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ABSTRACT 

Despite its relative robustness, subjective video quality 

evaluation is a time-consuming and costly process. 

Alternatives are required therefore to simplify visual 

quality estimation, particularly in the case of new video 

formats. This paper presents an analysis of full reference 

quality metrics focused on Ultra High Definition 

sequences, encoded with H.265/High Efficiency Video 

Coding. After evaluating the individual performance of 

three objective video quality metrics - structural 

similarity, gradient difference, and motion distortion - an 

optimal combination is defined, to be weighted by three 

perceptibility criteria, considering luminance, motion, and 

texture masks, in uniform and selective perception 

contexts. Performances at each step are compared by 

correlation, to subjective scores of each sequence given by 

Subjective Assessment Methodology of Video Quality 

session. A close correlation to subjective quality 

measurements is measured applying three indicators. 

Index Terms— Video quality evaluation, High 

Efficiency Video Coding, Ultra High Definition, structural 

similarity, gradient, motion vectors. 

1. INTRODUCTION 

Estimating consumer perceived video quality has been 

always a major challenge for content distribution and 

delivery professionals. Although, significant advances 

have been accomplished in video quality assessment 

research in the past twenty years, the recent emergence of 

a new Ultra High Definition (UHD) video format is much 

likely to require adapted quality measures. Namely, 

application of the novel H.265/HEVC compression 

standard [1], raises the question about how pertinent are 

existing quality measures. 

Separate benchmarking of full reference objective video 

quality metrics, over UHD and/or HEVC encoded content 

have been already analyzed in [2]. Beyond this essential 

analysis, this paper studies the performance gain of a 

complete quality model, based mainly on local spatial 

noise weightings, according to coding defect perception 

resilience, and selective visual perception. Although more 

performant and refined video quality metrics exist, their 

application to UHD 4K 50Hz HEVC encoded sequences, 

requires a complex infrastructure to cope with high 

processing constraints. For this reason, simpler local 

quality metrics, associated to modeled perception criteria 

are proposed, as an alternative approach. 

To present this contribution, Section 2 introduces the 

Subjective Assessment Methodology of Video Quality 

(SAMVIQ) that serves as reference to all the objective 

measurements of this work. The three selected video 

quality metrics for coding defect estimation are described 

in Section 3. A suitable combination of quality metrics to 

improve the known performance of individual measures is 

proposed in Section 4. The impact of distortion is 

described in Section 5, and the effect of selective 

perception, is described in Section 6. Main obtained 

results are discussed in Section 7. 

2. SUBJECTIVE EVALUATION 

The SAMVIQ methodology [3] has been defined in order 

to discriminate perceived quality of multimedia content. 

Initiated by the European Broadcasting Union (EBU), the 

video evaluation part is standardized in ITU-R-BT.1788. 

For each scene of 10s to 20s containing explicit and 

hidden references, several sequences under particular test 

conditions are proposed to viewers. They can play and 

rate sequences in any order on a continuous quality scale 

(0 to 100), making use of five quality items. 

2.1. Test scenes 

Three UHD 4K video sequences (in a YUV 420 8 bit 

format) are selected for subjective evaluation, because of 

their complex diversity in motion and texture. These 

sequences come from Sveriges Television AB (SVT) and 

EBU test sets [4, 5]. Table 1 lists the basic video 

characteristics of each scene. 

Table 1: Scene description 

Scene Source Frame rate Duration 

Crowdrun SVT 50 10s 

Park_Dancers EBU 50 15s 

Studio_Dancers EBU 50 15s 



2.2. Encoder configuration 

Scenes are encoded using the HEVC test model, HM11 

[6]. The chosen configuration is random access. In this 

configuration, some frames are periodically intra-coded (I-

frame) while others called predicted frames (P-frame) or 

bi-predicted frames (B-frame) are coded using previously 

coded I, P or B frames as shown in Figure 1. The selected 

profile is “main” and the level is 6.2, because it allows up 

to 3840*2160p60 HEVC encoding. Video encoding is 

performed applying a fixed quantization parameter (QP). 

 

 

Figure 1: Example of the encoding structure. 

QP sets are selected to provide a large subjective quality 

variation, from high/acceptable to impaired. Table 2 lists 

defined QP sets for each scene and Table 3 the associated 

output HEVC bit rate. 

