
HAL Id: hal-01185249
https://hal.science/hal-01185249v1

Submitted on 21 Aug 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Efficient Regular Modular Exponentiation Using
Multiplicative Half-Size Splitting

Christophe Negre, Thomas Plantard

To cite this version:
Christophe Negre, Thomas Plantard. Efficient Regular Modular Exponentiation Using Multiplicative
Half-Size Splitting. Journal of Cryptographic Engineering, 2017, 7 (3), pp.245-253. �10.1007/s13389-
016-0134-5�. �hal-01185249�

https://hal.science/hal-01185249v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

1

Efficient Regular Modular Exponentiation

Using Multiplicative Half-Size Splitting
Christophe Negre and Thomas Plantard

Abstract

In this paper, we consider efficient RSA modular exponentiation xK mod N protected against simple side

channel analyses like timing attack and simple power analysis. To reach this goal we use a multiplicative splitting of

the integer x modulo N into two half-size integers. We then take advantage of this splitting to modify the square-and-

multiply exponentiation as a regular sequence of squarings always followed by a multiplication by a half-size integer.

The proposed method requires around 16% less word operations compared to Montgomery-ladder, square-always

and square-and-multiply-always exponentiations. These theoretical results are validated by our implementation results

which show an improvement around 16%.

I. INTRODUCTION

RSA [1] is nowadays the most used public key cryptosystem. The main operation in RSA protocols is an

exponentiation xK mod N where N = pq with p and q prime. The private data are the two prime factors of N

and the private exponent K used to decrypt or sign a message. In order to insure a sufficient level security N and

K are chosen large enough to render the factorization of N impossible: they are typically 2000 bit integers. The

basic approach to perform efficiently the modular exponentiation is the square-and-multiply algorithm which scans

the bits ki of the exponent K and perform a sequence of squarings followed by a multiplication when ki is equal

to one.

When the cryptographic computations are performed on an embedded device, an adversary can monitor power

consumption [2] or electronic emanation [3]. If the power or electromagnetic traces of a multiplication and a

squaring differ slightly, an adversary can read the sequence of squarings and multiplications directly on a single

power or electromagnetic trace of a modular exponentiation. In the literature these attacks are referred to as simple

power analysis (SPA) and simple electromagnetic analysis (SEMA), respectively.

Consequently, modular exponentiation have to be implemented in order to prevent such side channel analysis. The

first direct approach which prevents this attack is the multiply-always exponentiation which performs all squarings

as multiplications. But, unfortunately, it has been shown in [4] that this multiply-always strategy is still weak against

an SPA or SEMA: an operation r×r and r×r′ have different output Hamming weight. The authors in [5] proposed

a square-always approach which performs a multiplication as the combination of two squarings. They then notice

that in this case the attack of [4] does not apply. But both multiply-always and square-always approaches still leak

August 21, 2015 DRAFT

2

some information about the exponent: the computation time is correlated to the Hamming weight of the exponent,

which is then leaked out.

A prerequisite to be SPA resistant is then to be regular and constant time. A first method which satisfies both of

these property is the square-and-multiply-always exponentiation proposed by Coron [6]. Its principle is to always

perform a multiplication after a squaring, i.e., if the bit ki = 0 then a dummy multiplication is performed. Another

popular strategy is the Montgomery-ladder [7] which also performs an exponentiation through a regular sequence

of squarings always followed by a multiplication.

We present in this paper an alternative approach for regular and constant time exponentiation xK mod N . Our

method uses a multiplicative splitting of x into two halves. We modify the square-and-multiply algorithm as a regular

sequence of squarings always followed by a multiplication with half-size integer. The half-size multiplications and

squarings modulo N are computed with the method of Montgomery [8], we then also provide a version of the

proposed exponentiation with Montgomery modular multiplications adapted to the size of the operands. We analyze

the complexity of this approach: Table I, below, contains the basic cost per loop turn of an exponentiation. We

notice that the proposed approach always reach the best complexity while having the higher security level compared

to the best known method of the literature.

Table I

COMPLEXITY IN TERMS OF WORD OPERATIONS PER LOOP TURN

Algorithm Regular Constant time
Complexity per loop turn

word add. # word mult.

Square-and-multiply 7 7 5t2 +O(t) 5
2
t2 +O(t)

Multiply-always [5] 3 7 6t2 +O(t) 3t2 +O(t)

Square-always [5] 3 7 6t2 +O(t) 3t2 +O(t)

Square-and-multiply-always [6] 3 3 7t2 +O(t) 7
2
t2 +O(t)

Montgomery-ladder [7] 3 3 7t2 +O(t) 7
2
t2 +O(t)

Montgomery-ladder with CM [9] 3 3 6t2 +O(t) 3t2 +O(t)

Proposed approach 3 3 5t2 +O(t) 5
2
t2 +O(t)

The remainder of the paper is organized as follows. Section II summarizes state of the art methods for regular

modular exponentiation. In Section II-C we review techniques to compute a multiplicative splitting of an integer

modulo N . In Section III we then present a new modular exponentiation algorithm which uses this splitting to render

regular the square-and-multiply exponentiation. In Section IV, we present a version of the proposed exponentiation

which incorporates Montgomery modular multiplications. Finally, in Section V, we evaluate the complexity of the

proposed algorithm, provide implementations results and discuss security issues related to side channel analysis.

