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Periodic schedules for bounded timed weighted

event graphs

Abstract

Timed event graphs (TEGs) and timed weighted event graptWE@s) which have multiple arc
cardinalities, have been widely used for automated précluctystems such as robotized work cells
or embedded systems. TWEGSs are useful for modeling batch dvesitities such as batch arrivals
or processing of jobs. Periodic schedules, that combinexaticé description of starting times and
an easy implementation are particularly interesting, aadehbeen proved to be optimal for ordinary
timed event graphs (TEGS). In this paper, we present polyalaatgorithms to check the existence of
periodic schedules of bounded TWEGSs and to compute theimapthroughput. These results can be
considered as generalizations of those for ordinary timvethtegraphs. We then establish that periodic
schedules are suboptimal for TWEGs and may not exist even livge FWEG.

The gap between optimal throughput and throughput of am€maptperiodic schedule is experimen-

tally investigated for a subclass of TWEGS, namely timed Wigid circuits.

Index Terms

Timed weighted event graphs, Periodic schedule.

. INTRODUCTION

Cyclic scheduling problems, in which a set of generic tdEksas to be performed infinitely
often, have numerous practical applications in productiomulti-processors systems. Several
models and a wide class of mathematical tools for such tastesys exist in the literature [1],
[21, [3]. [4]. [3], [6].

In this paper we focus on the powerful subclass of timed Pets [7] called timed weighted
event graph model (TWEG). Transitions are associated witlemge tasks and their firings have
a given duration. Each place has exactly one input and one output transition weighted by
respective integer values(p) anduv(p): at the completion of a firing of the input transition af
w(p) tokens are added t@ At the firing of the output transition gf, v(p) tokens are removed

from p. If v(p) = w(p) =1 for every place, the net is a timed event graph (in short TEG).



Although TWEGs model problems without resource conflicteeger weights allow to model
complex practical optimization problems.

In the context of manufacturing systems, TWEGs are congideyemodel assembly lines.
Operations resp. products) are usually modelled by transitionssf. tokens). Between two
successive transformations, produdts.(tokens) have to be stored or to be moved from one
buffer to another. Cyclic production systems with batch dcdliag, the assembling of products
or buffers of limited capacity may easily be considered gitims formalism [8], [9].

Synchronous Data-Flow (SDF) [3] is a well-known formalisionsidered for modeling em-
bedded applications such as video compression treatmehisaaquivalent to TWEG. Here
transitions represent processes and places model buffgkens model data transferred from a
process to another. Some practical optimization problentsexamples can be found in [10],
[11], [12], [13].

When a TWEG that models an industrial application is given fils¢ question which comes
to mind is whether a feasible infinite schedule exists or netwhether a TWEG is live or not.
The second concerns the construction of an optimal infiriteedule. A usual objective is to
maximize the throughpuk = min, .r{\;,}, where),, measures the average number of firings
of a transitiont; by time unit.

An infinite schedule might be described either by a dynamiicpdor each transition, or
by an explicit description of its firing times. The former deeto define for each transition a
finite policy describing when it may fire with respect to thatsetof its input places. The latter
needs a finite representation of the infinite number of firinges, and thus some periodicity
properties. Notice that if the underlying system does neehg/nchronization mechanisms, as
for embedded system applications, an explicit descripticthe schedule is needed. In this paper
we focus on the computation of explicit schedules.

The simplest policy for any TWEG (or TEG) is to fire transitions early as possible. The
resulting schedule is called the earliest schedule. THisyis feasible if and only if the TWEG
is live, since there are no resource conflicts. Moreoverthitsughput is maximum.

The computation of the earliest schedule raises two maibl@nas: first, checking the liveness
and computing the optimal throughput of a TWEG by running tadiest schedule may require
an important number of transitions firings. Several autlpooyved, by studying the structure of
the longest paths in a global precedence graph, that for TEGE] and for TWEGS [14], the



earliest schedule reaches a steady state depending on facgeuis (called critical circuits) of
the initial network. The number of firings required for itansitory phase has up to now been
bounded for strongly connected TEG [15] by a non polynomigldction with respect to the
instance size. The existence of polynomial upper boundh@reiistence of a non polynomial
lower bound) is an interesting open question.

Furthermore, this earliest schedule may not be polynoyralbresented. Indeed, it is proved
in [16] for TEG that the number of firings needed to encode thady state depends on the least
common multiplier of the total markings of the critical aiits. The existence of a polynomial
encoding for the steady state of a TEG is another interesipen question.

However, liveness and computation of the optimal througlgb(rEGs are both polynomially
solved [1], [4], [17], [18], [19]. Indeed, it has been shovmat the liveness of a TEG is equivalent
to the existence of a periodic schedule (in which a transitjois fired everyw; time units).
Moreover, the optimal throughput is reached by a periodltedale that can be computed in
polynomial time. Lastly, the size of its encoding dependsdrly on the number of transitions:
thus, many authors restrict their studies to this class bédales to get an efficient solution,
particularly in the presence of resource constraints (seexample [20], [21]).

For a TWEG, the complexity of checking liveness and computimg optimal throughput
remains open. However, it has been shown in [14] that anydimended TWEG can be trans-
formed into an equivalent TEG which might be of exponentiak swith respect to the size
of the TWEG. So, this transformation, called expansion, oapnoduce efficient algorithms in
an industrial context. The existence of algorithms withypoimial time complexity to check
the liveness of a TWEG and to compute an optimal schedule isakealging problem from a
theoretical as well as from a practical point of view.

The main purpose of this paper is to study the computationthadefficiency of periodic
schedules for TWEGs. From a theoretical point of view, it carviewed as a generalization of
well-known results for TEGs. For practitioners, periodahadules for TWEGs might easily be
implemented in real systems (see for example [10], [11]usTleven if they cannot outperform
the earliest schedule with respect to the throughput, thigitbbe used to get an easily encoded
solution.

