N

N

The impact of core precedences in a cyclic RCPSP with
precedence delays
Zdenek Hanzalek, Claire Hanen

» To cite this version:

Zdenek Hanzalek, Claire Hanen. The impact of core precedences in a cyclic RCPSP with precedence
delays. Journal of Scheduling, 2015, 18 (3), pp.275-284. 10.1007/s10951-014-0399-4 . hal-01185106

HAL Id: hal-01185106
https://hal.science/hal-01185106
Submitted on 13 May 2018

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-01185106
https://hal.archives-ouvertes.fr

Manuscript

Click here to download Manuscript: articlecoreaugust2014.tex
Click here to view linked References

O J o U W N

OO CTUICTUIUTUIOTUTOTOT R DB BB DB DDA DWWWWWWWWWWNNNNNNNNONNNN R R R R R R
GO WNHFROWOJNTTDdWNROWVW®O-JAUTDWNROWOW®-JAOAUTDWNROWWTAUB®WNROWOOW-DIUDSWNRF O WL

Journal of Scheduling manuscript No.
(will be inserted by the editor)

Impact of Core Precedences in a Cyclic RCPSP with
Precedence Delays

Z. Hanzalek - C. Hanen

the date of receipt and acceptance should be inserted later

Abstract In this paper, we introduce new kind of constraints, called core prece-
dence constraints, in a cyclic Resource Constraint Project Scheduling Problem
with precedence delays. We show, by an example, which kind of industrial con-
straints might be modeled by such core precedences in a periodic production set-
ting. We then establish that these constraints can be quite easily added to ILP for-
mulation of the cyclic RCPSP. Although core precedences seem to be very similar
to classical precedence, they can induce infeasibility even without resource con-
straints. Moreover, we show that the feasibility checking problem is NP-complete in
the strong sense, even assuming unit processing times and no resource constraints.

1 Introduction

A cyclic extension of the Resource Constraint Project Scheduling Problem with
precedence delays (RCPSP) is a useful way to model scheduling problems occur-
ring in code generation for VLIW architectures (Very Long Instruction Word refers
to a processor architecture designed to take advantage of instruction level paral-
lelism)[27][9] as well as in production systems [25][22]. RCPSP [18] was also used
to model a message scheduling problem [15] in industrial communication protocols
[17].

Cyclic scheduling problems of iterative loops or production processes are in-
duced by a set of computing or manufacturing operations to be repeated. An
iteration is defined by one repetition of this set. A periodic schedule starts a new
iteration every period (so a period reflects the takt time). Iterations are usually
interleaved to achieve efficiency : once started an iteration may span over sev-
eral periods, so that in each period interval, iteration numbers of tasks are not
necessarily the same.

Zdenek Hanzalek
Czech Technical University in Prague, Faculty of Electrical Engineering
E-mail: hanzalek@fel.cvut.cz

Claire Hanen
LIP6, UPMC, Paris, and University of Paris-Ouest-Nanterre-La-Défense
E-mail: claire.hanen@lip6.fr

O J o U W N

OO CTUICTUIUTUIOTUTOTOT R DB BB DB DDA DWWWWWWWWWWNNNNNNNNONNNN R R R R R R
GO WNHFROWOJNTTDdWNROWVW®O-JAUTDWNROWOW®-JAOAUTDWNROWWTAUB®WNROWOOW-DIUDSWNRF O WL

2 7. Hanzalek, C. Hanen

In [16] the authors studied the scheduling problems induced by the IEEE
802.15.4/ZigBee communication protocol and they observed that this problem
has a cyclic scheduling nature. This paper was first motivated by the use of al-
gorithms developed for cyclic RCPSP to solve this problem. However, our study
led us to introduce, within the cyclic RCPSP framework, the new concept of core
precedences.

In a cyclic RCPSP setting the concept of uniform precedences [27] is used to
control interleaving of iterations. However, uniform precedence constraints and
RCPSP resource constraints (see the definition and an example in Section 2.1)
are not sufficient to describe the whole ZigBee problem [16], since they are not
able to model some relations between tasks within the period, regardless of their
iteration number. In this paper we show other practical examples (e.g. cleaning of
a machine before the end of a shift) where such particular precedence constraints,
called core precedences, are needed.

However, core precedences may induce infeasibility of the whole system. Hence,
in this paper, we study the feasibility checking problem with and without resource
constraints. We first show how core precedence constraints can be included in an
ILP model for the feasibility problem with resource constraints and with a fixed
period.

Furthermore, we show that the decomposed software pipelining approach de-
scribed in [5] can be used to reformulate the feasibility checking problem as a graph
problem. This formulation is used to prove that combining uniform precedences
and core precedences leads to an N"P-complete problem in the strong sense, even
if unit processing times are assumed and resource constraints are omitted.

This paper is organized in 5 sections. Section 2 describes the problem settings
and introduces core precedence constraints through an example and core feasibility
problems. In Section 3, a short discussion on the extension of previous approaches
led us to introduce some useful notations and definitions from which a graph model
for the problem without resource constraints is set. Then, we show an ILP model
of the problem with a fixed period and resource constraints. Section 4 is devoted to
the complexity of the feasibility problem without resource constraints. We prove
its AP-completeness by a reduction from 3-SAT. The last section concludes the

paper.

2 Problem Definition

In this section, we first introduce the cyclic RCPSP setting [9]. Then, we introduce
core precedences and we show how they can be used to model practical problems.
We then state and discuss the feasibility problems that are induced by these new
constraints.

2.1 Cyclic RCPSP based on uniform precedences

Among models for cyclic scheduling problems with temporal and resource con-
straints [14], [27], [22], [1], the Cyclic unitary RCPSP problem is one of the most
useful, for which some approximation and ILP algorithms have been provided and
evaluated on benchmarks [5], [9], [2]. In this subsection, we recall the main features

O J o U W N

OO CTUICTUIUTUIOTUTOTOT R DB BB DB DDA DWWWWWWWWWWNNNNNNNNONNNN R R R R R R
GO WNHFROWOJNTTDdWNROWVW®O-JAUTDWNROWOW®-JAOAUTDWNROWWTAUB®WNROWOOW-DIUDSWNRF O WL

Impact of Core Precedences in a Cyclic RCPSP with Precedence Delays 3

of this model, then in next subsection we show how it can be extended to handle
the special constraints of our motivating example.