II. REVIEW OF REGULAR MODULAR EXPONENTIATION

We review in this section several methods for performing an exponentiation xK mod N . The simplest and the

most popular method is the square-and-multiply exponentiation [10]. The bits of the exponent K are scanned from

August 21, 2015 DRAFT

3

left to right, for each bit a squaring is performed and is followed by a multiplication by x if the bit is equal to 1.

This method is detailed in Algorithm 1.

Algorithm 1 Square-and-multiply
Require: x ∈ {0, . . . , N − 1} and K = (k`−1, . . . , k0)2

1: r ← 1

2: for i from `− 1 downto 0 do

3: r ← r2 mod N

4: if ki = 1 then

5: r ← r × x mod N

6: end if

7: end for

8: return r

The sequence of squarings and multiplications in the square-and-multiply method has some irregularities due to

the irregular sequence of the bits ki equal to 1. This can be used to mount a side channel attack by monitoring

the power consumption or the electromagnetic emanation of the circuit performing the computations. Indeed, if the

monitored signal of a multiplication and a squaring have a different shape, then, we can directly read on the power

trace the sequence of squarings and multiplications. If a trace of a multiplication appears between two subsequent

squarings then we deduce that the corresponding bit is 1, otherwise it is 0.

This means that a secure implementation of modular exponentiation must be computed through a regular sequence

of squarings and multiplications uncorrelated to the key bits.

A. Non-constant time regular exponentiation

We review in this subsection two methods which perform an exponentiation through a regular sequence of

operation (squarings or multiplications). The first one is the multiply-always approach which performs all the

squarings in Algorithm 1 as they were multiplication with distinct operands [5]. This approach is shown in

Algorithm 2 and its cost is in average 3`
2 multiplications.

This multiply-always approach can be threaten by the attack of [4]: this attack differentiates a power trace of

a multiplication r × r (i.e. a hidden square) by a multiplication r × x with x 6= r based on a difference of the

Hamming weight of the output bits. To overcome this problem the authors in [5] use the fact that a multiplication

can be performed with two squarings:

r × x =
(r + x)2 − (r − x)2

4
. (1)

They could then re-express all the multiplications of the square-and-multiply exponentiation in order to get a

square-always exponentiation. This leads to Algorithm 3 which has a complexity of 2` squarings in average.

August 21, 2015 DRAFT

4

Algorithm 2 Multiply-always [5]
Require: x ∈ {0, . . . , N − 1} and K = (k`−1, . . . , k0)2

1: r ← 1

2: for i from `− 1 downto 0 do

3: r ← r × r

4: if ki = 1 then

5: r ← r × x

6: end if

7: end for

8: return r

Algorithm 3 Square-always [5]
Require: x ∈ {0, . . . , N − 1} and K = (k`−1, . . . , k0)2

1: r ← 1

2: for i from `− 1 downto 0 do

3: r ← r2

4: if ki = 1 then

5: r ← (r+x)2−(r−x)2
4

6: end if

7: end for

8: return r

Both multiply-always and square-always approaches suffer from a weakness: they do not process the exponen-

tiation with a constant time. In terms of side channel analysis this means that the time of the computation leaks

some information of the key: its Hamming weight. In the next subsection we review two approaches which are

regular and also constant time.

B. Constant time regular exponentiation

The first method which satisfies this property is the square-and-multiply-always exponentiation proposed by Coron

in [6]. The idea of Coron is to perform a dummy multiplication when we read a bit which is equal to 0. This results

in a power trace of a regular sequence of traces of squarings always followed by a trace of a multiplication. This

method is given in Algorithm 4.

The square-and-multiply-always exponentiation is effective to counteract SPA and SEMA along with timing

attacks. But it is still under the threat of another kind of side channel attack: the fault injection attack [11], [12].

The idea of this attack is to inject an error during the i-th loop of the square-and-multiply-always algorithm. If the

error is injected during a dummy multiplication it will not affect the final result and it would reveal a bit ki equal

August 21, 2015 DRAFT

5

Algorithm 4 Square-and-multiply-always [6]
Require: x ∈ {0, . . . , N − 1} and K = (k`−1, . . . , k0)2

1: r ← 1

2: for i from `− 1 downto 0 do

3: r ← r2

4: if ki = 0 then

5: r′ ← r × x

6: else

7: r ← r × x

8: end if

9: end for

10: return r

to zero, otherwise the result will be erroneous and this will reveal a bit ki equal to one.

