the time [7]. Our idea is to temporarily store data on gateways
to compensate for peers transient availability. In this article, we advocate
the use of gateways as buffers and not storage; this choice is motivated by
the increasing number of devices embedding storage, within the home and
attached to a gateway. Dimensioning the storage of the gateway accordingly
would be costly and would break the peer-to-peer paradigm by creating a
central point in charge of hosting resources of attached devices durably: the
contributed resources would no longer scale with the number of clients. In
our buffer model, each device is required to provide a portion of its available

2

space [1, 2], to participate to the global backup system. Such a system
enhances the backup system’s performance along two lines:

• The network connection can be used more efficiently: if devices upload
data constinuously while they are up, the available bandwidth can be
exploited typically 21h/day instead of only 6 to 12h/day on average,
based on actual measured availabilities. This leads to significant en-
hancements. For example, we observe that the time to backup a 1GB
archive is reduced from few weeks in a pure peer-to-peer system to
around one day in our system.

• Additionally, the gateways, offering a high availability (86% on aver-
age, according to our measurements), can act as rendezvous to allow
any two peers to communicate efficiently, even if they are not up at
the same time. In our application, this enhancement mainly has an
impact on the time to restore.

Our proposal differs from existing approaches [4, 5, 8, 9, 10, 11, 12, 13]
by taking into account the low-level structure of the network. Indeed, most
peer-to-peer applications ignore the presence of a gateway in between each
peer and the Internet. We believe that leveraging the gateway storage space
may render peer-to-peer systems viable alternatives for backup. This should
provide a reasonable solution even when peers experience a low availability as
long as they connect frequently enough to the system. Using those gateways
as buffers between peers participating in a backup or restore operation,
enables to implement a stable rendezvous point between transient peers.

The remainder of this article is structured as follows. In Section 2, we
briefly review some pieces of work that motivated our proposal. In Section 3,
we detail our architecture and sketch the storage system. We then propose
in Section 4 a model for this system, in order to estimate its performance.
Section 5 introduces a framework for comparison of our proposal to that
of competitors, and presents our evaluation study. We discuss respectively
some specific points and related work in Section 6 and Section 7. Finally,
we conclude the article in Section 8.

2. Background

Peer-to-peer storage systems initially relied on the set of all participat-
ing peers, typically constituted of users’ desktop PCs, without any further
infrastructure [8, 9]. However, it has been acknowledged since then [14, 15]
that those pure peer-to-peer architectures may fail to deliver reliable storage

3

by exploiting the resources of peers, mainly due to the low availability of
peers and the slow up-link of their network connections. One straightforward
solution is to exclude peers with a low availability or a slow network connec-
tion to access the service [16]; this nevertheless excludes many participants
and significant amounts of exploitable resources [1, 2].

Hybrid architectures, where both servers and peers coexist, have been
proposed in various contexts, in order to move towards practical system de-
ployment while still leveraging users’ resources [17]. The problem of sharing
files while mitigating the load of central servers is addressed in [18]. This
article proposes a BitTorrent like server-assisted architecture where central
servers act as permanently available seeders. Lastly, a server assisted peer-
to-peer backup system is described in [5]. In this system, which can be
referred to as CDN-assisted, the CDN enables to reduce the time needed to
backup data, while the use of peers guarantees that the burden of storage
and communication on the data center remains low. In this last approach, a
peer uploads data to a set of other peers if they are available, and falls back
on the datacenter otherwise, thus using the datacenter as a stable storage
provider.

Finally, another aspect of interest is the network setting of home net-
works. Residential gateways connect home local area networks (LAN) to the
Internet. They act as routers between their WAN interface (Cable or DSL)
and their LAN interfaces (Ethernet and WiFi). They started to be deployed
in homes to share Internet access among different devices and got additional
functions as services (VoIP, IPTV) were delivered over the Internet. It is
now fairly common to have home gateways embedding a hard drive, act-
ing as Network Attached Storage to provide storage services to other home
devices and offering some other ones to the outside world [7, 19, 20, 21].

3. A gateway assisted system

3.1. Stability of residential gateways

As residential gateways provide not only Internet connectivity, but also
often VoIP, IPTV and other services to the home, the intuition tells us that
they remain permanently powered on. To confirm this assumption, we ex-
tracted a trace of residential gateways of the French ISP Free, using active
measurements1. We periodically ping-ed a set of IP addresses randomly cho-
sen in the address range of this ISP, which has a static IP addressing scheme.

1This trace and additional information can be found at the following URL http://

www.thlab.net/~lemerrere/trace_gateways/.

4

10000

13000

16000

19000

22000

25000

Jul 1
Sep

1

N
ov

1

Jan
1

Feb
11

G
at

ew
ay

s
u

p

School holidays in France

(a) Number of gateways simultaneously connected,
across the monitored period (7.5 months).

0

0.2

0.4

0.6

0.8

1

0.1 1 10 100 1000 10000

C
D

F

Total time spent up in hours

(b) CDF of uptime periods in the trace.

0

0.2

0.4

0.6

0.8

1

0.1 1 10 100 1000 10000

C
D

F

Periods of unavailability in hours

(c) CDF of dowtime periods in the trace.

Figure 1: Availability of residential gateways mesured on a French ISP. The dataset has
been acquired sending pings to a random sample of gateway IPs.

We obtained the uptime patterns of 25, 000 gateways for 7.5 months, cov-
ering week-patterns [22, 23], and holidays. We plot the availability of those
devices against time, in the classical representation of availability, on Fig-
ure 1a. Some clear acquisition artifacts appear due to both the unreliability
of the ICMP monitoring and temporary failures on the path between our
platform and the targeted network. Yet, as seen on Figure 1b and 1c (a
gateway that has rebooted participates with its corresponding number of

5

uptimes periods to those plots), the trace confirms the common intuition
about the stability of those devices, in spite of a few users having power-off
habits (on a daily or a holiday basis, see Figure 1c), thus slightly reducing
the average availability. The average availability of gateways in this trace
is 86%, which confirms the results observed in [7], where the authors used
traces from a biased sample (only BitTorrent users) [24]. This has to be
contrasted with the low to medium availabilities of peers generally recorded
in the literature, as e.g., 27% in [5], or 50% in [25].