We establish in this paper that a TWEG might be live althouglpeoodic schedule exists.

A polynomial condition for the existence of periodic schiedus stated, thus giving a sufficient



condition of liveness. This is surprisingly similar to th@eogiven in [22]. We provide a

polynomial specific algorithm, based on graphs algorithtoscompute the optimal periodic
schedule. But we show that, unlike TEG, an optimal periodiedale of a TWEG might not be

optimal among all schedules. Its throughput is then a lowemni on the optimal throughput and
the distance between these two values is experimentalgsimgated. Experiments show that if
the initial marking is not too close to the minimum value thbws the existence of a periodic
schedule, then periodic schedules might have a competitreeighput.

This paper is organized as follows: basic definitions andxamg@le modeling an assembly line
are presented in Section Il. Section Il recalls a simplifaraof the weights of the places of a live
bounded WEG, namely the normalization presented initiallfj2R]. An original characterization
of the minimum weights is then stated. Section IV deals with tharacterization of periodic
schedules, and defines the linear constraints met by feasitels. The computation of an optimal
periodic schedule is investigated in Section V. In Sectidyvké study the throughput of periodic

schedules on a subclass of TWEG. Section VII concludes therpap

II. DEFINITIONS AND EXAMPLE

Definitions and assumptions related to WEG and TWEG are firsepted. Then, we motivate
the use of the TWEG model by showing an example of an assenmiglytioblem with a batching

transportation device.

A. Weighted event graphs

A weighted event grapi = (P, T, M,) (in short WEG) is a decision-free Petri net given by
a set of place® = {p1,...,pn}, a set of transitiond” = {¢,...,¢,} and an initial marking
Mo(p),p € P.

Every placep € P has exactly one input transition and one output transitiois.thus defined
by the two transitiong; and¢; and is denoted by = (¢;,¢;). For any transitiory € 7', we
denote byP*(t) = {p = (t,t') € P,t' € T} the set of output places of transitian Similarly,
P~(t)={p=(t',t) € P,t' € T} denotes the set of input places tof

The arcs(t;, p) and (p,t;) are weighted by strictly positive integers denoted respelgt by
w(p) andv(p). At each firing of the transition; (resp.t;), w(p) (resp.v(p)) tokens are added
to (resp.removed from) place. Figure 1 presents a plage= (¢;,¢;) of a WEG.



For any placep € P, gcd, denotes the greatest common divisor of integgfs andw(p). It
has been proven in [22] that the initial marking,(p) of any placep = (t;,t;) may be replaced
by M§(p) = Vgg—g)J - ged, without any influence on the feasible firing sequences of a WEG.
Roughly speaking, ifM,(p) is not a multiple ofged,, there will always beM,(p) — Mg (p)
tokens remaining i that will never be considered for the firings Qf Thus in the rest of the
paper, it is assumed that the initial marking,(p) of any placep € P is a multiple ofgcd,.

If v(p) = w(p) = 1 for every placep € P, then? is an event graph (in short EG), also called
marked graph in [1].

For any integer > 0 and any transition; € T', (t;,v) denotes thesth firing of .

A path i of a WEG is a sequence of transitions, . .., ¢;, such that any two consecutive
t

transitionst are linked by a place; = (t;,,t;,,,). A circuit is a closed path such that

ij) ij+1

t;, = t;,. We denote byP, the set of places crossed py

Fig. 1. A placep = (¢i,t;) of a WEG.

B. Timed weighted event graphs

A timed weighted event graph (in short TWEG) is a WHE{ associated with a function
¢: T — N—{0} such that, for any € T, ¢(t) is the duration of a firing of. It is usually
denoted byG = (H, /).

Firing a transitiont; at time 7 removes tokens from its input places according to the arcs
values. Then, at time + /(t;), tokens are dropped into its output places. Thus for eveagepl
p = (t;,t;) € P, w(p) (resp.v(p)) tokens are added to (resp.removed frony) ¢(¢;) time units
after the firing start time of; (resp.at the firing start time of;).

M (7, p) denotes the instantaneous marking of the plaeeP at time instant > 0. Clearly,
M(0,p) = Mo(p).

We assume that transitions are non-reentraat,that two successive firings of the same
transition cannot overlap: this is modeled by loop plages (¢;,¢;), Vt; € T with w(p) =

v(p) = 1 and My(p) = 1. For the sake of readability, these loops are not shown irfiguees.



transitions|| 1 to ts i ts

operations|| My M, I P transport
durations 2 2 2 10 12

TABLE |

DURATIONS OF TRANSITIONS

A TWEG is said to be a TEG if the underlying Petri net is an E&,if all weights are equal
to 1.

C. Example

Let us now illustrate the modeling power of TWEGSs through aanegle which combines
cyclic assembling process, buffers, batch operations,tia@dimitation of the work-in-process.
We consider a three level assembling process shown in figukel@vel 2, two parallel machines
M, and M, are working on items, one item at time. Machihat level 1 loads two parts produced
by M; and three parts produced By, and assembles them to get one product, finished at level
0 by a single maching’. A batching transportation device removedinished products from
the workshop and brings items to machinel/; and9 to machineMs.

This automated process is modellediymed transitions representing the different operations.
Transitions and their corresponding durations are giveffdiyle I. A model of this assembling

line using a TWEG is depicted by figure 3.

[P] levelo

level 1

Fig. 2. Levels for the assembling of products.

It is assumed that the line is empty at the beginning and tlatmork-in-process is at most

2 (in terms of finished products). So, there are at moiséms processed by/; and6 items by



M, before a finished product outputs machiRe(completion of firing oft,), allowing 2 new
tokens inp; and 3 new tokens inps. That is modelled by the initial marking/,(p;) = 4 and
My(ps) = 6.