2.1.1 Statements and notations

In this model, the set of tasks 7T is supposed to be executed an infinite number of
times (consider for example infinite execution of an iterative loop). For each task
T;, and each iteration number ¢, we denote by Tiq the ¢'" occurrence of task 75.
An infinite schedule s assigns a starting time s! to each occurrence 7 of task
;.
In the rest of the paper, we focus on periodic schedules, i.e. schedules such
that each task is repeated every A time unit: V7T; € 7, s? =s; + (¢ — 1)A, where
8i = s} is the starting time of the first occurrence of T;, and X is (the length of)
the period of the schedule.

Remark 1 The term “periodic scheduling” is often related to the “multi-periodic”
problems where the required periods of tasks are different [20]. But in cyclic
scheduling problems [24], we use the term “periodic ” when each task is repeated
every A time units, though all tasks have the same period.

The resource constraints are defined as follows:

1. m resource types. The availability of resource type k € {1,...,m} is denoted
by Ry.

2. A set T of n tasks {Tj, }1<i<p With integer processing times {p;, }1<;<n. Fach
occurrence of T; uses r;; units of type k resource during its execution, where
rik is an integer.

3. If s is a schedule, then for any time unit ¢, and any resource k, the sum of
resource requirements made by all tasks T}/, such that s{ <t < s? + p;, is not
greater than Rj.

4. The problem is called unitary if r;; € {0,1}.

A widely used model for cyclic precedence constraints is called “uniform prece-
dences” [14]. Such constraints are defined by a bi-valued graph Gy = (T, &) with
nonnegative integer valuations [and h called, respectively, the length and height
of the arc. For arc a = (T3, T;) we denote its length by I;; and its height by h;j. The
length denotes a precedence delay while the height counts the number of iterations
by which i precedes j (see below). We assume here that [and h are nonnegative.

An arc a = (T;,T;) of Gy induces an infinite number of precedence constraints

on any schedule s as follows: for any iteration g, Tiq precedes T;.Hh“ by the prece-
dence delay I;; i.e.
q+hi, q
'Sj 7 — 'Si > lij
Notice that for a periodic schedule, a uniform precedence induces a simple
linear inequality [14] :

Sj — 84 Z lij — /\hij
For path p of Gy, we denote the sum of the lengths of its arcs by L(p), and

the sum of the heights of its arcs by H(u). The example below shows a classical
application for which uniform precedences define a convenient model.

O J o U W N

OO CTUICTUIUTUIOTUTOTOT R DB BB DB DDA DWWWWWWWWWWNNNNNNNNONNNN R R R R R R
GO WNHFROWOJNTTDdWNROWVW®O-JAUTDWNROWOW®-JAOAUTDWNROWWTAUB®WNROWOOW-DIUDSWNRF O WL

4 7. Hanzalek, C. Hanen

2.1.2 Example of uniform precedences

Let us consider a signal processing application with a periodically sampled input
U and output Y realized by the loop shown below.
for ¢ :=1 to N do
a(q) := U(q) - c(g-2); // task Ty
b(q) :=a(q) * 5; // task Tp
c(q) := b(q) + U(q); // task Tk
d(q) := b(q) + c(q-2); // task Ty
Y(q) := U(g-1) + d(q); // task T5
end

The application is executed on two addition units and one pipelined multiplica-
tion unit. All tasks have a unit processing time. The result on the (non-pipelined)
addition unit is available immediately after processing, therefore the correspond-
ing [;; = 1. The result on the pipelined multiplication unit is available with one
time unit delay, therefore, the corresponding I;; = 2. The height h;; specifies the
shift of the iteration related to the data produced by task 7; and read (consumed)
by task T;. The corresponding uniform graph is shown on Figure 1.

Fig. 1 Uniform graph

The resulting cyclic schedule of the first, second and third iteration for the
loop with N = 3 is shown on Figure 2. This example illustrates a typical property
of a periodic cyclic schedule: an iteration spans over several periods (e.g. the first
iteration is scheduled in period 1, 2 and 3). Consequently, a period contains tasks
from different iterations (e.g. period 3 contains tasks from the first, second and
third iteration).

e e i 0
ADDI B
wou | (7] [[

0 1 2 3 4 5 6 ‘7 é; “) 1‘()

| period 1 | period 2 | period 3 | period 4 | period 5 |

Fig. 2 Periodic schedule

O J o U W N

OO CTUICTUIUTUIOTUTOTOT R DB BB DB DDA DWWWWWWWWWWNNNNNNNNONNNN R R R R R R
GO WNHFROWOJNTTDdWNROWVW®O-JAUTDWNROWOW®-JAOAUTDWNROWWTAUB®WNROWOOW-DIUDSWNRF O WL

Impact of Core Precedences in a Cyclic RCPSP with Precedence Delays 5

2.2 Core of a periodic schedule and core precedence

Let s be a periodic schedule of period A. It is useful to consider another represen-
tation of s, that will be used in the next section.

For a task T;, we decompose s;, the starting time of its first occurrence, modulo
the period A: s; = 0; + oy A, with o; € [0,)),; € N. We call @; the retiming of T;,
and the vector o is called the core of the periodic schedule. Indeed, we can observe
that in any feasible periodic schedule with period A, if we consider an interval
[gA, (g+1)A) of the steady state (for a large enough ¢), then g\ + o; is the starting
time of the only occurrence of T; in this interval. This occurence is then 11.‘1"'1_0"’.

Thus, o; is an acyclic schedule of tasks that fulfills the resource constraints. The
retiming «; models the span of an iteration over different periods in the schedule.