For completeness, we provide statistics on this trace by using the Failure
Trace Archive toolbox; this is useful to compare to the other 9 availability
traces which are available and studied in [26].

Mean Tr. Mean Median Std Coeff. Var. Int. Quart. Max Min 3rd Moment

154.64 91.01 10.62 371.72 2.40 80.20 3522.41 0.14 3.80

Figure 2: Availability statistics extracted from the raw trace of gateways. (Values are
given in hours.)

For modeling uptime periods in this trace, two distributions are good
fits:

• Weibull (p-value: KS-test=0.22, AD-test=0.34 [26]), with parameters
scale = 46.96 and shape = 0.42.

• Log-Normal (p-value: KS-test=0.31, AD-test=0.48) with parameters
mean = 2.65 and std.dev. = 2.29.

3.2. System rationale

In this article, we propose to decentralize the buffer logic implemented
in [5] by a CDN, in order to provide a reliable backup system despite the
dynamic nature of peers composing the network. Our system is specifically
tailored for the current architecture of residential Internet access. Indeed,
most previous works assume that peers are directly connected to the net-
work (see Figure 3a) while, in most deployments, a residential gateway is
inserted in between the peers in the home network and the Internet. Hence,
a realistic low-level network structure is composed of (i) peers, connected to
the gateway through Ethernet or Wifi, (ii) residential gateways, providing
the connection to the Internet, and (iii) the Internet, which we assume to
be over provisioned (architecture depicted on Figure 3b). In our approach,
we propose to use storage resources of residential gateways, thus creating a
highly available and distributed buffer to be be coupled with peers.

6

Internet
6-12h/24h

66 kB/s

(a) With passive gateways

Internet
7MB/s

6-12h/24h

66 kB/s

21h/24h

(b) With active gateways

Figure 3: A global picture of the network connecting the peers to the service. Those end-
devices are available 6 − 12h/day. If we allow the gateway, which is available 21h/day, to
perform buffering, we can benefit from the speed difference between local links (7MB/s)
and ADSL links (66KB/s).

Such an architecture is appealing as it takes into account (i) the avail-
ability that differs between peers and gateways, and (ii) the bandwidth that
differs between the LAN and the Internet connection. Firstly, the peers tend
to have a low to medium availability (i.e., from 25% or 6 hours/day on aver-
age on a Jabber trace, to 50% on a Skype trace which we introduce later on)
while gateways have a high availability (i.e., 86% or 21 hours/day on aver-
age). Secondly, peers are connected to the gateways through a fast network
(at least 7MB/s) while the Internet connection (between gateways and the
Internet) is fairly slow (i.e., 66 kB/s on average for ADSL or Cable, which is
consistent with the 2Mb/s and 3.5Mb/s values respectivelty advertised by
providers, in OECD studies [27]). Exact throughput numbers are bound to
evolve positively, but the crucial factor is the steady gap between LAN and
WAN speeds. Our architecture exploits the major difference of throughput
between the LAN and the Internet connection (WAN)2 by offloading tasks
from the peer to the corresponding gateway quickly, thus using the Internet

2Note that even if fiber technology can solve part of the asymmetry problem, it is still
far from being the norm in most countries (please refer to OECD studies for numbers [27])

7

connection more efficiently (i.e., 21h/day instead of only 6 − 12h/day on
average).

This enables the large-scale deployment of online storage applications
by fixing the issues provoked by the combination of slow up-links and short
connection periods (as in the case of pure peer-to-peer). These issues are
becoming increasingly important as the size of the content to backup in-
creases while ADSL bandwidth has not evolved significantly over the past
years. For example, uploading 1GB (a 300 photo album) to online storage
requires at least 4h30 of continuous uptime. Hence, these applications re-
quire users to modify their habits (e.g., users must leave their computers
powered on during the whole night to be able to upload large archives, even
if they usually turn them off); this limits their deployment and makes au-
tomated and seamless backup close to impossible. Our approach precisely
aims at combining peers’ fast but transient connections with gateways’ slow
but permanent connections. Following this logic, if peers upload directly
to the Internet, they can upload on average 1.4-2.8GB/day (Fig. 3a); if we
consider that the gateway is an active equipment that can perform buffer-
ing, a peer can upload 148-296GB/day to the gateway and the gateway can
upload on average 4.8GB/day (Fig. 3b). We then advocate that turning
the gateway into an active device can significantly enhance online storage
services, be they peer-to-peer or cloud systems.

In the last part of this section, we propose the design of a gateway-
assisted peer-to-peer storage system (noted GWA) based on these obser-
vations, and relying on two entities: (i) users’ gateways, present in homes
and providing Internet connectivity, and (ii) peers, being users’ devices con-
nected to the Internet (through a gateway) and having some spare resources
to contribute to the storage system.

3.3. Gateway-assisted storage system

We consider a general setting to backup data to third parties on the
Internet, generic enough for us to compare approaches from related work in
the same framework.

The content to be backed up is assumed to be ciphered prior to its intro-
duction in the system, for privacy concerns. The content can be located in
the distributed storage system through an index, which can be maintained,
for example by a distributed hash table connecting each piece of content
stored to the set of peers hosting it. We consider that users upload data
from one peer, under the form of archives. In order to achieve a sufficient
reliability, the system adds redundancy to the content stored. To this end, it
splits the archive into k blocks, and adds redundancy by expanding this set

8

of k blocks into a bigger set of n blocks using erasure correcting codes [28] so
that any subset of k out of n blocks allows recovering the original archive.
This enables to increase the file availability as the resulting system-wide
availability is:

A =
n∑
i=k

(
n

i

)
p̄i(1− p̄)n−i, (1)

where p̄ is the average availability of peers, which is smaller than A. In the
rest of this article, we set a target Atarget for the system-wide availability
so that n must be the smallest n ensuring that A > Atarget. Intuitively, the
availability targeted by the application is the portion of time a backed up
data is online for restore. High availability rates have been shown cumber-
some to reach in dynamic systems [14], so a reasonable trade-off should be
considered [3].

LAN

Peer and
Gateway 1

Gateway 2
(Buffer)

Peer 2

Sent at 8:00AM
while Peer 2
is offline

WAN LAN

Sent at 1:00PM
when Peer 2
comes back

Stored
temporarily

Figure 4: Backup operation: buffering a block at a random gateway

For a backup operation, the client peer uploads the file and the redundancy
blocks to other peers as follows:

1. Prepare. As soon as it gets connected, the client peer starts pushing
the archive at LAN speed to its gateway, which buffers the data. At
this point, the data has been partially backed up but the final level of
reliability is not yet guaranteed.