This problem was fixed by the Montgomery-ladder approach (Algorithm 5) for modular exponentiation [7]. In

this method there are two integers r0 and r1 where r0 contains the same value as r in the square-and-multiply

algorithm, and r1 satisfies r1 = r0 × x mod N during the whole computation. At each loop iteration we always

perform a multiplication r1−ki ← r1× r0 and a squaring rki ← r2ki depending on the value of the current scanned

bit ki. The algorithm is regular: we have for each bit a multiplication and a squaring. It also satisfies the important

property that any error injected in any intermediate value would affect the final results. This renders the error

injection attack ineffective.

Algorithm 5 Montgomery-ladder [7]
Require: x ∈ {0, . . . , N − 1} and K = (k`−1, . . . , k0)2

1: r0 ← 1

2: r1 ← x

3: for i from `− 1 downto 0 do

4: if ki = 0 then

5: r0 ← r20

6: r1 ← r1 × r0
7: else

8: r0 ← r0 × r1
9: r1 ← r21

10: end if

11: end for

12: return r0

August 21, 2015 DRAFT

6

Both square-and-multiply-always and Montgomery-ladder exponentiations have a complexity equal to ` squarings

and ` multiplications for an `-bit integer K.

Remark 1. There are some alternative methods in the literature insuring a regularity of the operation while reducing

the number of multiplications. This is for example the case of the methods reported in [13] which use a regular

windowing recoding of the exponent K. The drawback of those methods is that they require additional resources

to store some precomputed data. In this paper we focus on methods which require at most one or two intermediate

variables, and are thus suitable for embedded devices with limited resources and thus the most susceptible to be

attack by side channel analysis.

C. Multiplicative splitting of an integer x modulo N

We consider an RSA modulus N and an integer x ∈ [0, N] which corresponds to the message we want to decrypt

or sign by computing xK mod N . We will show in this section that x can be split into two parts as follows

x = x−10 × x1 mod N with |x0|, |x1| ≤ dN1/2e. (2)

In order to get a multiplicative splitting of x modulo N , we use the method presented in [14] which consists in

a partial execution of the extended Euclidean algorithm. The Euclidean algorithm computes the greatest common

divisor of x and N through a sequence of reductions: we start with r0 = N, r1 = x and perform the following

iteration

ri+1 = ri−1 mod ri for i = 1, 2, (3)

The sequence r0, r1, . . . , ri is a decreasing sequence of positive integers and the last non zero ri satisfies ri =

gcd(x,N).

The extended Euclidean algorithm computes, in addition to gcd(x,N), two integers a, b satisfying

ax+ bN = gcd(x,N), (4)

which is called a Bezout identity. In order to compute a and b the extended Euclidean algorithm maintains two

sequences ai and bi satisfying

aix+ biN = ri (5)

where the integers ri, i = 0, 1, . . . , are the consecutive remainders in (3) computed in the Euclidean algorithm. The

integers ai, bi, i = 1, 2, . . . , are computed as follows

qi = bri−1/ric ,

ri+1 = ri−1 − qiri,

ai+1 = ai−1 − qiai,

bi+1 = bi−1 − qibi,

(6)

starting from r0 = N, r1 = x and a0 = 0, a1 = 1 and b0 = 1, b1 = 0. Then, when ri is equal to gcd(x,N) the

identity (5) is a valid Bezout relation (4). For a detailed presentation of this method the reader may refer to [15].

August 21, 2015 DRAFT

7

In order to obtain a multiplicative splitting of x, the authors in [14] stop the extended Euclidean algorithm when

ri ∼= N1/2 and ai ∼= N1/2: indeed, due to (5), for any i we have x = a−1i ri mod N . This method to compute the

splitting of an integer x is reviewed in Algorithm 6.

Algorithm 6 Multiplicative splitting modulo N [14]
Require: 0 ≤ x < N < c2 ∈ N with gcd(x,N) < c.

Ensure: x0 and x1 such that x = x−10 x1 mod N and |x0|, |x1| < c.

1: a0 ← 0; a1 ← x; r0 ← N ; r1 ← x, i← 1

2: while |ri| ≥ c do

3: qi ← bri−1/ric

4: ri+1 ← ri−1 − qiri
5: ai+1 ← ai−1 − qiai
6: i← i+ 1

7: end while

8: return ai, ri

The following lemma asserts that the output ai and ri satisfy |ai|, |ri| < c.

Lemma 1. Let c ∈ N such that c > N1/2 and let a0, a1, . . . , ai, . . . and r0, r1, . . . , ri, . . . be the sequences computed

in Algorithm 6. Then Algorithm 6 correctly outputs a pair aic , ric such that

x = a−1ic × ric mod N with |aic | < c and |ric | < c.

Proof. The proof is a direct extension of [14]. A well known property on extended Euclidean algorithm (cf. Chapter

3 in [15]) provides that, for i ≥ 1, we have |ai| < |ai+1| and ri > 0 and also that

ri−1|ai|+ ri|ai−1| = N. (7)

So if ric is the first remainder such that ric < c we have ric+1 ≥ c >
√
N . Then taking i = ic + 1 in (7) we have

ric |aic+1 |+ ric+1|aic | = N then one must have aic < N/ric+1 < N/c < c.