For example, in the case of the cyclic schedule shown on Figure 2: A = 2,
o2 = 1, ag = 0, as 13 is scheduled in period 1, and o5 = 0, a5 = 2, as 13 is
scheduled in period 3.

Notice that a uniform precedence constraint (T3,7;) induces the following in-
equality:

0j = 0i 2 lij = Mhij + o — ai) (1)

We now introduce a new type of constraint, called core precedences, aimed at
modeling some constraints observed in practice, that bind tasks within the core
schedule, regardless of the retiming of the underlying schedule:

Consider an instance of the cyclic RCPSP problem described in previous sec-
tion. A core precedence constraint links the core starting times of two tasks T; and
T; with a time lag denoted by c;; € Z

O']‘ — 0 Z Cij (2)

We consider a graph Go = (T, E¢) of such core constraints in addition with
an instance of the cyclic RCPSP problem.

Notice that a core precedence links the cores of tasks occurrences within any
period interval of the steady state of a periodic schedule, regardless of their iter-
ation number. So, it shares this feature with usual resource constraints. However
there are also some differences. For example let us consider a disjunctive constraint
between two tasks 1; and 7). Then, in any period interval of a periodic schedule
the current occurrence of these two tasks should not be computed simultaneously,
regardless of the iteration number of these two occurrences. So the scheduler has
to decide whether the occurrence of Tj is scheduled before or after the occurence of
T; in the core schedule. A core precedence constraint does not give such a choice:
the order between the two tasks is induced by the constraint. However, a core
constraint could result from partial choices made on usual disjunctions.

2.3 Example of core precedences

As a motivation example, we introduce a lacquer production scheduling problem
inspired by an industrial case study [4], introduced in the Ametist project. We
assume a cyclic production of bronze (tasks 71 to T3 in Figure 3), metallic (tasks
T4 to Tg), and universal (tasks To to Ti2) lacquers with a fixed volume to be
produced each week. We deal with a fixed period of one week, where working days

O J o U W N

OO CTUICTUIUTUIOTUTOTOT R DB BB DB DDA DWWWWWWWWWWNNNNNNNNONNNN R R R R R R
GO WNHFROWOJNTTDdWNROWVW®O-JAUTDWNROWOW®-JAOAUTDWNROWWTAUB®WNROWOOW-DIUDSWNRF O WL

6 7. Hanzalek, C. Hanen

are used for production and weekend is used for a general clean-up. The recipe for a
given type and quantity of lacquer defines the production tasks with the processing
times, required resources (see Table 1), and uniform precedence constraints (solid
arcs labeled 1;;, hy; in Figure 3).

Five production steps are assumed: In the first step, solid and liquid input
materials and solvents are prepared (tasks T1,T5,Ts,To and Tip). Then, in the
second step, the materials are unified using dose spinner (tasks 7,77 and T41).
When the unification procedure is finished, the lacquer quality is checked in the
laboratory. The laboratory check takes 60 time units for bronze lacquer and 100
time units for metallic or universal lacquer. These operations are modeled by arc
lengths since the laboratory is an unconstrained resource. The arc length relates
the starting time of the origin task to the starting time of the destination task.
Therefore, it includes processing time of the origin task and duration of the lab-
oratory check. For example, l23 = 8 4+ 60,178 = 12 + 100 and 111,12 = 10 + 100.
Finally, the mixing vessel is emptied at the filling station (tasks T3,Tg and Ti2).
When the filling operation is finished, the mixing vessel is cleaned. The cleaning
of the vessel is performed by an unconstrained resource in 4 time units (modeled
by the arc lengths including the processing time of the origin task and duration of
the cleaning l31 = 12+ 4,lga = 12+ 4 and l129 = 14+ 4).

There are the following resources:

— resource 1 : mixer with capacity Ry =1,

— resource 2 : dispersing line with capacity Rz = 2,

— resource 3 : dose spinner with capacity R3 = 1,

— resource 4 : filling station with capacity R4 = 1,

— and resource 5 is a fictive resource with capacity Rs = oo to execute dummy
tasks.

Different vessels are used for the production of lacquers: two for the bronze one,
three for the metallic one, and two for the universal lacquer. The available vessels
are modeled as nonzero heights of corresponding uniform precedence constraints
(e.g. h31 = 2 in the case of the bronze lacquer). Dummy task T4 is used to model
the start of the metallic lacquer production.

task T Ty 13 Ty Is Tg Ty Ty To Tyo T The Tz Tiso1r Tis
proc.time | 8 8 12 0 8 14 12 12 8 16 10 14 0 8 56
resource 1 3 4 5 1 2 3 4 1 2 3 4 5 5 5

Table 1 The processing times and required resources for tasks in Figure 3

Core constraints are represented by dashed arcs in Figure 3 (the length of an
arc equals zero when there is no label). They are used to model the following
requirements independent of the iteration number:

— In order to absorb blend (a mixture of two types of lacquer), the tasks per-
formed on the filling station should be executed such that the previous lacquer
is absorbed by the subsequent one, i.e. in our case, the bronze one is filled
first, then the metallic one and finally the universal one. A core precedence
constraint relates the core starting time of the origin task to the core starting
time of the destination task. Therefore, the time lag is equal to the processing
time of the origin task (c3g = 12 and cg,12 = 12).

O J o U W N

OO CTUICTUIUTUIOTUTOTOT R DB BB DB DDA DWWWWWWWWWWNNNNNNNNONNNN R R R R R R
GO WNHFROWOJNTTDdWNROWVW®O-JAUTDWNROWOW®-JAOAUTDWNROWWTAUB®WNROWOOW-DIUDSWNRF O WL

Impact of Core Precedences in a Cyclic RCPSP with Precedence Delays 7

Fig. 3 An example of the lacquer production

Notice that this sequence (modeled by core arcs from T3 to T and from Tg to
Ti2), executed each week, is then finished by a general cleanup Tig executed at
the weekend. In contrast to uniform precedence relations, which represent the
flow of the product (vessel with lacquer) of the same iteration, this sequence is
independent of the iteration, and therefore, it is modeled by core precedence
constraints.