2. Backup. In our system, the gateway is in charge of adding the re-
dundancy; this allows faster transfer from the peer to the gateway as
a lower volume of data is concerned. Once done, it starts uploading
data to other gateways, at WAN speed (left-hand side of Figure 4).
Gateways are active devices that can serve peer requests thus ensur-
ing data availability and durability even if data is not fully pushed
to remote peers. Therefore, data can be considered totally backed up
when all blocks have reached the selected set of independent remote
gateways.

9

3. Offload. Finally, remote gateways offload, at LAN speed, the content
to their attached peers (right-hand side on Figure 4) as soon as the
attached peer becomes available.

A user can request access to its data at anytime; the success of immediate
data transfer from the storage system to the requesting peer depends on
the targeted availability of the backup, that has been set by the system
administrator. To reclaim backed up data, the role of all elements in the
system are reversed and the restore is performed as follows:

1. Fetch. To access a data, the requesting client peer informs its gate-
way of the blocks it is interested in. The client gateway carries on
the download on behalf of the client peer by contacting the remote
gateways handling peers where the data was uploaded. If the data
was offloaded to some peer, it is fetched as soon as possible by the
corresponding remote gateway.

2. Restore. The remote gateway sends the data to the requesting client
gateway.

3. Retrieve When the client gateway has succeeded in getting the whole
content (the data has been restored), it informs the client peer that
its retrieval request has been completed, as soon as it connects back.

4. Markov modeling of the storage system

We now present a mathematical model for the gateway-assisted storage
system just introduced. Such a model is particularly interesting to (i) es-
timate order of magnitudes for time to backup and time to restore, based
on system’s core parameters, and to (ii) dimension gateway hard drives, in
order for the system to be viable.

4.1. Model parameters

In our model, we consider a very large number N of peers, such that
the contribution of each individual peer on the total backup requests is
infinitesimal. That reasonable assumption will lead to some simplifications
of the model.

The availability behavior of the peers is modeled by a simple random
process where each peer remains connected during a random time, that we
assume follows an exponential distribution with parameter λ, independent
of all the rest. Similarly, the durations of offline periods are modeled by

10

independent exponentially distributed random variables with parameter µ.
As a result, the average availability of each peer is p̄ = µ

λ+µ .
The backup operation requests are supposed to occur over time indepen-

dently among peers, and the average number of backup requests per peer
and per time unit is denoted by θb. Note that the model allows heteroge-
neous backup behaviors among peers, θb being an average over all peers.
However, we impose that this average number of backup requests remain
stationary over time (i.e., no ”peak backup hours”), which is a reasonable
assumption if we consider that peers are spread worldwide.

Each backup request is supposed to consist in one archive of total size
S, that is split into k blocks of individual size s. Redundancy is then added
to form n > k blocks of size b, and each block is sent to the gateway of a
peer, selected randomly and uniformly among all peers3.

Take the point of view of a particular peer, and consider a time period
of duration t > 0 during which R backup requests are issued in the whole
system. Define r := R/N . On that period, the number of blocks sent to the
considered peer’s gateway for storage then follows a binomial distribution
B(nrN, 1/N), that converges to a Poisson distribution with mean nr when
N gets large. But notice then r = R/N tends to tθb, so that the number of
blocks received by the gateway on any period of duration t follows a Poisson
distribution with mean ntθb. Formulated differently, the time between two
block receptions follows an exponential distribution with parameter nθb.

Since LAN speeds are considerably larger than WAN transmission rates,
the former are considered infinite (i.e., the transfer times between a peer
and its gateway are neglected). All gateways are assumed to benefit from
the same upload transfer rate, that we denote by du. The download rates of
gateways is considered not to be a limiting factor (the bottleneck therefore
is at the sending gateway). Finally, we assume that the n blocks to store
onto the system are sent in parallel to the recipients’ gateways, the transfer
therefore taking a constant time ns

du
.

Finally, one dimensioning parameter will be the memory size to put into
the gateway, in order to keep the backup blocks received from the other
peers. We focus on the download memory here, whose capacity, in number
of blocks, is denoted by C. Some upload memory would also be needed
in case the peer sends a backup request and goes offline before the packets
are sent to the storing peer gateways. We can reasonably dimension that

3Since the number of peers is assumed very large, the probability that two blocks are
sent to the same peer, or that a peer has to store one block it emitted, is negligible.

11

On 0 1 2 . . . C − 1 C

λ η η η η η

µ
µ

µ

µ
µ

Figure 5: Transition diagram for the Markov chain describing the evolution of K(t), the
number of blocks received and buffered in the peer’s gateway. That number is 0 as soon
as the peer is online (state “On”).

uplink memory to n blocks, which is sufficient if there is only one ongoing
backup request at any time: this occurs for example if new backups replace
the previous ones (even if not completed).

In case the same memory can be indifferently used for uplink and down-
link, a sufficient dimensioning is to set the total memory to max(C, n) blocks.
Indeed:

• under our assumptions the downlink buffer of the gateway is empty as
soon as the peer is online;

• the worst case is then when the peer goes offline just after sending
a backup request, and its gateway receives several blocks. But even
then, the memory empties at speed du which, in the very unlikely case
when more than n blocks are then simultaneously received from other
nodes, would just slightly slow down those transfers.

4.2. Markov modeling

Let us consider a given peer. We analyze the evolution over time of the
number of blocks kept at the gateway of that peer, waiting for that peer to
appear online. When the peer is offline:

• either it comes back online, after some random time that follows an ex-
ponential distribution with parameter µ and then the gateway memory
is emptied;

• or a new block is received by the peer’s gateway, after some random
time exponentially distributed with parameter η := nθb, as developed
before.

12

If the download buffer of the gateway can store C blocks, the number K(t)
of blocks in that buffer at time t is a continuous-time Markov chain, whose
transition diagram is drawn in Figure 5.

As being irreducible and with a finite number of states, the Markov chain
is ergodic and therefore admits a steady-state distribution. We denote by
pi the steady-state probability of state i. In addition, we notice that the
probability pOn that the peer is online, simply equals pOn = µ

λ+µ , due to our
assumptions on the peer’s behavior.

