Algebraic shifting and strongly edge decomposable complexes - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2008

Algebraic shifting and strongly edge decomposable complexes

Résumé

Let $\Gamma$ be a simplicial complex with $n$ vertices, and let $\Delta (\Gamma)$ be either its exterior algebraic shifted complex or its symmetric algebraic shifted complex. If $\Gamma$ is a simplicial sphere, then it is known that (a) $\Delta (\Gamma)$ is pure and (b) $h$-vector of $\Gamma$ is symmetric. Kalai and Sarkaria conjectured that if $\Gamma$ is a simplicial sphere then its algebraic shifting also satisfies (c) $\Delta (\Gamma) \subset \Delta (C(n,d))$, where $C(n,d)$ is the boundary complex of the cyclic $d$-polytope with $n$ vertices. We show this conjecture for strongly edge decomposable spheres introduced by Nevo. We also show that any shifted simplicial complex satisfying (a), (b) and (c) is the algebraic shifted complex of some simplicial sphere.
Fichier principal
Vignette du fichier
dmAJ0101.pdf (213.76 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01185188 , version 1 (19-08-2015)

Identifiants

Citer

Satoshi Murai. Algebraic shifting and strongly edge decomposable complexes. 20th Annual International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2008), 2008, Viña del Mar, Chile. pp.1-12, ⟨10.46298/dmtcs.3652⟩. ⟨hal-01185188⟩

Collections

TDS-MACS
58 Consultations
632 Téléchargements

Altmetric

Partager

More