Dispersing operations are performed on the dispersing line, which is started just
once a week. The dispersing line accommodates these operations regardless of
their iteration number and, therefore, we model this synchronization by two
core arcs with zero length (from Ts to Tho and from Tig to Ts).

Production tasks cannot be scheduled during the night or the weekend, and
they cannot be interrupted by the night or the weekend. This constraint is
modeled by the dummy task T3, used to model the start of the week, by the
fixed-position of tasks Th4,715,T16, 117 blocking all resources during the night
and by Tig blocking all resources during the weekend.

The Gantt chart of a feasible solution of this lacquer problem is shown in

Figure 4.

O J o U W N

BB R DR S DD DD WWWWWWWWWWDNDNDDNDNDNDNDNDNDNdNRERPRPRERERRRRRRRE
O 0O IO U WNREPEOWO-JIJOHUEd WNREPOWOJIOUud WNE O WOWWJoyU b wNE O w

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

8 7. Hanzalek, C. Hanen

mixer Ty T T

. .) T"7 T
dispersing line = |

10
spinner Tyt T T
H H q—1 q—2 q—1

filling station Ty | T¢ T4
ficti T oy T T 7 TS

ctive I, 14 15 16 17 18

0 24 48 72 9 120 144 168
Mon 6 a.m. Tue 6 a.m. Wed 6 a.m. Thu 6 a.m. Fri 6 a.m. Sat 6 a.m. Sun 6 a.m.

Fig. 4 A feasible solution of the lacquer problem

2.4 Feasibility of Core constraints

If the problem without core precedences is feasible, then there is not always a
feasible periodic schedule as shown by the following example, which assumes no
resource constraints, only a nonnegative core and uniform precedences:

— Gy is a simple circuit of 3 unit processing time tasks 77,715,713, with l1o =
1,h12=0,la3=1,h23=0,and l31 =1,h31 =1
— G is composed of two arcs: (T»,71) with c1 = 1 and (7%,7%) with ¢1,3 = 1.
Clearly, in any feasible core, o2 < 01 < 03. According to inequality 1, consid-
ering a uniform arc (T;,7}): 0j — 03 > l;j — Mhij + aj — o).
This will imply that

o — > —hiy + {ul

A

Applying this inequality to arc (T1,7T2) leads to as > a1 since o1 — o2 < 0.

Similarly, for arc (T2, Ts) we get as > az. Consider now arc (T3,71): a1 —ag >
—1+ [H%=21] As o3 > 0y, [2EHB=1] > 1, so that a1 > a3 and then all o; are
equal.

But then the uniform arc (71, 7%) and the core arc (T, T}) are not compatible.

This result leads us to define the following problems:

— UCEF: uniform and core feasibility. Given a uniform graph Gy and a core graph
G, does a feasible periodic schedule that satisfies both exist?

— UCF _fixed_period. Given a uniform graph Gy and a core graph G¢, does a
feasible periodic schedule with a given period X that satisfies both exist?

— RCUCEF: resource constrained uniform and core feasibility. Given a cyclic re-
source constrained scheduling problem with core constraints, does a feasible
periodic schedule exist?

— RCUCF _fixed_period: Given a cyclic resource constrained scheduling prob-
lem with core constraints, does a feasible periodic schedule with a given period
A exist?

Notice that as finding a periodic schedule with a given period A (or minimiz-
ing) given a cyclic RCPSP problem setting is an NP-hard problem, the problem
RCUCEF _fixed_period is still NP-hard when core precedence constraints are added.

O J o U W N

OO CTUICTUIUTUIOTUTOTOT R DB BB DB DDA DWWWWWWWWWWNNNNNNNNONNNN R R R R R R
GO WNHFROWOJNTTDdWNROWVW®O-JAUTDWNROWOW®-JAOAUTDWNROWWTAUB®WNROWOOW-DIUDSWNRF O WL

Impact of Core Precedences in a Cyclic RCPSP with Precedence Delays 9

3 Models for UCF and RCUCF fixed_period

In this section, we present some previous results of the literature and we show
how they can be used to model two of the feasibility problems introduced in the
previous section. If we do not consider resource constraints, the feasibility checking
problem is expressed as a graph problem, while an ILP is defined for checking the
feasibility within a given period in the presence of RCPSP resource constraints.

3.1 State of the art

Most of the results on cyclic scheduling problems aim to minimize the period of
a feasible schedule or to build a feasible schedule for a fixed period. The related
literature also refers to “modulo scheduling” [26] and “software pipelining” ap-
proaches [1], [21]. It is well known that if no resource constraints are considered,
given a uniform graph Gy, the feasibility problem, as well as the period minimiza-
tion problem, can be solved in polynomial time, even if arbitrary integer lengths
are considered. According to [27]:

Lemma 1 Let H(c) stands for the sum of the heights of the arcs in circuit ¢ and L(c)
for the sum of the lengths of its arcs. If Gy is feasible, then any circuit c satisfies
H(c) > 0.

If this condition is met, we can define a lower bound on the period of any periodic
schedule:

L(c)

B =
c circuit of Gu H(C)

®3)

Following [27] and [24], this bound can be computed in polynomial time, for ex-
ample with parametric algorithms given in [22], or other algorithms experimented
in [8] and we get:

Lemma 2 if Gy is feasible then YA > B there exists a periodic schedule with period
A satisfying the constraints of Gy, that can be found in polynomial time.

Now, finding a modulo schedule of minimal period X is known to be N'P-hard
when resources are limited [14].

