$n$-color overpartitions, lattice paths, and multiple basic hypergeometric series
Résumé
We define two classes of multiple basic hypergeometric series $V_{k,t}(a,q)$ and $W_{k,t}(a,q)$ which generalize multiple series studied by Agarwal, Andrews, and Bressoud. We show how to interpret these series as generating functions for special restricted lattice paths and for $n$-color overpartitions with weighted difference conditions. We also point out that some specializations of our series can be written as infinite products, which leads to combinatorial identities linking $n$-color overpartitions with ordinary partitions or overpartitions.
Nous définissons deux classes de séries hypergéométriques basiques multiples $V_{k,t}(a,q)$ et $W_{k,t}(a,q)$ qui généralisent des séries multiples étudiées par Agarwal, Andrews et Bressoud. Nous montrons comment interpréter ces séries comme les fonctions génératrices de chemins avec certaines restrictions et de surpartitions $n$-colorées vérifiant des conditions de différences pondérées. Nous remarquons aussi que certaines spécialisations de nos séries peuvent s'écrire comme des produits infinis, ce qui conduit à des identités combinatoires reliant les surpartitions $n$-colorées aux partitions ou surpartitions ordinaires.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|
Loading...