At the starting point, there ar@ items waiting to be processed By; and9 for M;. Places
pr and pg model the buffers of items in front of/; and M, with the respective initial marking
My (p7) = 6 and My (ps) = 9. The transporting device is modeled by transitipand its adjacent

places.
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Fig. 3. Modeling an assembling line using a TWEG.

[11. SIMPLIFICATION OF BOUNDED WEIGHTED EVENT GRAPHS

The aim of this section is to present a simplification of a lwmt WEG, called minimal
normalized WEG, and to characterize the values of its weights simplification is needed in
the next section to compute the maximum throughput of a gerischedule. We show that any
polynomial algorithm on the minimal normalized WEG is alsdypomial with respect to the

size of the original WEG.

A simple well-known necessary condition of liveness is fretalled. A characterization of
live bounded WEG is then presented. Next, we recall the nazatain of a bounded WEG, as
presented in [22]. The last part is devoted to an originatattarization of the minimal weights

of a normalized WEG.



A. A necessary condition of liveness of a weighted event graph

A WEG is said to bdive if each transition can be fired infinitely often. A TWEG is said t
be live if its underlying WEG is live.

Liveness checking of an event graphis a polynomial problem: setting the height of a circuit
cof HtobeH(c)= > My(p), itis proved in [1] thatM, is a live marking if and only if
the height of every cliorecﬁit of{ is not null. In the case of a WEG, up to now, no polynomial
algorithm for liveness checking has been found: the algor#t developed to answer this question

are not polynomial [14].
However, a simple necessary condition of liveness has betced by several authors [14],

[23], [24]. Let us define the gain [23] of every pathof a weighted event grapH, denoted by
W(u) as

Then, if a weighted event grapH is live, every circuit has a gain not less thanintuitively,

if W(c) < 1, the number of tokens decreases while firing transitionstands to0.

This condition is fulfilled by the WEG shown in figure 3. Note this condition is not
sufficient, since the liveness of a WEG also depends on thaliniarking.

B. Bounded and unitary weighted event graphs

A WEG is said to beéboundedif there exists an intege such that the marking of any place

p IS not greater tha3 for any firing sequence.

As mentioned previously, if a WE® is live, then every circuit has a gair¥ (c¢) > 1. Now,
if W(c) > 1 orif H is not strongly connected, then the whole number of tokenswill be
unbounded. Thus, a live bounded WEB®GIs strongly connected and the gain of any cireudf
‘H equalsl. Any WEG which satisfies these two conditions is said taibgary (or consisten)

in the literature.

In the following, we suppose that WEGSs considered are alluit



C. Normalization of a unitary WEG

A transitiont; is normalized if all its input and output arcs have the samgghtethere exists
(Z1,...,2Z,) € (N —{0})" such that

Vp e P*(t;), w(p) = Z,
Vp € P~(t;), v(p) = Z;.

A WEG is said to be normalized if all its transitions are norized.

Note that a unitary WEG might not be normalized: for exampgie, WEG depicted by figure
3 is unitary, but transitiort, is not normalized.

However, it is stated in [22] that any unitary WEG can be potyradly transformed into an
equivalent normalized WEG by multiplying weights and iritnmarkings by positive integers

a(p),p € P such thatvt; € T there exists an integéef; with

Vp € P(t;), a(p)w(p)=Z
Vp e P~(t:), a(p)v(p) = Z.

For any transitiont;, Z;, becomes the new weight of all arcs adjacent;td’he corresponding
initial marking of any placep = (¢;,t;) is thena(p)My(p). Z = (Z4,...,%,) is called a
normalization vector.

The two WEGSs are equivalent in the sense that they both haveaime firing sequences.
Hence in the rest of the paper, we will assume that WEGs are alimed, without loss of
generality.

Note that the normalization concept is quite different fribra traditionalP-semiflow concept.
P-semiflows (they are left annullers of the incidence matakp at finding invariants of the
number of tokens in a Petri net, since the sum of the markifigheoplaces belonging to the
support of aP-semiflow is constant. Normalization aims at modifying theights of the arcs

to get an equivalent Petri net so that every circuit const#a support of @-semiflow.

D. Minimum normalization of a unitary WEG

A normalization vector can be polynomially computed frone gystem defined above as in
[22]. However, the minimum solution of this system can be plately characterized, as stated

by the following theorem:
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Theorem 1. Let H be a WEG, and leZ* = (Z7,...,7), st. ZF>0,i€{l,...,n} be the

minimum integer solution of the following system:

Zi _

Z* is then the minimal normalization vector.

Proof: Every normalization vectoZ is a solution of x(#). Thus, if Z* is a feasible
normalization vector, it is the minimum one.
By x(#), Z* € (N —{0})". We must prove that, for every plage= (¢;,t;), the initial
marking M (p) = ﬁMo(p) is an integer value.
Z{  My(p)
w(p) gcd,
we must prove tha* can be divided by%.
P

Clearly, Mj(p) =

- gcd,. Since by assumption/y(p) may be divided byycd,,

* z7
Let Q be the set of rationals aml € Q— {0}, such that 24 = JAFA€eQ—N,
w(p) v(p)  gedy

then there is a couple of integefs ¢) € (N — {0})? such thatgcd(r,q) =1 and A = " Since

q
Zr = r,w) andZ; = r o) are both inN — {0}, theng divides w(p) and U(p). Since
q gcd, q gcd, gcd, gcd,
w(g) and U(Z) are prime to each other, there is a contradictionASe N— {0} which achieves
gce ge
the pproof. ' [ |

For example, the system(?) associated with the TWEG shown in figure 3 is:

(

Z
21:73
ZQI%
Z
5 =7
Zy = Zy
Zy

3 = 2
Zy = &
Zs  __
6 = 74

VA
Zs  _

. 9 = 2

The minimum normalization vector is thet = (3,2, 6,6, 18). The associated minimum nor-
malized TWEG is shown in figure 4.
The polynomial normalization algorithm of [22] can be usafter few minor modifications,

to computeZ*. The idea of the algorithm is to consider that the equatiostesy y(#) is a
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difference constraint system (with product and divisiost@ad of addition and substraction)[25],
which can be solved by using a shortest path algorithm on jphgra

Note that the size of a reasonnable encoding of this new WEG&hwtan be expressed as
O(n+mlog(max,cr Z;)) is polynomial in terms of the initial encodir@(n+mlog(A)). Indeed,
if A is the maximum weight of an arc in the original WEG, < A™, and thudog(max;,cr Z;) <
nlog(A), so that the encoding of the new WEG G8n + nmlog(A)). This theoretical point
ensures that the normalization step preserves the polgharomplexity of any polynomial

algorithm that handles any of the two WEGSs (normalized or.not)

® \
L[S @ N %

6 5|18

—
DO,
.

Fig. 4. Equivalent minimum normalized TWEG.

IV. CHARACTERIZATION OF PERIODIC SCHEDULES

This section is devoted to properties of periodic schedafes normalized bounded TWEG.
Thanks to the normalization recalled in Section Ill, ourdstean be reduced to this subclass of
TWEGs. We first introduce schedules of TWEGs and precedenatored induced by a place.
Then we define periodic schedules, and we show that everg plaefines a linear inequality
on the starting times of the first firings of its adjacent tramiss. From that we deduce that a

periodic schedule with minimum periods is an optimal solutof a linear program.

A. Schedules

Let G be a TWEG. A schedule is a function 7' x (N — {0}) — Q™ which associates, with
any tuple(t;,q) € T x (N — {0}), the starting time of theth firing of ¢,. There is a strong



12

relationship between a schedule and the correspondiranitasteous marking. Let= (¢;,¢,) be
a place ofP andR™ — {0} the set of strictly positive real numbers. For any vatue R* — {0},

let us denote by¥(r,t;) the number of firings of; completed at time-. More formally,

T,l;) =
max{q € N— {0}, s(t;,q) + ¢(t;) <7} otherwise

Similarly, B(r,t;) denotes the number of firings of started up to time- and

B(r.t)) { 0 if s(t;,1) >7

max{q € N— {0}, s(t;,q) <7} otherwise

Clearly, the instantaneous marking of placat time 7 is the initial marking plus the number
of tokens produced by the firings of completed up to time- minus the number of tokens

removed fromp by the firings oft; started up to time:
M(7,p) = M(0,p) + w(p) - E(7,t;) —v(p) - B(7, ;).

A schedule (and its corresponding marking) is feasiblé/ifr, p) > 0 for every tuple(r,p) €
(RT — {0}) x P. The throughput of a transitiof) for a schedules is defined by
. q
$ = lim ——.
A= I S g) )
The throughput ok is the smallest throughput among the transitions throutghpu

A" =min{\; }.

t; €T

B. Precedence relations

Let us consider a TWE®. The set of constraints induced by any place (t;,t;) € P on
the firings of the adjacent transitionsand¢; may be expressed as classical precedence relations,
inducing inequalities on each schedule. A schedule is thaailble if and only if it satisfies the
precedence relations induced by places.

We say thap induces a precedence relation from the firing occurrénce;) to that of (¢;, v;)
if the two following conditions hold:

Condition 1: (t;, ;) may occur after the end af;, v;);

Condition 2: (¢;,v; — 1) may occur before the end &f;, ;) but (¢;, ;) may not.
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Such a precedence relation induces the following inequédit any schedules:
S(ti,Vi> +€<tz) S S(tj7Vj). (1)

The following lemma was proved in [14] and characterizes gt of precedence relations

induced by a place:

Lemma 1. A placep = (t;,t;) € P of a TWEGG induces a precedence relation from thgh
firing of ¢; to the v;th firing of ¢, if and only if

w(p) > Mo(p) + w(p)vi — v(p)v; > max{w(p) — v(p),0}.

Moreover, it is stated in [14] that a schedule fulfils the pance relations defined by Lemma
1 if and only if it is feasible. For example, inequalities @gated with the place shown in figure
5 are:
2>1+2v;—3v; >0

If 1+ 2y, —3v; =0, then we get the couples;, v;) = {(1 + 3k, 1+ 2k), k € N}. Similarly,
if 1 + 2VZ' - SI/j = 1, (l/i, l/j) = {(3 + 3k72 + 21{3),]{7 S N}
Lemma 2 characterizes the couples of strictly positivegete(v;, v;) for which a precedence

relation from the firings(t;, ;) to (t;,v;) exists.

Lemma 2. Let us consider a placg = (¢;,t;) € P of a TWEGG, and let the integer values

_ max{w(p) —v(p),0} — Mo(p) o\ _wlp) = Mo(p)
gcd,, e gedy, .

1) If p induces a precedence relation from the firings, v;) to (¢;,v;) then there exists

kmin

k € {kmin, - - -, kmaa } SUch thatw(p)y; — v(p)v; =k - ged,.
2) Conversely, for any € {kin, - - ., kmas }, there exist an infinite number of tuplgs, v;) €
(N—{0})? such thatw(p)v;—v(p)v; = k-gcd, andp induces a precedence relation between

firings (¢;, v;) and (t;,v;).