On the other hand, a bound due to resource constraints only can be defined
by

AT — max ZTLETpirik)
1<k<m Ry,

That is the minimum such that the renewable resources are not overloaded and it
can be easily proven that A%P" > A"5

Several approaches have been investigated in order to solve the cyclic RCPSP

problem. Integer Linear Programming [2], greedy iterative heuristics [21][19][26][23][28],

mixed approaches [11][10][3], constraint programming [6], and the so called de-
composed software pipelining approach [5][7][29][13] from which we borrow some
concepts, which will be useful to reformulate the UCF problem in terms of graphs.

O J o U W N

OO CTUICTUIUTUIOTUTOTOT R DB BB DB DDA DWWWWWWWWWWNNNNNNNNONNNN R R R R R R
GO WNHFROWOJNTTDdWNROWVW®O-JAUTDWNROWOW®-JAOAUTDWNROWWTAUB®WNROWOOW-DIUDSWNRF O WL

10 7. Hanzalek, C. Hanen

Assume that we get a cyclic RCPSP instance, with a uniform graph Gy;, and
let (s;)7;e7 be a periodic schedule with core (0)7;e7 and retiming (o;)r,e7-
A retiming is called “feasible” if :

V(Ti,Tj) € Ey, hij +a;—a; > 0 (4)

It can be proven ([7]) that any feasible schedule induces a feasible retiming.

From a feasible retiming « the core graph G{; can be defined by removing the
arcs from Gy for which h;; + o; — a; > 0, keeping their length, and adding two
dummy nodes Ts¢qrt source of the graph, and T,,, sink of the graph with zero
processing time, with appropriate lengths of their incident arcs.

It has been proved in [5] that for any feasible retiming «, if a core schedule o is
built according to the RCPSP resource constraints and the generalized precedence
constraints modeled by the core graph Gf; then a periodic schedule s with period
Cinaz (o)) whose retiming is o and whose core schedule is o can be defined.

This property is used for parallel processors in [13][7] and for RCPSP con-
straints and precedence delays in [5] to build schedules according to the following
decomposed software pipelining algorithm:

1. Find a feasible retiming (;);e7

2. Build with a list algorithm, a schedule o of the acyclic graph Gf; that fulfills
the resource constraints

3. Build the periodic schedule whose period is the makespan of o, whose core is
o and whose retiming is a.

It has been proved in [5] that if:

1. unitary resource demands are assumed (ry; € {0,1});

2. a retiming minimizing the length of the longest path of G{; or based on a
schedule build by assuming an infinite amount of resources is used at step 1;

3. a list schedule is used in step 2;

then DSP provides a polynomial time approximation algorithm with a bounded
worst case ratio. So, as core precedences only concerns the core schedule construc-
tion step, decomposed software pipelining seems to be a convenient approach to
solve problems with core precedences. But, as shown in the previous subsection,
core precedences may induce infeasibility, which is not handled by this approach.
However, we show in next subsection that decomposed software pipelining can be
used to formulate UCF as a graph problem.

3.2 A graph model for UCF

In this subsection we do not assume any resource constraints. Assume that a

feasible retiming « is given following Equation 4. Recall that any schedule o of

the generalized precedence graph Gf; with given « induces a periodic schedule

satisfiying the constraints of Gyy. Now core constraints can be easily added to G§;.

So let us define the graph H® that combines the arcs of Gf; and the arcs of G¢.
The existence of a periodic schedule with retiming « that fulfills the precedence

and core constraints can thus be solved by checking if H* contains a cycle.
Notice that once a retiming is given this can be checked in polynomial time.
So, we get the following lemma

O J o U W N

OO CTUICTUIUTUIOTUTOTOT R DB BB DB DDA DWWWWWWWWWWNNNNNNNNONNNN R R R R R R
GO WNHFROWOJNTTDdWNROWVW®O-JAUTDWNROWOW®-JAOAUTDWNROWWTAUB®WNROWOOW-DIUDSWNRF O WL

Impact of Core Precedences in a Cyclic RCPSP with Precedence Delays 11

Lemma 3 The UCF problem can be reformulated as follows: Find a feasible retiming
a such that the graph H® is acyclic.

We shall use this formulation in next section to study the complexity of this
problem.

3.3 An ILP model for RCUCF _fixed_period

Several ILP models have been proposed for cyclic RCPSP problems [9]. According
to the authors of [2], the most efficient model is the generalization of time-indexed
Eichenberger model. Notice that this model as well as the other model proposed
in [16] can be easily extended to handle core precedence constraints and arbitrary
lengths and heights.

Eichenberger and Davidson [12] initially describe a model with unit processing
time tasks for the feasibility of a periodic schedule with period A. This model
can be extended to handle integer processing time [9]. It uses, as variables, core
variables o;, integer retiming variables a; and some time-indexed binary variables
related to the core:

y; such that, y7 =1 if and only if o; = 7

A—1
=3 (5)
7=0
A—1
dul=1, Vie{l,...,n} (6)
7=0
05— 05 >l —)\(hij + a5 — a;) V(Ti,Tj) e by (7

n Y
Yoo > k< By Vke{l,..ompVye{0,... A-1} (8)
i=1 max(0,7y—p;+1)

y; €{0,1} Vie{l,....,n},vre€{0,.... A~ 1} (9)
a; €{0,...,. K -1} Vie{l,...,n} (10)

Constraints (7) are the precedence constraints. Constraints (6) state that each
generic task has to be started exactly once in the period or, equivalently, that the
remainder of the division of o; by A lies in {0,...,A—1}. With this decomposition,
the set of operations such that y; = 1 directly gives resource constraints (8).
Core precedence constraints can also be included in the model, following Equa-
tion (2)
05 — 03 2 Cij V(T@Tj) € E¢

So, RCUCF _fixed_period as well as UCF_fixed_period can be modeled as an
ILP. Notice that if we try to solve RCUCF, constraint (7) is not linear anymore,
since period A multiplies the retiming variable. So to solve this problem, a binary
search on A should be made, while solving an ILP for each fixed .