Table 2: QP selection per scene 

Scene QP 1 QP 2 QP 3 QP 4 

Crowdrun 32 35 38 41 

Park_Dancers 29 32 35 38 

Studio_Dancers 29 32 35 38 

Table 3: Bitrates in Mbps per scene and per QP 

Scene QP 1 QP 2 QP 3 QP 4 

Crowdrun 22.7 15.1 10.3 6.9 

Park_Dancers 10 6.5 4.3 2.7 

Studio_Dancers 7.6 5.1 3.5 2.4 

2.3. Methodology 

The SAMVIQ session is performed by Orange Labs in 

Rennes, France, respecting the viewing room illumination 

recommended by ITU-R BT. 500. A JVC ProVerite is 

used for testing display. Table 4 lists the main display 

characteristics.  

Table 4: Display specifications 

Screen technology LCD-LED 

Screen size 84’’ 

Screen definition 3840*2160 

Video Input SDI*4 

Based on a HP Z840 with a Matrox 4K video monitoring 

card, the player hardware achieves real-time playback of 

3840x2160p60 raw video samples. It uses the Subjective 

Evaluation of Video Quality player software, developed 

by Orange. To carry out the tests, 24 non-expert observers 

are selected. Nevertheless, after the rejection method is 

applied, only 21 observer scores are kept. All observers 

are seated at 1.5H during the tests. As illustrated in Figure 

2 by three separated lines, observers easily distinguish the 

different levels of quality. Note also that the Crowdrun 

scene shows a consistent lower perceived video quality, 

despite its higher bit rate. 

 

 

Figure 2: SAMVIQ perceived video quality per QP and 

scene. 

3. INDIVIDUAL OBJECTIVE VIDEO QUALITY 

METRIC ANALYSIS  

Several quality measurements could be applied in our 

case. Among those possibilities, Structural SIMilarity 

(SSIM), gradient magnitude difference, and motion 

distortion provide complementary and suitable local 

measures of video distortion. SSIM is widely used in the 

industry and academic research, for video quality 

estimation, while spatial gradient magnitude difference 

and motion distortion are used to complete SSIM analysis. 

These metrics are evaluated separately, to compare their 

correlation to the described subjective evaluations.  

3.1. SSIM 

SSIM [7] is a method to measure local spatial similarities. 

For two signals x and y, it is defined as: 

 

 
(1) 

With:  

     and    x and y averages respectively. 

   
  and   

 , x and y variances respectively. 

    , x and y covariance. 

   and   , constants. 

 



3.2. Gradient Magnitude Difference 

The gradient magnitude difference highlights defects on 

edges. This measurement is applied due to SSIM 

deficiencies in detecting block artifacts on test sequences. 

Gradient maps of the reference and test sequences are 

generated with Sobel horizontal and vertical operators in 

respectively Equation (2) and (3).  

 
 

 

(2) 

 

 

(3) 

The gradient magnitude difference is processed as 

depicted in Figure 3. 

 

Figure 3: Processing of gradient magnitude difference. 

3.3. Motion distortion 

SSIM and gradient magnitude do not consider motion 

variation. Motion distortion is expressed as the distortion 

between motion vectors of the reference and test 

sequences. Motion magnitude difference (DM) and the 

cosine of motion orientation difference (Dangle) are 

processed according to Equations (4) and (5). Besides, 

Motion_Difference (Equation (6)) provides an estimation 

of local motion quality: 

 
 

(4) 

 
 

(5) 

  (6) 

3.4. Performance comparison 

Estimated qualities of video sequences are calculated by 

averaging local quality scores spatially and temporally, 

over the whole sequences. Three commonly applied 

correlation indicators are selected for performance 

evaluation [8]: 

 The Spearman rank correlation coefficient 

(SRCC).  

 The Kendall rank correlation coefficient 

(KRCC). 

 The Pearson linear correlation coefficient 

(PLCC). 

These correlation coefficients denote high correlation for 

values close to 1. Correlation values are computed using 

the subjective and objective quality estimations, over the 

three scenes and their respective QP sets. Figure 4 

presents the individual performance of the three 

previously described objective quality metrics, according 

to the correlation indicators. The best performance 

corresponds to SSIM, while motion vector difference is 

the worst. Such difference can be explained by the high 

variability of the motion vector difference measurement, 

due to the importance given to orientation difference.  