Using the stationary conditions, we easily obtain that for all 0 ≤ i ≤
C − 1,

pi =

(
η

η + µ

)i λ

η + µ

µ

λ+ µ

and

pC =
η

µ
pC−1 =

(
η

η + µ

)C λ

λ+ µ
(2)

4.2.1. Dimensioning the gateway reception buffers

Because of the PASTA (Poisson Arrivals See Time Averages) property,
the probability pC expressed in (2) is also the probability that a block is
lost at the peer. Dimensioning the downlink buffer of the gateway is then
straightforward: with a target loss rate of εtarget, we find:

pC ≤ εtarget ⇔ C ≥ log(εtarget(1 + µ/λ))

log(η/(η + µ))
.

The values of C depending on the block arrival rate η are plotted in
Figure 6, for different target loss values, and with average online and offline
durations of 17 and 7 hours, respectively, leading to the availability pOn ≈
0.7.

4.2.2. Backup duration

We focus here on the time needed before the backup data are safely
stored, i.e., the time between a backup request and the instant when all (or
a sufficient part of) the data is stored on the receiving peers.

The duration of the transmission to the gateways of the receiving peers
is constant under our assumptions, and equals ns

du
. After that time, the

gateways need to offload the received blocks to the peer, which occurs with
negligible time when the peer is online. Two cases are possible upon the
arrival of a block (assuming the block is not rejected, which is reasonable if
we took εtarget small enough):

13

0 2 4 6 8 10

0

200

400

600

800

1,000

Block arrival rate η = nθb

G
at

ew
ay

b
u

ff
er

ca
p

a
ci

ty
C

(b
lo

ck
s)

εtarget = 0.01
εtarget = 0.001
εtarget = 0.0001

Figure 6: Buffer dimensioning (µ = 1/12 hours−1, λ = 1/12 hours−1).

• if the peer is online when the block is received –which is the case with
probability µ

λ+µ–, then there is no extra delay incurred;

• on the contrary, if the peer is offline upon its gateway receiving a block,
then the time T before that block is stored by the peer is a random
variable, exponentially distributed with parameter µ, i.e., P(T ≤ t) =
1− e−µt.

Consequently, through a conditioning on the number of peers that are
online when their gateway receives a block of the considered backup request,
we can express the random part Tbackup of the backup duration (i.e., remov-
ing the constant time ns

du
to send the blocks to the receiving gateways). If

we consider that the backup is over when the n peers received their assigned
block, we have:

P(Tbackup ≤ t) =
n∑
i=0

(
n
i

)(
λ

λ+ µ

)i(µ

λ+ µ

)n−i
︸ ︷︷ ︸

P(i peers among n are offline)

(
1− e−µt

)i︸ ︷︷ ︸
P(they come online before t)

,

with

(
n
i

)
= n!

i!(n−i!) .

That distribution is plotted on Figure 7 for different values of n.

14

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

t (hours)

P(
T

b
a
ck

u
p
≤
t)

n=16
n=32
n=64
n=128

Figure 7: Distribution of the backup duration (time before all n blocks are stored on peer’s
machines), to be added to the constant component ns

du
. (Parameters: λ = 1/12 hours−1,

µ = 1/12 hours−1.)

Note that we could also compute the time before ` ≤ n blocks are stored
by the peers: taking ` ≥ k, we could consider that enough data is safely
stored. The distribution of that time Tbackup(`) is then such that:

P(Tbackup(`) > t) =
n∑

i=n−`+1

(
n
i

)(
λ

λ+ µ

)i(µ

λ+ µ

)n−i
︸ ︷︷ ︸

P(i peers among n are offline)

Φi
n−`+1(t), (3)

with Φi
j(t) the probability that at least j peers among i initially offline

remain offline during t, i.e.:

Φi
j(t) =

i∑
m=j

(
i
m

)
e−mµt(1− e−µt)i−m. (4)

The index i in (3) represents the number of peers that are offline after the
gateways receive the blocks (i.e., some time ns

du
after the backup request).

For example, the distribution of the time before a proportion 15/16 of
the blocks are stored on peers’ disks (i.e., ` = 15n

16 , which corresponds to a
sufficient backup with a redundancy factor of 16/15) is plotted in Figure 8,
illustrating (in comparison with Figure 7) how redundancy helps reduce

15

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

t (hours)

P(
T

b
a
ck

u
p
≤
t)

n=16
n=32
n=64
n=128

Figure 8: Distribution of the partial-backup duration (time before a proportion 15/16 of
the n blocks are stored on peer’s machines), to be added to the constant component ns

du
.

(Parameters: λ = 1/12 hours−1, µ = 1/12 hours−1.)

backup times in addition to improving data availability. Remark also that
as n increases, the variance of the backup time decreases due to the law of
large numbers (the distribution function is steeper).

4.2.3. Restore duration

We consider here a restore request, that consists in gathering a minimum
of k blocks among the n peers where a block has been stored. The reasoning
is actually very similar to the one followed to obtain (3), since we focus on
the time until at least k peers have been seen online. This leads to (still
ignoring the transmission duration, that is s

du
if the storing peers do not

have other uplink traffic):

P(Trestore > t) =
n∑

i=n−k+1

(
n
i

)(
λ

λ+ µ

)i(µ

λ+ µ

)n−i
︸ ︷︷ ︸

P(i peers among n are offline)

Φi
n−k+1(t),

with Φi
j(t) given in (4).

5. A comparison framework for backup schemes

In this section, we detail the simulation framework we have built in order
to assess the performances of our backup scheme, and perform simulations.

16

Internet
6-12h/24h

66 kB/s

Figure 9: A global picture of the network connecting peers and CDN, as used in [5]. Note
that the CDN (Server) has an infinite capacity and 100% availability. However, since the
bandwidth used at the CDN is billed, the CDN is not used as a relay but as another
kind of end-storage (i.e., it does not upload content to other peers but only stores content
temporarily until the backing up peers have uploaded content to enough peers.)

As compared to the model introduced in previous section, this allows us
to (i) extend performance analysis by using additional metrics, that are
difficult to capture with a theoretical model. (ii) As it well understood
that exponential laws are sufficient for system dimensioning, but does not
capture fine-grained reality, this simulator takes as an input a probability
distribution that has been shown to fit well real availability traces. Finally, it
allows to (iii) fairly compare our approach to its direct competitors, within
the same framework and using the same metrics.

