Delannoy numbers and Legendre polytopes
Résumé
We construct an $n$-dimensional polytope whose boundary complex is compressed and whose face numbers for any pulling triangulation are the coefficients of the powers of $(x-1)/2$ in the $n$-th Legendre polynomial. We show that the non-central Delannoy numbers count all faces in the lexicographic pulling triangulation that contain a point in a given open quadrant. We thus provide a geometric interpretation of a relation between the central Delannoy numbers and Legendre polynomials, observed over 50 years ago. The polytopes we construct are closely related to the root polytopes introduced by Gelfand, Graev, and Postnikov. \par
No construisons un polytope de dimension $n$ dont le complexe de bord est comprimé et dont les nombres de faces dans toute triangulation "en tirant des sommets'' sont les coefficients des puissances de $(x-1)/2$ dans le $n$-ième polynôme de Legendre. Nous montrons que les nombres centraux de Delannoy comptent toutes les faces dans la triangulation "en tirant des sommets'' en ordre lexicographique qui contiennent un point dans un certain quadrant ouvert. Ainsi nous produisons une interprétation géométrique d'une relation entre les nombres de Delannoy centraux et les polynômes de Legendre, notée il y a 50 ans. Nos polytopes sont reliés intimement aux polytopes de racines introduits par Gelfand, Graev, et Postnikov.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|
Loading...