 

Figure 4: Comparison of individual objective video 

quality metric performances. 

Given these dissimilarities and considering the importance 

of taking into account the quality metrics, an optimized 

combination was further investigated, looking for an 

improved correlation with subjective evaluations. 

4. QUALITY METRIC COMBINATION 

The proposed approach to combine the previously 

analyzed metrics is to build a weighted sum. As seen in 

Figure 5, a weight is defined for each metric.  

 

Figure 5: Combination of spatial quality metrics. 

For our purpose, following experimental sampling tests, 

weights are assigned using three values - 0, 1, and 5 - 

permitting to cope with processing time constraints, 
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adapted to multiple UHD 4K 50Hz sequences. A spatial 

quality weighted sum is calculated for each evaluated 

block of a sequence. Thereafter, obtained values are 

integrated over the sequence by using an average function. 

All the test video sequences are processed in the same 

manner, before calculating the relative performance 

results. 

Making use of the different associations of values {0-1-5; 

0-1-5; 0-1-5}, the quality metrics are combined and then 

compared applying the three correlation coefficients. 

Figure 6 represents the obtained performance for each 

weights set of local spatial quality metrics. Each 

orientation denotes a weight set identified by its label. The 

digits represent from left to right, the SSIM weight, the 

gradient magnitude difference weight, and the motion 

vector difference weight. The closer a point is to the outer 

edge of the circle, the higher the respective correlation 

coefficient is. As observed in the first analysis (section 

3.4), values sets giving the highest weight to SSIM, 

display the highest correlation with the subjective quality.  

Similarly, weight sets giving the highest weight to motion 

vector difference, display the lowest correlation. 

 

Figure 6: Correlation coefficient values per spatial quality 

metric weight set. 

5. INFLUENCE OF DISTORTION 

PERCEPTIBILITY 

Section 4 analyses the video quality estimation variation 

brought by combining several local quality metrics. 

However, it does not take into account the spatio-temporal 

content of the sequence which can highly influence the 

locally perceived video quality. In this section, the 

distortion perceptibility map represents the local content 

resilience to coding artifacts. Such map is generated 

through a sequence of pre-analysis. Three maps based on 

human visual system properties are calculated and 

summed into a perceptibility mask.  

5.1. Processed masks 

- Luminance masking: It assumes that this masking 

effect considers darkest and brightest areas, as being 

more resilient to distortions [9]. The masking effect 

integrates local and neighboring luminance. 

- Motion masking: It considers that motion 

characteristics can reduce perceptual impacts of 

coding artifacts. Motion magnitude and ego-motion 

[10] are therefore estimated for the mask. 

- Texture masking: Content texture is analyzed using 

three components decomposition [11]. As a 

consequence, textured zones are more perceptively 

resilient to coding artifacts, than smooth and edge 

areas. 

5.2. Processing of spatial perceptible quality 
A perceptibility mask is defined as the weighted sum of 

the luminance, motion vector magnitude, and texture 

masks. The mask is applied then to the previously defined 

combined local spatial quality. Tested values for 

perceptibility weights are also {0; 1; 5}. Methodology for 

sequence quality estimation and performance indicators is 

identical to the one previously described. Figure 7 

displays how spatial perceptible quality is processed. 

 

 

Figure 7: Spatial perceptible quality calculation. 

Our analysis focused on one particular spatial weight set, 

{5; 1; 0}, which is 5 for SSIM, 1 for gradient magnitude 

difference, and 0 for motion vector difference. From an 

experimental point of view, it appears to be the best 

configuration using two spatial quality metrics. 

Figure 8 displays the obtained performance for the 

different weight sets applied to calculate the perceptibility 

mask. Each line of the figure represents a perceptibility 

weight set, identified as in Figure 6. From left to right, 

digits describe respectively the weights of luminance 

perceptibility, motion perceptibility, and texture 

perceptibility. The lowest line represents the {0; 0; 0} 

weight set, which means that no perceptibility mask is 

applied. As a result, this perceptibility configuration 

shows one of the lowest correlations with subjective 

quality. While it is difficult to highlight one perceptibility 

configuration, it is clear that configurations considering 

only one perceptibility mask do not generate the best 

performances. Conversely, different masks appear to 
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complete each other, since configurations including the 

three masks perform well. 