5.1. Competitors

We compare the performance of our GWA scheme against the two main
classes of related backup systems, within the same simulation framework.

5.1.1. P2P system

The vast majority of peer-to-peer storage protocols historically presents
a purely decentralized system with one-to-one uploads/downloads, without
servers [8, 9]. They assume that gateways are passive devices that cannot
store and forward but only route packets. This protocol is similar to the pro-
tocol we described in the previous section but does not have active gateways
acting as buffers.

5.1.2. CDNA system

A possible enhancement consists in introducing a CDN to mitigate the
low availability of peers [5]. CDNA then stands for CDN-assisted. The ac-
tual CDN is a central service in the core network, having unbounded capac-
ity. We consider the most representative peer-to-peer variant of the protocol
in [5] (i.e., the opportunistic one). In this protocol, the peers upload content

17

to other peers in priority and upload to the CDN only when the whole band-
width is not used (i.e., not enough remote peers are available). This enables
to lower time to backup by avoiding waiting times. However, the CDN does
not upload the content to remote peers, but client peers eventually upload
again to remote peers thus uploading twice in some cases. Indeed, pricing
schemes at CDN implies that uploading from the CDN should be avoided so
as to reduce costs. A schematic view is given in Figure 9. The CDN never
fails, hence, a single copy of the content on CDN is enough to ensure an
availability of 100%. As a result, a data backup is successful as soon as s
fragments have been uploaded to the storage server and t fragments to the
peers so that the targeted availability is guaranteed, as stated in (5):

t∑
i=k−s

(
t

i

)
p̄i(1− p̄)t−i > Atarget, (5)

where p̄ is the average availability of a peer and Atarget is the targeted
availability.

5.1.3. GW&CDN system

For completeness, we enhance [5] with our concept of active gateways.
This aggregate of two approaches is intended to provide an upper bound on
performances, in a realistic deployment scenario. GW&CDN then stands
for system with gateways and a CDN.

5.2. Parameters and data sets

The setting we described in previous section comes with the following
set of parameters:

5.2.1. Peer availability

In order to model the up-time of personal computing devices (i.e., peers),
we rely on four availability traces, representing four stability categories:

• Jabber Provided by the authors of [5], the Jabber trace represents a
highly volatile system (instant messaging). The average availability of
its devices is 27%, based on the behavior of 10, 000 users. By using the
FTA toolbox, we extracted the following parameters for modeling this
trace, using the Log-Normal distribution: mean = 1.16 and std.dev. =
3.25 (and mean = 1.64 and std.dev. = 3.54 for unavailability).

18

• Skype In this trace [25] of about 1,269 peers, the average availability
of peers is around 50%, which represents a medium availability when
considering peer-to-peer systems (distribution parameters given are in
paper [26]).

• Microsoft The Microsoft availability dataset [29] contains uptime of
around 50,000 desktop PCs, for an average uptime of 80%.

• DNS Finally, a highly stable trace is the one constituted by around
60,000 DNS servers [30], for an average availability of 98%.

Characteristics of the last three traces are analyzed in depth in paper [26].

5.2.2. Gateway availability

To model the up-time of residential gateways, we rely on our gateway
trace presented in Section 3. We use the parameters extracted though the
Failure Trace Archive toolbox to parametrize the best fitting law, which is
Log-Normal (with parameters indicated in Section 3). Since the gateway
and peer traces have been obtained independently, they do not capture the
correlation between the behavior of a peer and of the associated gateway.
Hence, we randomly assign a gateway to each peer. In order to avoid unre-
alistic scenarios where the peer is up while the gateway is down, we assume
a gateway to be available when one of its attached peers is up, to allow com-
munication between them: we rely on the gateway trace only for gateway
to gateway communication.

5.2.3. Redundancy policy

As explained previously, the redundancy policy is based on erasure cor-
recting codes and is entirely determined by the number of blocks k each
archive is split into and by the targeted availability Atarget, which is set by
the administrator. The backup is thus considered as complete when there
are enough redundancy blocks n backed up in the network to guarantee a
system-wide availability of at least Atarget. In the evaluation section, set-
tings are k = 16, Atarget = 0.7, and n values are derived from expressions (1)
and (5).

5.3. Evaluation

We have implemented an event-based simulator for comparing all ap-
proaches in different scenarios. We first present the simulation protocol,
before presenting quality metrics for assessing system performances. We
then validate this simulator against the theoretical model, before we present
actual simulations.

19

5.3.1. Simulation protocol

We set the simulation with N = 1, 000 nodes running the same protocol
(P2P , CDNA, GWA or GW&CDN). Each node alternates between up and
down sessions. When a node becomes available, it performs its uncompleted
backup operations and restore queries; we then take three random values :
Tdown, Tbackup, Trestore. Tdown follows the user availability law. We consider
that each node performs three backups a month while performing only one
restore a month. We model this behavior with a Poisson process.

If we have Tbackup ≤ Tdown, a backup is performed. In this case, we
randomly choose a file size according to a normal distribution centered on
1GB file with a 128MB standard deviation. Then backup blocks are sent to
n among N uniformly chosen other nodes (n corresponding to the number of
redundancy blocks). Blocks are transferred at a constant 1.2MB∗s−1 rate.

In the same way, if Trestore ≤ Tdown and there are completed backups, a
restore query is processed. In this case, we uniformly choose a backup among
the completed ones to restore it. Then, the node contacts the backup hosts
which in turn send back the data. A restore is completed when the first k
blocks are received by the current node.

Finally, a node becomes unavailable after a random delay following
the considered unavailability law. In addition, for protocols GWA and
GW&CDN, random delays are chosen for the availability of the gateways:
this delay follows a Log-Normal distribution derived from the availability of
residential gateways presented in Section 3.

5.3.2. Quality metrics

We evaluate the three systems according to the following four metrics:

5.3.3. Time to backup

Noted TTB. A backup request is considered successful when the data is
stored safely. Safe storage is achieved when n blocks have been uploaded to
the CDN or the remote peers for CDNA, to the remote gateways for GWA,
and to the remote peers for the P2P , thus satisfying the targeted availability
described earlier for each system. The time to backup is evaluated as the
difference between the time the nth block has been uploaded and the time
of the backup request.

