A bijective proof of a factorization formula for Macdonald polynomials at roots of unity
Résumé
We give a combinatorial proof of the factorization formula of modified Macdonald polynomials $\widetilde{H}_{\lambda} (X;q,t)$ when $t$ is specialized at a primitive root of unity. Our proof is restricted to the special case where $\lambda$ is a two columns partition. We mainly use the combinatorial interpretation of Haiman, Haglund and Loehr giving the expansion of $\widetilde{H}_{\lambda} (X;q,t)$ on the monomial basis.
Nous présentons une preuve combinatoire de la formule de factorisation des polynômes de Macdonald modifiés $\widetilde{H}_{\lambda} (X;q,t)$ quand $t$ est spécialisé à une racine primitive de l'unité. Notre preuve se restreint au cas particulier des partitions $\lambda$ n'ayant que deux colonnes. On utilise principalement l'interprétation combinatoire de Haglund, Haiman and Loehr donnant le développement de $\widetilde{H}_{\lambda} (X;q,t)$ sur la base des fonctions monomiales.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|
Loading...