If Algorithm 6 is executed with c = dN1/2e then the multiplicative splitting aic , ric output by the algorithm

satisfies

|aic | < dN1/2e and |ric | < dN1/2e.

In other words, it is a half-size splitting.

Complexity. For the sake of simplicity we will only give an upper bound of cost a the multiplicative splitting.

Specifically, since computing a multiplicative splitting consists in a partial execution of the extended Euclidean

algorithm, we can bound above its cost with an upper bound of the complexity of an extended Euclidean algorithm.

We use the following lemma inspired from [15].

August 21, 2015 DRAFT

8

Lemma 2 (Complexity of the extended Euclidean algorithm). The extended Euclidean algorithm (i.e. Algorithm 6

with c = 1), with two positive integers a ≤ b of w-bit word length t as input, requires at most 4wt2 word additions.

Proof. We will consider a modified version of Algorithm 6: we assume that the quotients qi are of the form qi = 2αi .

In other words, we expand the Euclidean division through several shift and subtraction operations. In this case, if

we assume that the integers ai and ri in Algorithm 6 are stored on t words, each loop turns requires 2t words

subtractions. Furthermore we have the following:

ri = ri−1qi + ri−2 ≥ ri−1 + ri−2 > 2ri−2

since qi ≥ 1 and ri−1 > ri−2. This implies that ri < r0
2i/2

= b
2i/2

and consequently the number of loop iterations

before we get ri = 0 is at most 2 log2(b) ≤ 2tw. Then at the end the total number of operations is at most

2tw × 2t = 4t2w word subtractions.

III. REGULAR EXPONENTIATION WITH HALF-SIZE MULTIPLICATIVE SPLITTING

Given a multiplicative splitting (2) of x into two half-size integers, we can modify the square-and-multiply method

in order to distribute a full multiplication by x to one half-size multiplication by x0 when ki = 0 and one half-size

multiplication by x1 when ki = 1. This approach is depicted in Algorithm 7. This algorithm reaches our goal since

it is regular: each loop iteration is a squaring followed by a half-size multiplication. It is also robust against fault

injection attack: each error in one half-size multiplication will affect the final result.

Algorithm 7 Regular exponentiation with half-size multiplications
Require: x ∈ {0, . . . , N − 1} and K = (k`−1, . . . , k0)2

Ensure: r = xk mod N

1: Split. x = x−10 × x1 mod N with x0, x1 ∼= N1/2.

2: r ← x−10

3: for i from `− 1 downto 0 do

4: r ← r2 mod N

5: if ki = 0 then

6: r = r × x0
7: else

8: r = r × x1
9: end if

10: end for

11: r ← r × x0
12: return r

The following lemma establishes the validity of Algorithm 7, i.e., that it correctly computes r = xK mod N .

August 21, 2015 DRAFT

9

Lemma 3. Let K = (k`−1, . . . , k0)2 with ki ∈ {0, 1} be an ` bit integer and let N and x be two positive integers

such that x < N . If we set Ki = (k`−1, . . . , ki)2, then the value of r after loop i satisfies:

r = xKix−10 mod N.

Proof. We prove the assertion by a decreasing induction on i: we assume it is true for i and we prove it for i− 1.

By induction hypothesis, ri the value of r after the execution of loop i in Algorithm 7 satisfies ri = xKi × x−10 .

Now if ki−1 = 1 the execution of loop i− 1 gives:

ri−1 = r2i × x1
= x2Ki × x−20 × x1
= x2Ki+1 × x−10

= xKi−1 × x−10 .

And, if ki−1 = 0, the execution of loop i− 1 gives:

ri−1 = r2i × x0
= x2Ki × x−20 × x0
= x2Ki × x−10

= xKi−1 × x−10 .

IV. EXPONENTIATION WITH HALF-SIZE SPLITTING AND MONTGOMERY MULTIPLICATION

An RSA modulus N looks like a random integer: it has not a sparse binary representation and has no other

underlying structure which can be used to speed-up a reduction modulo N . The most used method to perform

a multiplication modulo a random integer is the Montgomery method [8]. We modify Algorithm 7 in order to

use the Montgomery multiplication for the squarings and multiplications modulo N . A squaring in Algorithm 7

involves integers of size dlog2(N)e bits while a multiplication involves two kinds of multiplicands: one integer of

size dlog2(N)e bits and one integer of size ∼= dlog2(N)/2e bits. This pushes us to use two kinds of Montgomery

multiplications:

• Full Montgomery Multiplication (FMM): Let M be an integer such that M > N and gcd(N,M) = 1 . Let y

and x be two dlog2(N)e bit integers. Then the FMM works as follows:

q ← (−x× y ×N−1) mod M

z ← (x× y + q ×N)/M

and z satisfies z = (xyM−1) mod N and z < 2N . In practice taking M = 2n+1 with n = dlog2(N)e

simplifies the reduction and the division by M . This method also applies for a squaring, i.e., x = y and, in

the sequel this will be referred to as FMS for Full Montgomery Squaring.

