
HAL Id: hal-01185086
https://hal.science/hal-01185086v1

Submitted on 30 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

A simple Arabic typesetting system for mixed
Latin/Arabic documents

Yannis Haralambous

To cite this version:
Yannis Haralambous. A simple Arabic typesetting system for mixed Latin/Arabic documents. TUG-
boat: the communications of the TeX users group, 2014, 35 (3), pp.277-283. �hal-01185086�

https://hal.science/hal-01185086v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

TUGboat, Volume 35 (2014), No. 3 277

A simple Arabic typesetting system for
mixed Latin/Arabic documents: d. ād

Yannis Haralambous

Abstract

We describeض (d. ād), a package allowing simple type-
setting in Arabic script, intended for mixed Latin-
Arabic script usage, in situations where heavy-duty
solutions are discouraged. The ض system operates
with both Unicode and transliterated input, allowing
the user to choose the most appropriate approach.

1 Introduction

As with many TEX projects, this one was started to
fulfill an immediate need: the author was writing
a paper for an Arabic language Natural Language
Processing conference [7] and hence was in need of
a straightforward way to introduce Arabic text into
his document. In this context, “straightforward” can
be subdivided into the following five requirements:

1. it should be compatible both with the IEEE

LATEX style [19] (required by the conference)
and with the WriteLATEX platform [3], of which
the author is an enthusiastic user;

2. it should allow user-friendly and robust input of
Arabic text, including when placed inside TEX
command arguments;

3. it should typeset in an optimal way all combina-
tions of letters and diacritics that may appear
in scholarly text;

4. it should provide some extra features: being
able to easily change the letter form, as well
as to colorize specific letters without breaking
contextual analysis;

5. the font should be easily readable in a context
of mixed Latin-Arabic script.

In the following discussion we will see why ex-
isting systems did not fulfill the requirements, and
how the author solved the problem.

1.1 Existing systems and their pitfalls

As we live in the 21st century, an obvious choice
for typesetting Arabic in TEX is X ETEX [12], a TEX
avatar (in)famous for typesetting in non-Latin scripts
by taking advantage of operating system resources.

Requirement 1 X ETEX indeed is provided on the
WriteLATEX platform. But the LATEX overhead for
typesetting Arabic in X ETEX is quite heavy (packages
fontspec, xunicode, arabxetex, etc.) and hence,
not surprisingly, X ETEX is incompatible with the
IEEE style.

Requirement 2 X ETEX is unable to use a transli-
teration system and hence requires the Arabic text

to be input in Arabic script and only in Arabic script.
Using a transliteration to input Arabic may seem
terribly old-fashioned to the reader, but there are
cases where it is the best solution. One of these
cases is the context of this paper: a mixture of Latin
script, Arabic script, and TEX commands.

Indeed, at the GUI level, there are—at least—
two drawbacks in combining Arabic and Latin script
in the same paragraph:

1. the use of the cursor and of left and right arrow
keys is very cumbersome: when you select a lo-
cation with the cursor you don’t know whether
you are in right-to-left or left-to-right mode and
hence you don’t know in which direction to ad-
vance, or how to select a given character string;

2. the situation is made even worse by the fact
that some punctuation marks (period, exclama-
tion mark, dashes, parentheses, braces, brackets,
etc.) are common to the two scripts and hence
the—quite sophisticated—bidirectional algo-
rithm is used to determine whether a punctua-
tion mark is to be placed on the left or on the
right of an Arabic word. The bidirectional algo-
rithm (or ‘bidi’ for the insiders) is both a bless-
ing and a curse. It is a blessing because it puts
some order in the rendering of mixed right-to-
left and left-to-right texts (cf. [6, p. 133–146])—
but this works well only if rle and lre are used
to indicate the embedding level. Otherwise, in
everyday use, bidi is a curse. Fig. 1 shows how
the TEX code for writing the word بتك with the
middle letter colorized in red is displayed by var-
ious programs under various operating systems;
not a single one of them really makes sense.

Requirement 4 Sophisticated OpenType fonts [6,
§D.9.4] handle relatively well the many letter + dia-
critic combinations, and most systems (including
X ETEX) can colorize word parts without breaking
contextual analysis through the use of the zero-width
joiner character [6, p. 104]. But not a single system
is able to colorize single letters inside ال , since this
ligature has always been considered as a single glyph
by font designers.