O J o U W N

OO CTUICTUIUTUIOTUTOTOT R DB BB DB DDA DWWWWWWWWWWNNNNNNNNONNNN R R R R R R
GO WNHFROWOJNTTDdWNROWVW®O-JAUTDWNROWOW®-JAOAUTDWNROWWTAUB®WNROWOOW-DIUDSWNRF O WL

12 7. Hanzalek, C. Hanen

4 The complexity of UCF

UCF is a key problem, and if we could get solutions of UCF, the resolution of all
problems with resource constraints could be made easier using a similar approach
as the decomposed software pipelining. However, we prove in this section that
whereas it has no resource constraints, the UCF problem is still NP-complete,
even if unit processing time tasks and usual precedences (uniform arcs of length
1) are assumed.

4.1 Problem expression with H®

Let us consider two graphs Gy and G¢, and let us assume that the lengths of the
arcs are unitary.

From Lemma 3 the feasibility problem without resource constraints can be
expressed as follows:

— Does a feasible retiming « exist such that H® is acyclic?

Remark 2 Let o be a feasible retiming.

Then for any circuit ¢ of Gy, there are at most H(c) arcs (T;,T}) of ¢ such
that h;; + o(j) — «(i) > 0. Thus, at most H(c) arcs of ¢ have been removed while
defining G from Gy .

We will use this remark to formulate a proof of NP-completeness of UCF.

4.2 Proof of NP-completeness

Let us consider an instance of the 3—SAT problem. We are given n binary variables
Z1,...,Tn and m clauses C1,...,Cp. Bach clause is defined by 3 literals. A literal
is either an z; or its complement z;.

The decision problem 3 — SAT can be formulated as follows:

— Do binary values of the variables exist such that in each clause, at least one
literal is true?

This problem can be illustrated by the following example with 4 variables and
3 clauses:

C1 ={x1,22,24}, Co={zx2.73,24}, C3={T1,43,%4}

For this example, 1 = 1,29 = 0,23 = 0,24 = 0 provides satisfiability of this
system.

Let us associate an instance of our feasibility problem with a 3—SAT instance.
Let us define, for each variable z;, two tasks denoted by z; and z; with an arc of
Gy from z; to z; with length 1 and height 0, and an arc from z; to x; with length
1 and height 1. These arcs are called “variable arcs”.

Now let us define for each clause C; four tasks c?, cl, c?, c?. Let us add, in Gy,
the following arcs with length 1 representing the literals : (c?,c}), (c},c?), (c?,c?)
with height 0 and (c?,c?) with height 2. These arcs are called “clause arcs”.

O J o U W N

OO CTUICTUIUTUIOTUTOTOT R DB BB DB DDA DWWWWWWWWWWNNNNNNNNONNNN R R R R R R
GO WNHFROWOJNTTDdWNROWVW®O-JAUTDWNROWOW®-JAOAUTDWNROWWTAUB®WNROWOOW-DIUDSWNRF O WL

Impact of Core Precedences in a Cyclic RCPSP with Precedence Delays 13

Notice that according to Remark 2, in any feasible retiming «, exactly one of
the variable arcs related to z; will be removed to get Gf7, while at most two of the
clause arcs related to clause C; will be removed to get Gg;.

Let us assume without loss of generality that the literals are ordered with
respect to the index number of the associated variables (so if z; or z; is the first
literal (resp. second), z; or &; the second (resp. third) literal, then ¢ < j). Let us
now define the core arcs as follows: assume that z; is the literal k € {1,2,3} of
clause Cj. Then (x;, cf_l) and (c?, z;) are arcs of G¢. If ©; is the literal k in clause

Cj, then (a?i,c?_l) and (cf,mi) are arcs of Gg.
Notice that c? has only one incoming core arc and no outgoing core arc, whereas

c;’ has only one outgoing core arc and no incoming core arc. c},c? both have one

incoming and one outgoing core arc. Figure 5 shows the graph associated with the
example.

Corearcs ~—-—-- c

3
Uniform arcs ,,..ﬂ--*@«\
/',/ ; %

, L . \

& A : R \I
7 : 4 e
f/ 77/’/ s | “\\
s s e 7 \.\ - i
; [R X X X, X
Xu 1 AT 2R T2, s 1 3 4
/ ! -~ f e 4 H
! I i e i T \
: | oty Ll TR S 1
| L \ (d’r_l_ggg(_#;g\;;,j T !
| 1.7 ¢ D ET ‘ .\. s ;
! 4 Lo A i Seo ™ ‘
. A 1 ¥ 4
\k -
b "__,’
C 2 c

Fig. 5 A polynomial reduction

Lemma 4 If there is a feasible retiming o such that H* is acyclic, then the 3 — SAT
instance is satisfiable.

Proof. For cach variable z;, let us set x; = 1 if the arc (x4, 2;) is in HY, z; =0
otherwise.

We know that for cach clause C; there is at least one arc (cf_l,cf) which
remains in H*.

Let us assume that the kY literal of clause C; is x;. Then, as we have the
core arc (oci,c?_l), the clause arc (c?‘l,cé?) and the core arc (c?,x‘i), if H* has no
circuit, then the variable arc (#;,z;) cannot belong to H*. Therefore, (z;, ;) is in
H*, and z; = 1, so that clause C; is true.

Let us now assume that the k' literal of clause C; is &;. Then as we have

the core arc (fi,cf_l), the remaining arc (cf_l,c’?

;) and the core arc (c?,xi), the
variable arc (z;, ;) cannot belong to H®, and therefore, (z;, ;) is in X and x; = 0,
so that the clause C; is true.

O

O J o U W N

OO CTUICTUIUTUIOTUTOTOT R DB BB DB DDA DWWWWWWWWWWNNNNNNNNONNNN R R R R R R
GO WNHFROWOJNTTDdWNROWVW®O-JAUTDWNROWOW®-JAOAUTDWNROWWTAUB®WNROWOOW-DIUDSWNRF O WL

14 7. Hanzalek, C. Hanen

Let us now consider the reciprocal of this lemma:

Lemma 5 If the 3 — SAT instance is satisfiable then a retiming o such that H® is
acyclic exists.