• Half Montgomery Multiplication (HMM): Let m be an integer such that m >
√
N and gcd(N,m) =

1. Let y be a dlog2(N)e bit integer and x be a dlog2(N)/2e bit integer. Then the HMM works as fol-

lows:

August 21, 2015 DRAFT

10

q ← (−x× y ×N−1) mod m

z ← (x× y + q ×N)/m

and z satisfies z = (xym−1) mod N and z < 2N . Then, in practice, taking m = 2dn/2e+1 where n =

dlog2(N)e simplifies the computation of a reduction and a division by m.

The proposed regular exponentiation which incorporates FMS and HMM is depicted in Algorithm 8.

Algorithm 8 Regular exponentiation with half-size Montgomery modular multiplications
Require: x ∈ {0, . . . , N − 1} and K = (k`−1, . . . , k0)2

Ensure: r = xK mod N

1: Split x = x−10 × x1 mod N with x0, x1 ∼= N1/2.

2: r = x−10 ×m×M mod N // Montgomery representation

3: for i from `− 1 downto 0 do

4: r ← FMS(r, r)

5: if ki = 0 then

6: r ← HMM(r, x0)

7: else

8: r ← HMM(r, x1)

9: end if

10: end for

11: r ←
(
r × x0 ×m−1 ×M−1

)
mod N

12: return r

Lemma 4. Let K = (k`−1, . . . , k0)2 with ki ∈ {0, 1} be an ` bit integer, and let N be a positive integer and

x ∈ [0, N − 1]. If we set Ki = (k`−1, . . . , ki)2 then the value r after the loop i in Algorithm 8 satisfies:

r = (xKix−10 Mm) mod N.

Proof. We prove it by induction on i. If we denote ri the value of r after the loop i, then it satisfies ri =

(xKix−10 Mm) mod N . Then the squaring with FMS provides:

FMS(ri) = x2Kix−20 M2m2M−1 mod N

= x2Kix−20 Mm2 mod N.

Now if ki−1 = 0 then the algorithm computes:

ri−1 = HMM(x2Kix−20 Mm2, x0)

= (x2Kix−20 Mm2)x0m
−1 mod N

= x2Kix−10 Mm mod N

August 21, 2015 DRAFT

11

which satisfies the induction hypothesis since Ki−1 = 2Ki. Now if ki−1 = 1 the algorithm computes:

ri−1 = HMM(x2Kix−20 Mm2, x1)

= (x2Kix−20 Mm2)x1m
−1 mod N

= x2Ki+1x−10 Mm mod N

which satisfies the induction hypothesis since Ki−1 = 2Ki + 1.

V. COMPLEXITY COMPARISON AND SECURITY EVALUATION

In this section we first briefly the review word-level forms of Montgomery multiplication and squaring along

with their complexities. We then deduce the complexity of the proposed exponentiation and compare it with the

approaches reviewed in Section II.

A. Word level Montgomery multiplication and squaring

The proposed exponentiation in Algorithm 8 involves Montgomery modular squarings and multiplications with

adapted sizes to the operands, i.e., of size either dlog2(N)e or dlog2(N)/2e bits. The subsequent word level form

of Montgomery multiplication can take as input two integers of different sizes.

Word-level Montgomery multiplication. We consider two integers x = (xt−1, . . . , x0)2w where t = dN/2we and

y = (ys−1, . . . , y0)2wwith s = t or s = dt/2e. The word level form of the Montgomery multiplication interleaves

multi-precision multiplication and small Montgomery reduction by sequentially performing for i = 0, 1, . . . , s− 1:

z ← z + x× yi
q ← −z ×N−1 mod 2w

z ← (z + qN)/2w

where z is initially set to 0 and, at the end, it is equal to x × y × 2−sw mod N . This method is detailed in

Algorithm 9.

The complexity of Algorithm 9 is evaluated step by step in Table II. The cost of each step is expressed in terms

of the complexity of a t-word addition or of a 1× t multiplication which costs t word multiplications and t word

additions with carry.

Word level Montgomery squaring. The Montgomery squaring of a t-word integer x can be computed with the

word-level Montgomery multiplication. However, a squaring can be optimized by considering that we may save

some redundant word multiplications xi ·xj and xj ·xi. We review here the formulation of the Montgomery squaring

provided in [9]. The squaring x2 is rewritten as follows:

x2 =
∑t−1
i=0

∑t−1
j=0 xixj2

w(i+j)

= 2
∑t−2
i=0

∑t−1
j=i+1 xixj2

w(i+j) +
∑t−1
i=0 x

2
i 2

2iw

=
∑t−1
i=0 xi2

w(2i)(xi + 2
∑t−i−1
j=1 xi+j2

wj)

=
∑t−1
i=0 xi2

w(2i)x̃i.