Proof:
1) Sinceged, = ged(v(p),w(p)), for any tuple(v;, v;) € (N — {0})? there existst € Z such
that w(p)v; — v(p)v; = k - ged,. Now, if there is a precedence relation frof), v;) to

(t;,v;), we get by Lemma 1, as we assumed thaf(p) is a multiple of gcd,,

w(p) — Mo(p) > w(p)v; — v(p)v; > max{w(p) — v(p),0} — My(p),
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which is equivalent to

w(p) — Moy(p) — gedy, > k - ged, > max{w(p) — v(p),0} — My(p)

and thusk,.;, < k < kjae-

2) Conversely, there exists:, b) € Z? such thataw(p) — bv(p) = gcd,. Then for anyk €
{kmin, - - - kmaz }, @and any integeg > 0, the couple of integer§;, v;) = (ka+qu(p), kb+
qu(p)) is such thatv(p)v;—v(p)v,; = k-ged,. Thusp induces a precedence relation between

(t;,v;) and(t;,v;), which achieves the proof.

C. Periodic schedules

Let Q" denotes the set of positive rationals. A schedukeperiodic if there exists a vectar =
(wy,...,w,) € Q™ such that, for any couplg;, q) € T xN—{0}, s(t;,q) = s(t;, 1)+ (¢—1)w;.
w; is then the period of the transitian and )}, = w% its throughput.

In [17], Reiter proved that it is always possible to computeoptimal periodic schedule with
a unique period (.e. Vt; € T, w; = w), for a subclass of computation graphs [23] equivalent to
TEGs. This result has been later obtained by RamchandanBin [1

For a TWEG, each transition needs its own period. Considend@mele the place = (¢;,¢,)
shown in figure 5 with/(¢;) = ¢(t;) = 2: three firings oft; are needed for firing; twice, thus
we must havesw; < 2w,, and sow; # w;. Figure 6 presents a feasible periodic schedule with

periodsw; = 2 andw; = 3 and starting times(¢;,1) = 0 ands(¢;,1) = 3.

p

00—

Fig. 5. A placep = (¢i,t;).

D. A linear program for periodic schedules

Let G be a unitary normalized TWEG. By using the results of the previsubsections, we

now establish a set of inequalities that have to be met by iagierschedules of G.
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(t, 1) | (t,2) | (t:,3) | (t,4) | (t:,5) | (t:,6) | (t:,7)

<tjv 1> <tj7 2> <tjv 3) <tj7 4>

Fig. 6. A periodic schedule for transitions and¢; and placep = (¢;,t;) presented by figure 5.

Let us consider a transitiof) and any output place of ¢;. The placep receivesZ; tokens

from ¢; everyw; time units. So, on average, a token is producedmwery% time units. We

2

call average token flow time of the ratio%. The following theorem establishes that in any
periodic schedule, all transitions have the same averdgmnttiow time K, and that feasible

periodic schedules satisfy linear inequalities.

Theorem 2. Let G be a unitary normalized TWEG. For any feasible periodic scte s, there
exists a strictly positive rationals, called theaverage token flow timeof s such that, for
any transitiont; € T, 7 = K. Moreover, the precedence relations associated with angepla

p = (t;, t;) are fulfilled t;ys if and only if

s(tj, 1) —s(t;, 1) > U(t;) + K(Z; — Mo(p) — ged,y).

Proof: Letp = (¢;,t;) € P be a place inducing a precedence relation fionv;) to (¢;,v;).

According to inequality (1), and sinceis periodic, we get

S(ti, 1) + (Vi - ].) S w; + f(tﬁ S S(tj7 1) + (l/j — ].) s Wy .

w(p)y; — k - ged,

o) and

By Lemma 2, there exists € {kin, - - ., kmas} SUCh thaty; =

w(p)v; — k - ged, '
v(p)

st 1) = s(ti, 1) 2 £(t;) +w; — wi + viw; — i

So,

S(t,1) — s(t 1) > €(t:) + <wi - fgj))wj> vi + (1 + kvf’;;lp> w; — w.
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w(p)

This inequality must be true for arbitrarily large valugse N — {0}, so w; — ﬂwj <0
vip
u(}”) < % As G is normalized,w(p) = Z; andv(p) = Z;. Sinceg is unitary, it
w (%
is strongly connected and thus, for any place= (t;,t;), 7 =7 So, there exists a value
i j

K € Q — {0} such that, for any transition, € T, % = K. Then, the previous inequality

i

and then

becomes

J

k- gcd
and thus
s(tj, 1) — s(ti, 1) > U(t:) + K(Z; — Zi + k - ged,y).

Now, the right member increases withand according to Lemma 2, there exigis, v;) €
_ Zi — My(p)

(N — {0})? such thatk = k., = T ged, 1, thus the precedence relation holds if and
only if
s(tj, 1) = s(ti, 1) > U(t;) + K(Z; — Zi + Z; — My(p) — gedy)
which is equivalent to
s(tj, 1) —s(t;, 1) > U(t;) + K(Z; — Mo(p) — ged,y).

Conversely, assume this last inequality and thate T, % = K. Then, for any integers; and
v; With w(p)v; —v(p)v; = k- ged,, for k € {knin, - - -, kmas }» it can be proved that checks the
precedence relation frort;, v;) to (¢;, v;) using similar arguments. u

For the example shown in figure 3, the average token flow tingetla@ periods of a periodic

schedule satisfy:
wy Wz  Ws Wy Wy

32 6 6 18

Moreover, the equations associated with the plages. ., ps are:
(

s(ts, 1) — s(t,1) > 2 + 3K
s(ts, 1) — s(te,1) > 2 4+ 4K
s(ty,1) — s(ty,1) > 10 — 12K
s(ty, 1) — s(ts, 1) > 2

s(ta, 1) — s(ta,1) > 10 — 12K
s(ts, 1) — s(tg, 1) > 10 + 12K
s(ty,1) — s(ts,1) > 12 — 18K
s(ta,1) — s(ts,1) > 12 — 18K
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According to Theorem 2 the average token flow time of a scleedefines entirely the periods
of the transitions and thus their throughput. Thus maxingzihe throughput can be expressed

as minimizing the average token flow time through a lineagpm:

Corollary 1. An optimal periodic schedule is a solution of the followingekr program:

M K
Vp = (t“tj> S P, S(tj, ].) - S(ti7 1) Z E(tﬂ + K(Z] - Mo(p> - ngp).
vt, €T, s(ti, 1) >0

V. POLYNOMIAL TIME ALGORITHMS FOR THE EXISTENCE AND THE COMPUTAION OF AN

OPTIMAL PERIODIC SCHEDULE

Although linear programming provides a polynomial solatimr checking existence of pe-
riodic schedules and computing an optimal one, specificratgpns on graphs often have a
lower complexity €.glongest paths, network flows). They also provide a deepeenstahding
of unfeasibility or optimality. In this section, we invegdite graph properties on which the
computation of periodic schedules rely and we develop potyal time algorithms for both

problems for normalized TWEGS.

A. Existence and performance of periodic schedules

In this subsection, we establish that checking the existesfcperiodic schedules can be
expressed as finding a circuit of non positive value in a hlokented graph.

Let us first build a bi-valued grapty = (T, E, L, H) as follows: the nodes of; are the
transitions, and any place = (¢;,¢;) induces an are: from nodet; to nodet;. The two
valuations of this arc aré(e) = ((t;) and H(e) = My(p) + gcd, —v(p). Let ¢ be a circuit ofG.
We noteL(c) the summation of.(e) over all arcse crossed by. Similarly we defineH (c). For
any valueK € Q — {0}, we also denote by7; = (T, E, i) the graphG defined previously
but which arcs are valued by (e) = L(e) — KH(e).

According to Theorem 2, starting timés(¢;, 1),t; € T'} exist for a fixed value of the average
token flow timeK € Q — {0} if and only if the sum of the valuationg, on every circuitc of
Gk is such thatix (c) = > ... dx(e) < 0. This induces the following necessary and sufficient

condition of existence of periodic schedules:
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Theorem 3. Let G be a unitary normalized TWEG ar@d(G) the set of circuits frong. There
exists a periodic schedule if and only if for every circuiof G, H(c) > 0. Moreover, if this

condition is fulfilled, and if

L(c)
min = WX ) and Z,qz It??%({ i}

then for anyK > K,,;, there exists a periodic scheduewith average token flow tim& and

throughput
1

KZma:p '

A=

Proof: To prove that the condition is necessary, let us supposetlibeg exists a circuit
of G with H(c) < 0. Then, for every valugl € Q — {0}, dx(c) > 0 and no periodic schedule
exists.

To prove that the condition is sufficient, assume that foheacuit c of G, H(c) > 0. Let us
consider anyK’ > K,,;,. Then, for each circuit of G, dx(c) < 0. By Theorem 2, there is a set
of constraints that rules the existence of periodic scleedith average token flow tim&’. This
set of constraints is clearly a system of difference comdgg25]. Asdx(c) < 0, there exists
a periodic schedule with average token flow tifie The period of a task in this schedule is
w; = K Z;, so that the throughput of the schedule\is= m [

Surprisingly, the condition expressed by Theorem 3 is simib a sufficient condition of
liveness of a WEG proved in [22] with different argumentssliaiso proved that this condition
is a necessary and sufficient condition of liveness for @sccomposed by two transitions. So,

the following corollary can easily be deduced:

Corollary 2. LetG be a unitary normalized TWEG composed by a circuit of two items. G

is live if and only ifG has a periodic schedule.

This corollary does not hold for circuits with transitions. For example, let us consider the
normalized TWEGG shown in figure 7 with no particular assumption on firing diarag. The
sequences of firings = tst 1t t1tatst 1t t1t1tots CaN be repeated infinitely, so it is live. However,
S Mo(py) = 28 and "2, (v(ps) — ged,,) = 29, so the condition of Theorem 3 does not hold.

Thus this circuit has no periodic schedule.
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D3 —— to

Fig. 7. G is live but has no periodic schedule.

B. Computation of an optimal periodic schedule

Assume thatj is a bounded TWEG. From Section Ill, it can be transformed teguivalent
normalized TWEG using a polynomial time algorithm. Thregstare then required to compute,
if it exists, a periodic schedule of maximum throughput.

1) Check thatH (¢) > 0 for every circuitc of G: An algorithm of time complexity bounded
by O(max{nm, m max;,cr{log Z;}}) can be found in [22] to check this condition.

2) Computation of<,,,;,: Several polynomial and pseudo-polynomial algorithms wiereel-
oped to compute the critical circuit of a graph, which wilgithe K,,,;,, value Eee.for example
[26], [27], [28]). An experimental study of these algorithroan be found in [29].

Then, for every transitiort; € T, we setw = K,;,Z; and the optimum throughput is
= m

3) Starting times of an optimal periodic schedul€he set of constraints associated with a
periodic schedule can be viewed as a system of difference constraints ([2B)sTif we add a

dummy source node to G, . andvt; € T' a null weighted argo, t;), computing the starting

times {s(¢;,1),t; € T} is equivalent to determine for each note= 7' the maximal length of
a path from¢ to t. This classical graph problem is polynomially solved usBgjlmann-Ford
algorithm [25].

Figure 8 presents the bi-valued graghassociated with the normalized TWEG of figure 4.
First step of the algorithm used on this example concludasftr any circuite, H(c) > 0 and
thus, a periodic schedule exists. At step/2,;, = 13 is computed from the bivalued graph
by considering its critical circuit = (to, t3,t4, t5,t2) With L(c) = 242+ 10 + 22 = 36 and
H(c)=—-4+0—-12+18 = 2. AS Z,,.. = 18, the maximum throughput of a periodic schedule
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is \* = Lz = 5. Then, the optimal periods are computee: = 39, w = 26, w} = 78,

wj = 78 andw} = 234. Figure 9 depicts the grapfi,; (omitting the dummy node) and starting
times{s*(¢;,1), t; € T} computed in ste@ of the algorithm.