Proof. Assume that in the satisfiable assignment z; = 1. Then we set ag; = ag; =
0, so that the variable arc (x;,%;) remains in H® whereas the other vanishes. If
xz; = 0, then we set az; = 0,7, = 1, so that the variable arc (z;,z;) remains in
HE.

Consider now a clause C;, and its first true literal k € {1,2,3}. We define the
retiming of tasks of clause C; as follows:

— If k=1 then ap = a, =0,a, =1,a, = 2, so that in H* the only remaining
J J J J
clause arcs for C; are (c?,c;) and (c?,c?).
— if k=2 then ap =0, = a2 = 1,a, =2, so that in H® the only remaining
J J J J

clause arcs for C; are (c},c?) and (c?,c?).
— if k=3 then apo =0, =1,a.2 = a,s = 2 so that in H* the only remaining
J J 7 7

clause arcs for C; are (c?,c;’) and (c?,c?)

Figure 6 shows the graph H® for the assignment z1 = 1,29 = 23 = x4 = 0.

‘ i . s,
14 IS - —— |
‘ E - e
)1 P \\ \\ \{
- - \ 3
— - — g A
L S i, X
X, ‘C‘xq X .‘\ *x2\ X, - X, X, 4
\ I o ™ ! o S

Fig. 6 A graph H®

Let us assume that there is a circuit p in H®.

We first prove that there cannot be a clause C; for which the arc (c?,c?)
belongs to u. Indeed, the only possible incoming arc to c;’ is the arc (c? (,?) The
only possible outgoing arc from c? is (cg»], cjl) As at least one of them is not in H<,
this arc cannot belong to the circuit.

Let us now prove that if (c?‘l, cf) belongs to p then there is another circuit

which does not pass through this arc. Notice that cf_l has only one incoming

arc that may belong to p (from a variable node z; (resp.z;)) and c? has only
one outcoming arc that may belong to px (to the complemented variable node &;
(resp.x;)), we can define the part y’ of the circuit from z; (resp.z;) to z; (resp.@;).

O J o U W N

OO CTUICTUIUTUIOTUTOTOT R DB BB DB DDA DWWWWWWWWWWNNNNNNNNONNNN R R R R R R
GO WNHFROWOJNTTDdWNROWVW®O-JAUTDWNROWOW®-JAOAUTDWNROWWTAUB®WNROWOOW-DIUDSWNRF O WL

Impact of Core Precedences in a Cyclic RCPSP with Precedence Delays 15

By construction, the corresponding literal is true in the satisfiability problem, so
the remaining arc (z;,%;) (resp. (#;,2;)) added to u’ defines a new circuit. Hence,
if there is a circuit in H®*, there is a circuit that does not use any of the clause
arcs.

Let us now consider the variable node of i with the maximum index. Without
loss of generality, assume that it is node z; (resp. ;). The predecessor of z; on
the circuit should be a clause node c?. The predecessor or c;? on p is then a
variable node, say z; (resp. ;). Thus, according to the definition of arcs, z;
(resp. z;) should be the k' literal of clause Cj, whereas x; (resp. @7) should be
the (k + 1)tk literal of the same clause. But as we assumed that the literals are
ordered by increasing index, ¢’ > 4, which contradicts the fact that x; (resp. ;)
has a maximum index on p. O

From this we deduce our complexity result:

Theorem 1 The feasibilily of a cyclic problem with core precedences and without re-
source constraint is NP— complete.

Proof. Given a retiming «, a simple depth first search algorithm can be used
to check the existence of a circuit in H® in polynomial time, so the feasibility
problem is in N'P. Using the previous transformation, and Lemma 4 and 5 we get
our result. O

5 Conclusion

In this paper, we defined, in the cyclic RCPSP framework, a new kind of con-
straints called core precedence constraints, and we illustrated the concept through
an industrial example. Then we discussed the interest of the DSP approach to find
feasible solutions or to minimize the period. And finally we used this approach
to prove that even without resource constraints, introducing core precedence con-
straints makes the feasibility of a schedule a N"P-complete problem. This paper
is a first insight for this new kind of constraint. New ideas and algorithms should
be further investigated in order to efficiently solve problems with and without
resource constraints.

6 Acknowledgments

This work was supported by the Grant Agency of the Czech Republic under the
project GACR P103/12/1994.

References

1. Allan, V.H., Jones, R.B., Lee, R.M., Allan, S.J.: Software pipelining. ACM Comput. Surv.
27(3), 367432 (1995)

2. Ayala, M., Artigues, C.: On integer linear programming formulations for the resource-
constrained modulo scheduling problem. LAAS report 10393. (2010)

3. Ayala, M., Benabid, A., Artigues, C., Hanen, C.: The resource-constrained modulo schedul-
ing problem: An experimental study. Comput. Optim. Appl. 54(3), 645-673 (2013). DOI
10.1007/s10589-012-9499-2. URL http://dx.doi.org/10.1007/s10589-012-9499-2

O J o U W N

OO CTUICTUIUTUIOTUTOTOT R DB BB DB DDA DWWWWWWWWWWNNNNNNNNONNNN R R R R R R
GO WNHFROWOJNTTDdWNROWVW®O-JAUTDWNROWOW®-JAOAUTDWNROWWTAUB®WNROWOOW-DIUDSWNRF O WL

16

7. Hanzalek, C. Hanen

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

. Behrmann, G., Brinksma, E., Hendriks, M., Mader, A.: Production scheduling by reacha-

bility analysis - a case study. In: Workshop on Parallel and Distributed Real-Time Systems
(WPDRTS), p. 140.1. IEEE Computer Society Press (2005)

. Benabid, A., Hanen, C.: Worst case analysis of decomposed software pipelining for cyclic

unitary rcpsp with precedence delays. Journal of Scheduling 14(5), 511-522 (2011)
Bonfietti, A., Lombardi, M., Benini, L., Milano, M.: A constraint based approach to cyclic
rcpsp. In: CP’11, pp. 130-144 (2011)