(8)

August 21, 2015 DRAFT

12

Algorithm 9 Word level Montgomery multiplication [16]
Require: N < 2wt−2 the modulus, w the word size, x = (xt−1, . . . , x0)2w and y = (ys−1, . . . , y0)2w integers in

[0, N] and N ′ = (−N−1) mod 2w

Ensure: z = x · y · 2−ws mod N

1: z ← 0

2: for i = 0 to s− 1 do

3: z ← z + yi · x

4: q ← |z|2w ·N ′ mod 2w

5: z ← (z + q ·N)/2w

6: end for

7: if z ≥ N then

8: z ← z −N

9: end if

10: return z

Table II

STEP BY STEP COMPLEXITY EVALUATION OF WORD LEVEL MONTGOMERY MULTIPLICATION (ALGORITHM 9)

Operations # word add. # word mul.

s Step 3
xi × y st st

z + (xiy) s(t+ 1) 0

s Step 4 |z|2w ·N ′ 0 s

s Step 5
q ×N st st

z + (qN) s(t+ 1) 0

Step 7 z −N t 0

Total s(4t+ 2) + t s(2t+ 1)

The integer x̃i = (xi + 2
∑t−i−1
j=1 xi+j2

wj) can be deduced from x′ = 2x = (x′t−1, . . . , x
′
0)2w as

x̃i = (x′t−1, . . . , x
′
i+2, |2xi+1|2w , xi)2w .

With the formulation (8) the authors in [9] could derive a word level Montgomery squaring as shown in Algorithm 10.

The complexity of Algorithm 10 is evaluated step by step in Table III. Only the complexity evaluation of Step

5 needs to be detailed. We first notice that:

• x̃i × xi requires t− i word multiplications and t− i word additions.

• z + 2wi(x̃ixi) requires t− i+ 1 word additions.

We add the contributions of all loop iterations and we get
∑t−1
i=0(t−i) =

t(t+1)
2 word multiplications and

∑t−1
i=0(2t−

2i+ 1) = t(t+ 1) + t = t2 + 2t word additions for t Step 5, as stated in Table III.

August 21, 2015 DRAFT

13

Algorithm 10 Word level Montgomery squaring [9]
Require: N < 2wt−2 the modulus, x, with x = (xt−1, . . . , x0)2w with 0 ≤ xi < 2w where w is the word size,

N ′ = −N−1 mod 2w

Ensure: z ≡ x2 × 2−wt mod N and z < N

1: x′ ← x+ x

2: z ← 0

3: for i = 0 to (t− 1) do

4: x̃i ← (x′t−1, . . . , x
′
i+2, |2xi+1|2w , xi)2w

5: z ← z + x̃i · xi · 2wi

6: q ← |z|2w ·N ′ mod 2w

7: z ← (z + q ·N)/2w

8: end for

9: if z ≥ N then

10: z ← z −N

11: end if

12: return z

Table III

STEP BY STEP COMPLEXITY EVALUATION OF A WORD LEVEL MONTGOMERY SQUARING (ALGORITHM 9)

Operations # word add. # word mul.

Step 1 x+ x t 0

t Step 4 |2xi+1|2w t 0

t Step 5 z + 2wix̃ixi t2 + 2t
t(t+1)

2

t Step 6 |z|2w ·N ′ 0 t

t Step 7
q ×N t2 t2

z + (qN) t(t+ 1) 0

Step 10 z −N t 0

Total 3t2 + 6t 3t2

2
+ 3t

2

B. Complexity comparison

Now, we can deduce the cost of a FMM, FMS and HMM from the complexity of the word-level Montgomery

multiplication and squarings. Specifically, the cost of a FMS with M = 2tw is the same as the one shown in

Table III. To obtain the complexity of FMM with M = 2tw we take s = t in the formula of Table II and to get the

complexity of a HMM with m = 2tw/2 we take s = t/2 in the formula of Table II. This leads to the complexities

shown in the upper part of Table IV.

Now, we deduce the cost of the following approaches for an ` bit exponent for a modular exponentiation:

August 21, 2015 DRAFT

14

• The square-and-multiplication exponentiation requires ` FMS and `/2 FMM in average.

• The multiply-always exponentiation necessitates 3`/2 FMM in average.

• The square-always exponentiation necessitates 2` FMS in average.

• The square-and-multiply-always and Montgomery-ladder exponentiation require ` FMS and ` FMM.

• The Montgomery-ladder exponentiation with common multiplicand [9]: this necessitates ` word level combined

Montgomery multiplications AB,AC, which have a reduced complexity by sharing some of the reduction

computations.

The complexities of these approaches in terms of the number of word additions and multiplications are given in

Table IV.

For the proposed regular exponentiation with half size Montgomery multiplication (Algorithm 8) we need `

FMS and ` HMM for the main loop computation. For the computation of the multiplicative splitting x0 with

Algorithm 6, the cost is, using Lemma 2, bounded above by 4t2w word additions. The computation of x−10 has

also a cost bounded above by 4t2w word additions since it is computed with the extended Euclidean algorithm.

The resulting overall complexity of the proposed regular exponentiation is given in terms of the number of word

additions and multiplications in Table IV.

Table IV

COMPLEXITY COMPARISON

Algorithm #word add. #word mul.