 

Figure 8: Perceptibility weight set performance. 

6. SELECTIVE PERCEPTION 

In Section 5, a content distortion perceptibility mask was 

added to the local quality estimation. Nevertheless, it was 

not considered that local distortion perception also 

depends on its visibility relatively to other distortions. 

This section assumes that distortion perception is not 

uniform, depending on the visual context and spatio-

temporal distortion distribution. Firstly, this paper 

considers thus that the perception of distorted zones 

depend on their size [8].  A mask for spatial visibility of 

distortions is processed for each local quality metric, 

taking into account spatially neighboring quality. 

Secondly, as documented in [12], highly distorted zones 

inhibit perception of lesser distorted ones. This section 

analyzes therefore the quality estimation variation brought 

at the sequence level by using percentile frame distortion 

estimation, instead of a simple average of the local values. 

Figure 9 displays the overall process applied to the spatial 

perceptible quality map. 

 

 

Figure 9: Perceived quality estimation. 

As shown in Figure 10, weighted coding defect visibility 

has no impact on the correlation with subjective scores. 

 

Figure 10: Influence of spatial visibility of distortions 

On the other hand, Figure 11 shows the performance gain 

when the average integration (letter M prefix) is replaced 

by percentile integration (letter P prefix), using the same 

spatial configuration as defined in section 5. This diagram 

shows that the perceptible configurations perform better 

with percentile application. It is interesting to note as well, 

that similar correlation values are obtained in this case, 

regardless of the perceptibility weight set. 

 

Figure 11: Sequence percentile/mean quality evaluation 

comparison. 

Given the strong impact of percentile application, it is 

important to check whether the spatial quality metrics 

combination selected in section 4 remains the optimum 

one. An interesting finding is that a significant 

improvement is brought by selecting the configuration {1; 

5; 0} instead of {5; 1; 0}, i.e. giving a stronger weight to 

gradient magnitude distortion in combination with SSIM. 

The application of percentile is particularly efficient in 

this configuration, with a 0.12 gain in correlation values. 

Such configuration results in the following correlation 

scores: PLCC = 0.897, SRCC = 0.881 and KRCC = 0.758. 

Figure 12 compares the previously described 

configuration result to subjective quality evaluation 

scores. 
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Figure 12: Subjective and perception objective quality 

estimation. 

A step by step full reference video quality model can be 

built assembling all the presented processing stages. 

Figure 13 represents the integration of the previously 

described functions, in order to estimate the perceived 

distortion in each block of the test sequences. 

 

Figure 13: Overall architecture of the model. 

7. DISCUSSION 

The analysis of full reference objective quality models 

over UHD HEVC must take into account processing time 

constraints, given the pixel by pixel nature of the 

calculation. An alternative to simplify objective visual 

quality estimation, without requiring a complex 

processing infrastructure has been examined. The 

objective quality score highlights the most perceptible 

block distortions in each frame of the sequence. 

Perceptible block distortions are computed as a weighted 

sum of two local objective quality metrics, filtered by 

local perceptibility of coding defects. Combined proposed 

improvements display interesting results, especially on the 

PLCC coefficient with an increase of 10% compared to 

SSIM alone.  

Obtained curves (Figure 12) have similar shapes but 

values differ and objective measures seem smoother than 

subjective scores. Results indicate that although calculated 

quality estimations follow the same qualitative order, from 

low to high visual quality (Crowd Run < Park Dancers < 

Studio Dancers) as subjective evaluations, the scales are 

not the same. While subjective measures vary from around 

25 to 70, the proposed objective measure varies from 86 to 

98. This suggests that the proposed model produces a 

similar evaluation as subjective scores, at a more compact 

scale, raising the question of how this behavior may 

replicate in other test sequences.  

Several future works have already been identified. Models 

will be extended in the temporal dimension for quality 

estimation and perception weighting. Model performance 

will also be confirmed on a wider dataset.  Finally, the 

model will also be evaluated, optimized, and eventually 

modified using other observation at the local level. 
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