5.3.4. Time to offload

A variant measure for CDNA, GWA and GW&CDN is the time to fully
offload an archive to the remote peers. This means that no data is left on the

20

CDN or on gateways, accordingly. We note this variant CDNA-peers and
GWA-peers respectively.

5.3.5. Time to restore

Noted TTR. A restore request is considered successful as soon as the
data is restored safely at the user’s place, that is to say when at least k
blocks have been retrieved on the client peer, or on the gateway of the client
peer for GWA. The time to restore is evaluated as the difference between the
time the kth block has been downloaded and the time of the restore request.
We measure this time for random files after a long enough period, so that
the selected files have been offloaded to peers. This represents the worst
case for TTR, and this assumption reflects the fact that restore requests are
more likely to happen long after backups.

5.3.6. Data buffered

It describes the size of the buffer that is required on gateways, and is of
interest for dimensioning purposes.

5.3.7. Simulator validation

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600

C
D

F
of

 o
ff

lo
ad

 ti
m

e

Time (hours)

CDNA
GW&CDN

GWA
P2P

Figure 10: TTB for the four considered backup systems. Host availabilities are modeled
using an Exponential distribution, allowing for comparison with the Markov Model results
presented in Section 4.

We begin our evaluation by validating the simulator we developed, run-
ning it with the same input used for the model presented in Section 4. An
exponential distribution for peer availability is used, like it was also used
for plotting Figure 7. Results are plotted on Figure 10. The curve to con-
sider on Figure 10 for comparison with the system modeled in Section 4 is

21

the P2P curve, as transfer time between a gateway and its peer has been
assumed negligible in the model. We observe that the TTB for 90% of the
data is around 100 hours on Figure 10, while full completion is around 100
hours on Figure 7; this is a good fit considering the simplifying assumptions
used in the model Section.

Additionally, we remark that leveraging the gateways in the simulator (as
seen on the GWA and GW&CDN curves), causes reduced TTB as compared
to the P2P and CDNA systems.

In the rest of this section, we simulate the different scenarios using a
Log-Normal distribution, as it has been shown in paper [26] to fit very well
existing availability traces, including the Skype, Microsoft and DNS traces.

5.3.8. Simulations for TTB

Figures 11, 12, 13 and 14 present results for TTB for the four avail-
ability classes on the left, while time to offload is presented on the right.
First learning is that TTB, for CDNA, GWA and GW&CDN, are nearly
immediate. This is due to the fact that near-always up hosts are in front
of backup requests for storing the blocks, in addition to the fact that more
stable systems need less redundancy than volatile ones, which turns into less
blocks to upload in order to reach the availability target. On the contrary,
backup is significantly longer on the P2P system, especially for the two less
available traces. This confirms the need to introduce stable third parties for
providing efficient backup systems.

The second learning is that when we consider full offload to peers in
all systems (Figures on the right), gateway-assisted approaches outperform
both P2P and CDNA4. In fact, both P2P and CDNA suffer from the low
upload capacities combined with the transient nodes presence, while in GWA
and GW&CDN, the upload is carried by the gateway thus masking the
uploading node unavailability. In the Skype-based system (Figure 13), this
translates by a TTB decreasing from days to few hours, as e.g., 600 hours
for CDNA and only 32 hours for GWA (90-th percentile).

5.3.9. Simulations for TTR

Results are consistent and similar for all four availability classes, we then
just present results on the Skype trace on Figure 15. GWA and GW&CDN
systems slightly improve upon P2P and CDNA, due to the fact that a restore

4Results are consistent with results in paper [5], where 40 days are necessary to upload
1GB on a 27% mean availability trace (90-th percentile), while we measure 25 days (60
hours) on the 50% Skype trace in our simulations.

22

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 0 100 200 300 400 500 600 700 800 900 1000

C
D

F
of

 b
ac

ku
p

tim
e

Time (hours)

CDNA
GWA

GW&CDN
P2P

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 0 100 200 300 400 500 600 700 800 900 1000

C
D

F
of

 o
ff

lo
ad

 ti
m

e

Time (hours)

CDNA
GW&CDN

GWA
P2P

Figure 11: Backup time for the system based on DNS availability; TTB (left) and time
to offload on peers (right).

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 100 200 300 400 500 600 700 800 900 1000

C
D

F
of

 b
ac

ku
p

tim
e

Time (hours)

CDNA
GWA

GW&CDN
P2P

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 100 200 300 400 500 600 700 800 900 1000

C
D

F
of

 o
ff

lo
ad

 ti
m

e

Time (hours)

CDNA
GW&CDN

GWA
P2P

Figure 12: Backup time for the system based on Microsoft availability; TTB (left) and
time to offload on peers (right).

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600 700 800 900 1000

C
D

F
of

 b
ac

ku
p

tim
e

Time (hours)

CDNA
GWA

GW&CDN
P2P

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600 700 800 900 1000

C
D

F
of

 o
ff

lo
ad

 ti
m

e

Time (hours)

CDNA
GW&CDN

GWA
P2P

Figure 13: Backup time for the system based on Skype availability; TTB (left) and time
to offload on peers (right).

is considered complete when blocks have been gathered on the home gateway
of the requesting node, regardless of its online or offline presence.

For TTR, as well for TTB, we remark that there is no substantial im-
provement to be awaited when implementing the GW&CDN , as compared
to GWA. The gateways are available enough to provide a stable layer be-
tween more volatile peers, and no centralized server is mandatory in this

23

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 100 200 300 400 500 600 700 800 900 1000

C
D

F
of

 b
ac

ku
p

tim
e

Time (hours)

CDNA
GW&CDN

GWA
P2P

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 100 200 300 400 500 600 700 800 900 1000

C
D

F
of

 o
ff

lo
ad

 ti
m

e

Time (hours)

CDNA
GW&CDN

GWA
P2P

Figure 14: Backup time for the system based on Jabber availability; TTB (left) and time
to offload on peers (right).

setting. This is an interesting result for arguing on the relevance of fully
decentralized systems for efficient and price-competitive storage solutions.