Multiplication and

squaring modulo N

FMM 4t2 + 3t 2t2 + t

FMS 3t2 + 6t 3t2

2
+ 3t

2

HMM 2t2 + 2t t2 + t
2

Exponentiation mod N
Square-and-multiply `(5t2 + 15t

2
) + 8t2 + 6t `(5t

2

2
+ 4t

2
) + 4t2 + 2t

with no side channel protection

Non constant time

regular exponentiation

Multiply-always `(6t2 + 9t
2
) + 8t2 + 6t `(3t2 + 3t

2
) + 4t2 + 2t

Square-always `(6t2 + 12t) + 8t2 + 6t `(3t2 + 3t) + 4t2 + 2t

Regular and constant time

exponentiation

Square-and-multiply-always `(7t2 + 9t) + 8t2 + 6t `(7t
2

2
+ 5t

2
) + 4t2 + 2t

Montgomery-ladder `(7t2 + 9t) + 8t2 + 6t `(7t
2

2
+ 5t

2
) + 4t2 + 2t

Montgomery-ladder CM [9] `(6t2 + 9t+ 1) + 8t2 + 8t `(3t2 + 4t+ 3) + 4t2 + 4t+ 2

Proposed (Algorithm 8) `(5t2 + 8t) + 10t2 + 8t `(5t
2

2
+ 2t) + 8wt2 + 5t2 + 5t

2

We notice that the fastest approach is the non-secure square-and-multiply exponentiation. We also notice that our

approach has complexity really close to the one of the square-and-multiply: only the precomputation costs make it

less efficient. Moreover, our approach is better by roughly 16% than the regular but non constant time approaches,

i.e. square-always and multiply-always and also to constant time and regular Montgomery-ladder with CM.

August 21, 2015 DRAFT

15

C. Implementation results

We have implemented the different approaches on an Intel Core i5 with C language and compiled with gcc-

4.8.6. For modular multiplication and modular squaring we implemented Algorithm 10 and Algorithm 9 using low

level functions of GMP library (cf. GMP 6.0.0, https://gmplib.org) for 1× t multiplications and t-word

additions. We could then implement all the exponentiation algorithms considered in this paper. The multiplicative

splitting of our approach is implemented using the low level function of gmp for Euclidean division. The timings

obtained for a few different practical bit lengths of N (i.e., 1020, 2040, 3050 and 4090) are reported in Table V.

Table V

TIMINGS IN 103 CLOCK-CYCLES OF MODULAR EXPONENTIATION

Algorithm
Timings

2040bits 3070bits 4090bits

Exponentiation without
Square-and-multiply 14201 46287 105065

side channel protection

Non constant time

regular exponentiations

Multiply-always [5] 16178 52171 121952

Square-always [5] 18020 58766 131297

Regular and constant time

exponentiations

Montgomery-ladder [7] 21803 70389 164010

Montgomery-ladder with CM [9] 18124 57401 129847

Square-and-multiply-always [6] 19738 63292 146842

Proposed (Algorithm 8) 15203 47540 108607

We notice that the reported timings relate closely to the complexity results shown in Table IV. Indeed, the fastest

approach is the square-and-multiply exponentiation which is not protected against simple side channel analysis. Our

approach is less than 7% slower than square-and-multiply for any key size but become close to 3% for 4090 bits.

But it is better than all other approaches: by 6% − 11% compared to the multiply-always approach, which is not

entirely secure against SPA, and more than 16% compared to all other approaches.

D. Security evaluation

The proposed exponentiation algorithm prevent a simple power analysis (SPA) or a simple electromagnetic

analysis (SEMA). We discuss here some additional features in order to have a full protection of the secret exponent

against differential power analysis (DPA) [2]. This attack exploits the lack of randomness in the exponentiation. In

the exponentiation algorithms considered in this paper, the value taken by r in the i-th loop depends on x and on

the key bits of k`, k`−1, . . . , ki of K. DPA uses the fact that if we can predict the next bit ki−1 we can predict the

next value of ri−1 in the loop i− 1. With this prediction we also predict the power consumption of the next loop

since it is generally proportional to the Hamming weight of ri−1. In a DPA analysis, averaging over many power

traces reveals if the guess is correct (a peak appears) or not and thus reveals the value of ki−1.

The main strategies for protecting an implementation against this DPA attack are as follows:

August 21, 2015 DRAFT

16

• Randomization of the exponent K [6], [17], [18]. This leads to unpredictable values taken by r during

the exponentiation. Different strategies have been proposed: the first one add to k a random multiple of

φ(N) = (p− 1)(q − 1)

K ′ = K + β × φ(N)

with β a random integer generally taken in [0, 220]. Another method consists to randomly chose β ∈ [0, 220]

coprime with φ(N) and compute β−1 mod φ(N). The value of K is then randomized as

K ′ = K × β−1 mod N.

The exponentiation is performed in two steps: we first compute r′ = xK
′
mod N and then the final result

r = r′β mod N = xK mod N .

• Blinding of the message [6]. The idea is to mask x and thus makes it impossible to predict anything regarding

the power trace related to x. We choose a random value ρ and we compute

x′ = x× ρK
′

mod N

where K ′ is the public exponent. The exponentiation ρK
′
mod N is effective when K ′ is small which is

often the case in practice. The exponentiation algorithm then computes

r′ = x′K mod N

= xKρKK
′

mod N

= xKρ mod N.