) —222 )
‘ts 2 166 4%:9
) —222 )
Fig. 8. A bi-valued grapliGs. Fig. 9. Gis and starting times*(¢;,1),t; € T (in circles)

associated with the TWEG of figure 4.

VI. OPTIMAL PERIODIC THROUGHPUT VERSUS OPTIMAL THROUGHPUT

The aim of this section is to compare the maximal throughgua periodic schedule with
those of the earliest schedule. First we show that for a itiveith two places the throughput of
a periodic schedule may be quite far from the optimum if thgéahmarking is minimum with
respect to the condition of existence stated in Theorem 3théfe show in Section VI-B that if
the initial marking of a timed weighted circuit is sufficigntarge, the optimal periodic schedule
has an optimal throughput. Then we present an experimenidy sf the ratio between optimal
periodic throughput and optimal throughput for circuitssuggests that periodic schedules might
be competitive compared to optimal schedules when theaimtiarking is a small percentage

greater than the minimum initial marking.

A. Circuit with two places

Let us consider a normalized TWEG which consists of a circith wvo placesp; = (1, t2),
pa = (t2,t1) such thatged,, = ged,, = 1, My(p1) = v(p1) +w(p) — 1 = Z+ 2, — 1 and
My(p2) = 0. This TWEG has the minimal initial marking such that the ceoiodi stated in
Theorem 3 holdsM(p1) + Mo(p2) + gcdy, + ged,, — Zo — Zy = 1. The associated bi-valued
graphG is then shown in figure 10.



(i(th), 7)) -

(U(t1), Z1) (U(t2), Z2)

(U(t2), 1 = Z1)

Fig. 10. Bi-valued graphtz associated with the normalized TWEG with two places.

We get K., = max{atl) @,E(tl) +€(t2)} = ((t;) + {(t2) and the throughput of

Zy " Z
g . - . N S*er 1 1 S*er
transitions for the optimum periodic schedulg, is A,J" = o = Z0) ) and A" =
L= 75 Now, since the number of tokens in the circuit4s + Z, — 1, in any

’LU_E ZQ(Z(t1)+€(t2
schedule transitiong andt, will never fire simultaneously. Moreover, if we denote by (resp.

n9) the number of firings of; (resp.t,) such that the system will return in its initial staiee(
with Z; + Z; — 1 tokens inp; and 0 tokens inp,), then we must have,Z; — nyZ, = 0, SO
there existsk € N — {0} with n, = kZ, andny, = kZ,. Thus, the throughput of transitiors

andt, for the earliest schedule. is \j; = 722570~ and \j; = - Now,

de(t1)+le(t2 - sz(tl)—‘eré(tg)'
AL A Z4(h) + 1))
)\ff” )\:;*’e"' Zgg(tl) + Zlg(tg) '
Assume without loss of generality that > 7,, then

LN () + Zullts) — (Zy — Z)l(ts)
= = =4 ( Zol(ty) £ Z10(13) ) :

)\S;)e'r Sper
)\tl

(Z1 — Zy)L(t)
=2 (1 AT Zlé(tg)) <2

The ratio R is then maximum wher{(t,) tends to infinity and the bounehax{Z,, Z>} is

So,

asymptotically reached. We conclude that this ratio is rtrialed by a constant value.

B. Periodic schedule of a circuit

We now consider a TWEG for which the underlying graph is a dir€uWe define a relevant
range of values{z,,in, ..., Tme} fOr the initial markingz of C such that ifz < z,,, no
periodic schedule exist, whereasrit> x,,,, the optimal periodic throughput equals the optimal
throughput. We then define a valu¢ > =x,,.. which is independent on the durations of the

transitions, that we use as an upper bound of initial maskingthe next experimental section.
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Let us consider a circuiC = (t1,p1,t2,...,tn, Dn,t1) Of n transitions andn places with
n > 2. We also sett,,.; = t; in order to simplify the expressions below. Let us consider
r =Y, My(p;). We define byK,,;,(z) the minimum average token flow time of the circuit
for an initial marking valuer. Let us set

V: Z(Zz_ng(Zl,ZHl))’ Tomin :V+1, K*:max{@}'
i=1

t, €T ZZ

According to Theorem 3, a periodic schedule exists if and/ @hlH (C) > 0, i.e. x > Zin.
Now, assumingr > x,,;,, We get:
_ Lic) | _ L LO) _ . L(C)
Kpin(x) _cIGHC’E?_C‘f){H(C)} —max{K "H(©) =max{ K v

Notice that tokens distribution in the different places hasincidence on the minimum average

token flow time. Letz,,,, be the minimum integer value such that,,;,(z) = K*. Then, we
L L
havei < K* and¢ > K™ and thus

Tmaz — LTmaz — 1 - V
_ L)
Tmaz = ’V?-‘ + V
L(C)

Now, if Zin < 2 < Tyge, then Ky, (z) = VA Theorem 4 follows.

:L‘ —_—
Theorem 4. The throughput of an optimal periodic schedulg, for the normalized circuiC

with initial marking z is:

=V 1 ; .

/\s;er (l‘) = L(C)  Zmaa Zf Tmin S & < Tmaz)
1 1 ;
K* " Zmaw Zf T Z Tmaz-

Moreover, ifz > 2,4, A (x) equalsi®(x), the throughput of the earliest schedule.