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 5 10 15 20 25

C
D

F
of

 re
st

or
e

tim
e

Time (hours)

CDNA
GW&CDN

GWA
P2P

Figure 15: Restore time (TTR) for the system based on Skype availability (similar results
for DNS and Microsoft traces).

5.3.10. Simulations for amount of data buffered

It is of interest to study the need for storage space on gateways that
is required to implement our proposal. Figure 16 plots the CDF of the
maximum amount of data stored at any peer in the GWA system, while
considering the four availability classes. The more stable the system is, the
less storage space has to be provisioned. Indeed, as chosen remote nodes
for storage (or requesting nodes) are online most of the time, backup or
restore requests do not stack up within the gateway buffer, then reducing
the maximum block queue on the disk. The curve presents an experiment
with an unbounded disk capacity; in practice a selected node would refuse a

24

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

cd
f o

f b
uf

fe
re

d
da

ta

buffer size in GB

Skype
Microsoft

DNS

Figure 16: Amount of buffered data at the gateways, for the GWA.

storage request for a block if buffer is full, then making it possible to control
the actual size of the buffer to be shipped within gateways. In this setting,
10GB disks would suffice to implement most use cases.

Archive size (S) 10 MB 100 MB 1 GB 10 GB

Time to backup 10.46s 1.81mn 32.23h 26.50d

Figure 17: Time to backup in the gateway-assisted system, for 90-th percentile on the
Skype trace, for various archive sizes.

We now make archive size vary over one of the less available systems,
Skype. Results are reported for the 90-th percentile of completed backups,
over a full system simulation run, and are presented on Figure 17. Those
results show a linear time increase, as a function of the archive size.

We do not vary the size of the network, N . This is because the time to
process a backup or a restore does not depends on N but only on n, the
number of nodes where blocks are stored; N does not have in practice a
significant impact on the overall system when it is large.

6. Discussion

Our results clearly indicate that our proposal efficiently distributes the
centralized buffer scheme of [5], while increasing general backup perfor-
mances and represents a significant improvement over previous approaches.

The Web architecture, in particular when considering CDN, relies on
cache servers close to clients [31]. However, these servers are located within

25

the Internet and cannot benefit from the difference of throughput between
the local home network and the Internet. Our system relies on the specific
place of the gateway in between the home network and the Internet to
leverage this difference. Moreover, cache servers are generally passive (e.g.,,
HTTP proxy) while in our system, the gateway is not only a cache but
also an active participant that can serve directly other peers when data is
requested.

Additionally, from the user’s standpoint, our storage system could enable
the bandwidth usage to be smoothed to provide users with a more trans-
parent service (i.e., using the upload for backup when users are not using
their computer/Internet connection). Indeed, using an important part of the
upload bandwidth to quickly complete the backup operation may severely
affect the user’s experience of Internet browsing or activity. A user’s gate-
way is able to upload, as long as there is some available bandwidth and even
if the user’s computer is turned off (typically at night). A similar advantage,
appealing for Internet and service providers [32], is that such an architecture
enables the implementation of scheduling policies for delaying transfers from
gateways to the Internet so as to smooth the usage of the core network.

Lastly, this method also solves another issue that might appear when
the distributed application operates worldwide. It has been shown that
peers’ availability patterns can vary according to local time (depending on
geographical location) [22, 23]; in systems where some resources are insuf-
ficiently replicated, this could lead to an asynchrony of presence between a
requesting peer and another peer hosting the resource. At best, the overlap
of presence of both peers is sufficient to download the file, while it may also
require a few sessions to complete, due to insufficient time overlap. As our
GWA proposal relies on the hosting peer to upload the requested file to a
more stable component (its gateway), asynchrony is no longer an issue as
gateways provide stable rendezvous point between requesters and providers.
This is of interest for delay tolerant applications such as backup [33], allow-
ing the service to be operated with much lower costs on storage. Beyond
the practical problem of using gateways in home environments, our solution
then makes the case for leveraging clouds of stable components inserted in
the network, to make them act as buffers in order to mask availability issues
introduced in dynamic systems.

7. Related Work

We compared our approach to the peer-assisted one presented in [5] that
leverages a central server and offloads backed up data to peers when they

26

become available. Such a server-centric approach is also to be found in [17],
where authors propose an hybrid architecture coupling low I/O bandwidth
but high durability storage units (being an Automated Tape Library or a
storage utility such as Amazon S3 [34]) with a P2P storage system offering
high I/O throughput by aggregating the I/O channels of the participating
nodes but low durability due to the device churn. This study provides a
dimensional and system provisioning analysis via an analytical model that
captures the main system characteristics and a simulator for detailed perfor-
mance predictions. The simulator uses synthetic traces, mainly to be able
to increase the failure density and to reveal the key system trends. This
work explores the trade-offs of this hybrid approach arguing it is providing
real benefits compared to pure P2P systems [8, 9, 10, 11, 12]. Durability of
the low I/O bandwidth unit is considered as perfect, but it always comes at
a certain cost. In our approach, we do not assume we have such nodes and
show that our approach is sustainable under known availability traces. Fi-
nally, FS2You [18] proposes a BitTorrent-like file hosting, aiming to mitigate
server bandwidth costs; this protocol is not designed to provide persistent
data storage.

The increasing power of residential gateways has enabled numerous ap-
plications to be deployed on them. This may allow savings in terms of
power. One widely deployed system is the implementation of BitTorrent
clients in those boxes (see e.g., FON [35] or [21]), which avoids the user to
let her computer powered on [19]. Another example is the concept of Nano
Data Centers [7], where gateways are used to form a P2P system to offload
data centers. Similarly, some approaches were proposed to move tasks from
computers to static devices as set-top boxes, for VoD [20, 36] and IPTV [37].
Yet, those applications fully run on gateways while, in our approach, the
gateway only acts as buffering stage.

8. Conclusion

This paper addresses the problem of efficient data backup on commod-
ity hardware. It has been widely acknowledged that availability of transient
peers is a key parameter, that can by itself forbid a realistic service deploy-
ment if too low. We propose to address this inherently transient behavior of
end peers by masking it through the use of more stable hardware, already
present in home environments, namely gateways. Our experiments show
that this architectural paradigm shift, significantly improves the user expe-
rience of backup systems over previous approaches, while remaining scalable
and bear comparison with over-provisioned CDN servers.