We get the final result xK mod N by multiplying r′ by ρ−1 modulo N .

The above strategies can be used in combination of the proposed regular exponentiation with half-size multi-

plication. This provides an RSA exponentiation protected against the following set of side channel attacks: SPA,

SEMA, DPA, ZPA [19] and safe-error fault-injection attack.

VI. CONCLUSION

We presented in this paper a new approach for regular modular exponentiation. We first introduced a multiplicative

splitting of an integer x modulo N . We showed that this splitting can be used to modify the square-and-multiply

algorithm in order to have a regular sequence of squarings always followed by a multiplication with a half-size

integer. We then modified this algorithm in order to perform modular multiplication with the Montgomery’s method.

Compared to the usual regular and constant time modular exponentiations, the proposed method involves only

multiplication by half-size integer instead of a full multiplication. This leads to a reduction of the complexity by

16%.

Aknowledgements. This work was supported by PAVOIS ANR 12 BS02 002 02.

August 21, 2015 DRAFT

17

REFERENCES

[1] R. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures and public-key cryptosystems,” Communications of the

ACM, vol. 21, pp. 120–126, 1978.

[2] P. C. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis,” in Advances in Cryptology, CRYPTO’99, ser. LNCS, vol. 1666. Springer,

1999, pp. 388–397.

[3] S. Mangard, “Exploiting Radiated Emissions - EM Attacks on Cryptographic ICs,” in Austrochip 2003, Linz, Austria, October 1st, 2003,

pp. 13–16.

[4] F. Amiel, B. Feix, M. Tunstall, C. Whelan, and W. Marnane, “Distinguishing Multiplications from Squaring Operations,” in SAC 2008,

ser. LNCS, vol. 5381. Springer, 2009, pp. 346–360.

[5] C. Clavier, B. Feix, G. Gagnerot, M. Roussellet, and V. Verneuil, “Square Always Exponentiation,” in Progress in Cryptology - INDOCRYPT

2011, ser. LNCS, vol. 7107. Springer, 2011, pp. 40–57.

[6] J.-S. Coron, “Resistance against Differential Power Analysis for Elliptic Curve Cryptosystems,” in CHES, 1999, pp. 292–302.

[7] M. Joye and S. Yen, “The Montgomery Powering Ladder,” in CHES 2002, ser. LNCS, vol. 2523. Springer, 2002, pp. 291–302.

[8] P. Montgomery, “Modular Multiplication Without Trial Division,” Math. Computation, vol. 44, pp. 519–521, 1985.

[9] C. Negre, T. Plantard, and J. Robert, “Efficient Modular Exponentiation Based on Multiple Multiplications by a Common Operand,” in

IEEE Symposium on Computer Arithmetic 2013, to appear.

[10] A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied Cryptography. CRC Press, 1996.

[11] S.-M. Yen and M. Joye, “Checking Before Output May Not Be Enough Against Fault-Based Cryptanalysis,” IEEE Trans. Computers,

vol. 49, no. 9, pp. 967–970, 2000.

[12] S.-M. Yen, S. Kim, S. Lim, and S.-J. Moon, “A Countermeasure against One Physical Cryptanalysis May Benefit Another Attack,” in

ICISC 2001, ser. LNCS, vol. 2288. Springer, 2001, pp. 414–427.

[13] M. Joye and M. Tunstall, “Exponent Recoding and Regular Exponentiation Algorithms,” in Progress in Cryptology - AFRICACRYPT 2009,

ser. LNCS, vol. 5580. Springer, 2009, pp. 334–349.

[14] R. Gallant, R. Lambert, and S. Vanstone, “Faster point multiplication on elliptic curves with efficient endomorphisms,” in Advances in

Cryptology - CRYPTO 2001, ser. LNCS, vol. 2139. Springer, 2001, pp. 190–200.

[15] J. von zur Gathen and J. Gerhard, Modern Computer Algebra (3. ed.). Cambridge University Press, 2013.

[16] A. Bosselaers, R. Govaerts, and J. Vandewalle, “Comparison of Three Modular Reduction Functions,” in Advances in Cryptology -

CRYPTO’93, ser. LNCS, vol. 773. Springer, 1993, pp. 175–186.

[17] M. Ciet and M. Joye, “(Virtually) Free Randomization Techniques for Elliptic Curve Cryptography,” in ICICS 2003, ser. LNCS, vol. 2836.

Springer, 2003, pp. 348–359.

[18] M. Tunstall and M. Joye, “Coordinate blinding over large prime fields,” in CHES 2010, ser. LNCS, vol. 6225. Springer, 2010, pp.

443–455.

[19] L. Goubin, “A Refined Power-Analysis Attack on Elliptic Curve Cryptosystems,” in PKC 2003, ser. LNCS, vol. 2567. Springer, 2003,

pp. 199–210.

August 21, 2015 DRAFT