Calland, P.Y., Darte, A., Robert, Y.: Circuit retiming applied to decomposed soft-
ware pipelining. IEEE Trans. Parallel Distrib. Syst. 9(1), 24-35 (1998). DOI
http://dx.doi.org/10.1109/71.655240

Dasdan, A., Irani, S., Gupta, R.K.: Efficient algorithms for optimum cycle mean and
optimum cost to time ratio problems. In: Design Automation Conference, pp. 37-42
(1999)

Dupont de Dinechin, B., Artigues, C., Azem, S.: Resource constrained modulo scheduling.
In: C. Artigues, S. Demassey, E. Neron (eds.) Resource-Constrained Project Scheduling:
models, algorithms, extensions and applications, Control systems, robotics and manufac-
turing series, pp. 267-277. ISTE and John Wiley, London (2008)

Dupont de Dinechin, B.: From machine scheduling to vliw instruction scheduling. ST
Journal of Research 1(2) (2004)

Dupont de Dinechin, B.: Time-indexed formulations and a large neighborhood search
for the resource-constrained modulo scheduling problem. In: P. Baptiste, G. Kendall,
A. Munier-Kordon, F. Sourd (eds.) 3rd Multidisciplinary International Scheduling confer-
ence: Theory and Applications (2007)

Eichenberger, A., Davidson, E.: Efficient formulation for optimal modulo schedulers. SIG-
PLAN - PLDI'97 (1997)

Gasperoni, F., Schwiegelshohn, U.: Generating close to optimum loop schedules on parallel
processors. Parallel Processing Letters 4, 391-403 (1994)

Hanen, C., Munier, A.: Cyclic scheduling on parallel processors: An overview. In:
P. Chrétienne, E.G. Coffman, J.K. Lenstra, Z. Liu (eds.) Scheduling theory and its appli-
cations. J. Wiley and sons (1994)

Hanzalek, Z., Burget, P., Sucha, P.: Profinet io irt message scheduling with temporal
constraints. Industrial Informatics, IEEE Transactions on 6(3), 369-380 (2010). DOI
10.1109/T11.2010.2052819

Hanzalek, 7., Jurcik, P.: Energy efficient scheduling for cluster-tree wireless sensor net-
works with time-bounded data flows: Application to ieee 802.15.4/zigbee. Industrial In-
formatics, IEEE Transactions on 6(3), 438 —450 (2010). DOI 10.1109/T11.2010.2050144
Hanzalek, Z., Pacha, T.: Use of the fieldbus systems in academic setting. In: Real-Time Sys-
tems Education III, 1998. Proceedings, pp. 93—-97 (1998). DOI 10.1109/RTSE.1998.766518
Herroelen, W., Leus, R.: Robust and reactive project scheduling: A review and classi-
fication of procedures. International Journal of Production Research 42(8), 1599-1620
(2004)

Huff, R.A.: Lifetime-sensitive modulo scheduling. In: In Proc. of the ACM SIGPLAN ’93
Conf. on Programming Language Design and Implementation, pp. 258—267 (1993)

Kim, E.S., Glass, C.: Perfect periodic scheduling for three basic cycles. Jour-
nal of Scheduling 17(1), 47-65 (2014). DOI 10.1007/s10951-013-0331-3. URL
http://dx.doi.org/10.1007/s10951-013-0331-3

Lam, M.: Software pipelining: an effective scheduling technique for vliw machines. SIG-
PLAN Not. 23(7), 318-328 (1988). DOI http://doi.acm.org/10.1145/960116.54022
Levner, E., Kats, V., de Pablo, D.A.L.: Cyclic scheduling in robotic cells: An extension of
basic models in machine scheduling theory. In: E. Levner (ed.) Multiprocessor Scheduling;:
Theory and Applications, pp. 1-20. I-Tech Education and Publishing, Vienna Austria
(2007)

Llosa, J.: Swing modulo scheduling: A lifetime-sensitive approach. In: Proceed-
ings of the 1996 Conference on Parallel Architectures and Compilation Techniques,
PACT ’96, pp. 80-. IEEE Computer Society, Washington, DC, USA (1996). URL
http://dl.acm.org/citation.cfm?id=882471.883302

Munier-Kordon, A.: A graph-based analysis of the cyclic scheduling problem with time
constraints: schedulability and periodicity of the earliest schedule. Journal of Scheduling
pp. 1-15 (2010). URL http://dx.doi.org/10.1007/s10951-009-0159-z

Proth, J.M., Xie, X.: Modélisation, analyse et optimisation des systémes a fonctionnement
cyclique. Masson (1995)

O J o U W N

OO CTUICTUIUTUIOTUTOTOT R DB BB DB DDA DWWWWWWWWWWNNNNNNNNONNNN R R R R R R
GO WNHFROWOJNTTDdWNROWVW®O-JAUTDWNROWOW®-JAOAUTDWNROWWTAUB®WNROWOOW-DIUDSWNRF O WL

Impact of Core Precedences in a Cyclic RCPSP with Precedence Delays 17

26.

27.

28.

29.

Rau, B.R.: Iterative modulo scheduling: an algorithm for software pipelining loops. In:
MICRO 27: Proceedings of the 27th annual international symposium on Microarchitecture,
pp. 63-74. ACM, New York, NY, USA (1994)

Robert, Y., Vivien, F.: Introduction to Scheduling. CRC Press, Inc., Boca Raton, FL,
USA (2009)

Smelyanskiy, M., Mahlke, S., Davidson, E.: Probabilistic predicate -aware modulo schedul-
ing. In: International symposium on Code generation and optimization: feedback-directed
and runtime optimization (2004)

Wang, J., Eisenbeis, C., Jourdan, M., Su, B.: Decomposed software pipelining: a new
perspective and a new approach. Int. J. Parallel Program. 22(3), 351-373 (1994). DOI
http://dx.doi.org/10.1007/BF02577737