27

References

[1] W. J. Bolosky, J. R. Douceur, D. Ely, , M. Theimer, Feasibility of
a Serverless Distributed File System Deployed on an Existing Set of
Desktop PCs, in: SIGMETRICS, 2000.

[2] H. Huang, W. Hung, K. G. Shin, FS2: dynamic data replication in free
disk space for improving disk performance and energy consumption, in:
SOSP, 2005.

[3] L. Pamies-Juarez, P. Garćıa-López, M. Sánchez-Artigas, Availability
and Redundancy in Harmony: Measuring Retrieval Times in P2P Stor-
age Systems, in: P2P, 2010.

[4] T. Mager, E. Biersack, P. Michiardi, A measurement study of the wuala
on-line storage service, in: P2P, 2012.

[5] L. Toka, M. Dell’Amico, P. Michiardi, Online Data Backup: A Peer-
Assisted Approach, in: P2P, 2010.

[6] N. Daswani, H. Garcia-Molina, B. Yang, Open problems in data-sharing
peer-to-peer systems, in: ICDT, 2002.

[7] V. Valancius, N. Laoutaris, L. Massoulié, C. Diot, P. Rodriguez, Green-
ing the Internet with Nano Data Centers, in: CoNext, 2009.

[8] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels,
R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells,
B. Zhao, OceanStore: an architecture for global-scale persistent stor-
age, SIGPLAN Not. 35 (2000) 190–201.

[9] A. Rowstron, P. Druschel, Storage management and caching in PAST,
a large-scale, persistent peer-to-peer storage utility, in: SOSP, 2001.

[10] L. P. Cox, C. D. Murray, B. D. Noble, Pastiche: making backup cheap
and easy, SIGOPS Oper. Syst. Rev. 36 (2002) 285–298.

[11] M. Lillibridge, S. Elnikety, A. Birrell, M. Burrows, M. Isard, A cooper-
ative internet backup scheme, in: Usenix ATC, 2003.

[12] M. Landers, H. Zhang, K.-L. Tan, Peerstore: Better performance by
relaxing in peer-to-peer backup, in: P2P, 2004.

28

[13] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, K. Ram-
chandran, Network coding for distributed storage systems, in: IEEE
Transactions on Information Theory, vol. 56, no. 9, 2010.

[14] C. Blake, R. Rodrigues, High availability, scalable storage, dynamic
peer networks: pick two, in: HOTOS, 2003.

[15] K. Tati, G. M. Voelker, On Object Maintenance in Peer-to-Peer Sys-
tems, in: IPTPS, 2006.

[16] P. Maille, L. Toka, Managing a Peer-to-Peer Data Storage System in
a Selfish Society, Selected Areas in Communications, IEEE Journal on
26 (7) (2008) 1295 –1301.

[17] A. Gharaibeh, M. Ripeanu, Exploring data reliability tradeoffs in repli-
cated storage systems, in: HPDC, 2009.

[18] F. Liu, Y. Sun, B. Li, B. Li, X. Zhang, FS2You: Peer-Assisted Semiper-
sistent Online Hosting at a Large Scale, IEEE Trans. Parallel Distrib.
Syst. 21 (2010) 1442–1457.

[19] G. Fedak, J.-P. Gelas, T. Herault, V. Iniesta, D. Kondo, L. Lefevre,
P. Malécot, L. Nussbaum, A. Rezmerita, O. Richard, DSL-Lab: A Low-
Power Lightweight Platform to Experiment on Domestic Broadband
Internet, in: ISPDC, 2010.

[20] J. Muñoz Gea, A. Nafaa, J. Malgosa-Sanahuja, T. Rohmer, Design
and analysis of a peer-assisted vod provisioning system for managed
networks, Multimedia Tools and Applications (2012) 1–36.

[21] I. Kelé andnyi, A. Ludá andnyi, J. Nurminen, Using home routers
as proxies for energy-efficient bittorrent downloads to mobile phones,
Communications Magazine, IEEE 49 (6) (2011) 142–147.

[22] J. R. Douceur, Is remote host availability governed by a universal law?,
in: SIGMETRICS, 2003.

[23] R. Bhagwan, S. Savage, G. Voelker, Understanding Availability, in:
IPTPS, 2003.

[24] M. Dischinger, A. Haeberlen, K. P. Gummadi, , S. Saroiu., Character-
izing Residential Broadband Networks, in: IMC, 2007.

[25] S. Guha, N. Daswani, R. Jain, An Experimental Study of the Skype
Peer-to-Peer VoIP System, in: IPTPS, 2006.

29

[26] D. Kondo, B. Javadi, A. Iosup, D. Epema, The failure trace archive:
Enabling comparative analysis of failures in diverse distributed systems,
in: CCGrid, 2010.

[27] OECD broadband statistics, http://www.oecd.org/sti/broadband/.

[28] W. K. Lin, D. M. Chiu, Y. B. Lee, Erasure code replication revisited,
in: P2P, 2004.

[29] W. J. Bolosky, J. R. Douceur, D. Ely, M. Theimer, Feasibility of a
serverless distributed file system deployed on an existing set of desktop
pcs, in: SIGMETRICS, 2000.

[30] J. Pang, J. Hendricks, A. Akella, R. De Prisco, B. Maggs, S. Seshan,
Availability, usage, and deployment characteristics of the domain name
system, in: IMC, 2004.

[31] T. Leighton, Improving performance on the internet, Commun. ACM
52 (2) (2009) 44–51. doi:10.1145/1461928.1461944.
URL http://doi.acm.org/10.1145/1461928.1461944

[32] N. Laoutaris, G. Smaragdakis, P. Rodriguez, R. Sundaram, Delay tol-
erant bulk data transfers on the internet, in: SIGMETRICS, 2009.

[33] K. Huguenin, E. Le Merrer, N. Le Scouarnec, G. Straub, Hoop: HTTP
POST offloading from user devices onto residential gateways, in: ICWS,
2014.

[34] Amazon web services, http://s3.amazonaws.com.

[35] Fon, http://corp.fon.com.

[36] V. Janardhan, H. Schulzrinne, Peer assisted VoD for set-top box based
IP network, in: P2P-TV, 2007.

[37] M. Cha, P. Rodriguez, S. Moon, J. Crowcroft, On next-generation telco-
managed P2P TV architectures, in: IPTPS, 2008.

30