Proof: As transitions are non-reentrant, the throughput of thkesaischeduls, is bounded
1
as follows: \*¢(z) < Kz Vo > Tpin-
As the the earliest schedule is optimum, we ha¥x) > \rer(x), Vo > 2.
Then¥zr > s, A*(z) = = N ().
envz > Tpaz, A (2) 7 Aper (1) u

However, the earliest schedule may reach this maximum ¢imowt for a smaller value of

x. For instance, let us consider a normalized TWEG which ctsisa circuit of two places
p1 = (t1,t2), p2 = (t2,t1) and such that(¢;) = 4 and /() = 2 (see.figure 11). For this initial

marking, we havek,;, = 1.5 and thenw; = 4.5 andw} = 3 . One can see on figure 11, that
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(3) oy L[ &

Fig. 11. A TWEGG for which the schedule. reaches the best throughput whereas the schegjylecannot.

the schedules,, has idle times for both transitions wherdascan be fired periodically without
idle time in the schedulea,.

Unlike z,,;,, the valuer,,,, depends on the duratiodg(¢;),¢; € T'}. The following proposi-
tion defines an upper bound for,,, which does not depend on the durations, that will be used

in our experiments. For this purpose, let us defitieas follows:

I* = izz + V
=1

Proposition 1. z,,., < z*. Moreover, if there existy € Q,p > 0 such that,Vi € {1,...,n},

1) — ), then the bound is tighi.€. 7* = Z,,4,)-

Proof:

Leti* € {1,...,n} such that's) = max,,cr {“Zt)} Then, for allt; € T, it follows that

Zis Y iy U(t:)
Z?:1 K(ti)

Z?:l Zi
L(C)
K*

IA

€<ti*> Zf?:l Z;
£(t)
maXtieT { Zi }

Z?:l Z;.

IN

IN

£(ts)

That impliesz,,,., < x*. Now, if there existp € Q** such thatyi € {1,...,n}, =

= p, then
K* = p and we have
xmaw:’VK*-“f’V:’V—p +V:E Zz+V:JZ'

=1

Hence, the second part of the lemma holds. [ |
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C. Experimental study of circuits

We ran our experiments on randomly generated normalizeditsiC in order to analyze the
ratio R between optimal throughput and periodic optimal throughpuunction of the initial
marking and the size of the circuit.

For any fixed integer value corresponding to the number of transitions, the integenesl
Z; and the durationg(t;), ¢ € {1,...,n} are randomly fixed respectively i, ..., 100} and
{1,...,50}. By Theorem 4 and Proposition X¥z,..,,...,2*} is a relevant range of initial
markings. In order to study the influence of the initial magki with respect to the feasibility
condition of periodic schedules, we introduce a paramgtghich measures the relative increase
of tokens in this interval. Thus, we set= xz,,;, + [f-> ., Z;| for different values off in
[0,1) (from 0 to 1 with step0.02). The optimal throughput was obtained by running the estrlie
schedule until the throughput of transitions converges.

We first considered the special cage- 0, depicted by figure 12, for which the initial marking
is the minimum number such that there exists a periodic sdbett appears that the ratio may
then be very important (up to 268) and much greater than thendmbserved for circuits
with two transitions. Moreover, the mean and max ratio rdyghcrease with the number of

transitions, even if some decreasing parts can be observed.

mean and maxratio for =0

300
250
200

150 — MaxRatio

-~ Mean Ratio
100

50

o
2 4 6 8 1020304050 6070 80
n

Fig. 12. Mean and worst ratio fof = 0 increase with the number of transitions.

Then we observed that while for lower valuesfafhe mean and the max ratio increase with
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once f gest above 0.02, this trend is reversed, both ratios dexxghsnn increases. Moreover,
the mean ratio is less than8 for n > 10, and very close td for n > 50.

This could be understood by considering thayf if- 0.02, enough flexibility is given to the
system, so that the influence of the periodic firing of a tri@msis limited to its close neighbours,
and does not so much affect the overall performance, whefeas= 0, the artificial waiting
times of transitions introduced by the periodic behavioll i accumulated along the circuit,

since there are not enough tokens, thus increasing thestapgeiod.

25 max and mean ratio for £=0,02

20

max ratio

15

““~'mean ratio

10

2 4 6 8 10 20 30 40 50 60 70 80

n

Fig. 13. Mean and max ratio decreases as the number of transitiomgeases forf > 0, 02.

Finally, if we consider the variation of the ratio in termstbe valuef, shown in figure 14,
we observe that the ratio (mean and max) decreases draliyatica f = 0.02 the mean ratio
equalsh, whereas wherf > 0.08 the mean ratio is less thahand reacheg for f = 0.8.

We can also notice that in all the experiments, the mean amdniéix curves are quite far
from each other, due to a few number of worst case instaneghtve a huge ratio compared
to the transition durations and the values of the arcs.

These experiments suggest that periodic schedule mighetyecompetitive for TWEGS if
the initial marking is not too close to the minimum value, if for any circuit ¢ of a TWEG,
My(c) >> Z v(p) — ged,. This gives a first insight on the quality of the optimal pei®
throughput]\)/%/ﬁh respect to optimal one. In the future, wdlsha experiments on more complex

graphs.
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mean and max ratio in function of

—max ratio

"' mean ratio

0,02 0.04 0,06 0,08 0.1 0,12 014 016 0.18 02 04 06 08 1

Fig. 14. Mean and worst ratio decrease whemcreases.

VIlI. CONCLUSIONS

In this paper we established a condition of existence andympmial algorithm to compute
the optimal periodic schedule of a TWEG based on graph reflatron. Experiments prove that
although such schedules are suboptimal, their computatigit provide an interesting lower
bound on the optimal throughput if the condition of existestated in Theorem 3 is not tight,
i.e. if the initial marking is large enough.

In the future, it would be interesting to derive a lower boumdthe ratio between the optimal
throughput and the optimal periodic throughput of a gen@kIEG, and to further study the

complexity of the liveness problem.
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