Requirement 5 The best way to match Latin and
Arabic script is to choose an Arabic font with rela-
tively small differences in height between letters. A
quite common choice is the font Geezah by Diwan
Software Ltd (developed for Apple WorldScript in
the early nineties, and still included in MacOSX,
through today). Geezah is a nice font but its dia-
critics are placed rather suboptimally, and modifying
their positions requires a high amount of competence
in fiddling around with OpenType features.

A simple Arabic typesetting system for mixed Latin/Arabic documents: d. ād

278 TUGboat, Volume 35 (2014), No. 3

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 1: To obtain بتك with letter ت in red, the author has typed the Unicode string
“kāf, zwj (zero-width joiner), \red{, zwj, tā❡, zwj, }, zwj, bā❡”. Here is the result, in
the following environments: (a) Chrome under MacOSX, (b) Safari under MacOSX,
(c) Firefox under MacOSX, (d) Internet Explorer under Windows 8, (e) Iceweasel
under Debian, (f) Mellel under MacOSX, (g) Nisus under MacOSX, (h) BBEdit
under MacOSX. The reader can see the variety of contextual forms displayed in these
examples. It is obviously not straightforward to understand the meaning of the code,
and using the cursor to edit it is no less than a Lovecraftian nightmare.

In transliteration this code snippet is simply written k-\textcolor{red}{-t-}-b.

1.2 The long and winding road towards
a solution

Obviously, Requirement 1 and WriteLATEX compat-
ibility ruled out Ω [8, 9, 10], despite its powerful
machinery for defining transliterations and applying
contextual analysis. X ETEX was ruled out since it
satisfies none of the requirements (1), (2), (4) or (5).
The two remaining choices are pdf(e)TEX [2] (with
bidirectional typesetting support) and LuaTEX [11].

Let us make a two-decade jump back in time.
On April 12, 1993, the author organized a work-
shop entitled “TEX and the Arabic Script”, at the
National Institute of Oriental Languages and Civi-
lizations (INALCO) in Paris. One of his contributions
to this workshop was a public domain Arabic TEX
font in Geezah design, in which the contextual analy-
sis was entirely done via TEX’s smart ligatures and
boundary characters [13]. This is indeed the simplest
approach: no extra technology was required other
than TEX–XET bidirectional typesetting and TEX3
smart ligatures. Nevertheless that font had a serious
pitfall: because the number of glyphs was limited
to 256, it was impossible to handle automatically
quadriform letters followed by a vowel. In that case,
it was necessary to introduce a vertical bar between
the letter and the vowel, so as to obtain its final
(or isolated) form (as for example, in ٌباتك = ktAbuN

which had to be written ktAb|uN). The proceedings
of this workshop were planned to be published in
the Cahiers GUTenberg, but this never happened—
which is a pity since among the speakers was also the
legendary creator of the Moroccan simplified Ara-
bic writing system [15, 17], Ahmed Lakhdar-Ghazal
(† 2008).

As building a font based entirely on smart liga-

tures was an interesting approach, the author tried
to investigate ways of succeeding now where he had
failed in 1993, by the use of modern technologies.

A first idea was to create ligatures between let-
ters and digits 0–3 to obtain contextual forms of the
letters, and to have some other mechanism insert
the digits. Indeed, LuaTEX provides callbacks for
both the token and the node list, which would be
natural choices for such a mechanism. Traversal of
the node list by LuaTEX is quite efficient, but unfor-
tunately unsuitable for this particular project since
at that stage, ligatures have already been applied, so
it is too late to insert digits among the nodes. After
some attempts, the token list callback was abandoned
since it is still in a very rudimentary state. Also,
unfortunately, LuaTEX has not yet implemented Lua
patterns, which are a kind of regular expressions, and
would make programming the contextual analysis
much easier.

A second idea was to use large virtual fonts to
encode all letter + diacritic combinations, so that
the 1993 approach would be applied not to letters
alone, but to letter + diacritic combinations. But
the attempt to generalize the 1993 approach to large
virtual fonts (OVF) has failed as well, because OVFs
do not provide support for Knuth’s boundary charac-
ter (indeed, in Ω, ΩTPs provide a much more elegant
solution to the word boundary problem, and there-
fore the boundary character was left out of the Ω
system, but again LuaTEX does not provide ΩTPs).
In this approach, the default form of a letter would
be the medial one, and boundary characters would
turn a letter into initial, final or isolated form.

The third attempt proved successful: instead of
using boundary characters, the author used smart

Yannis Haralambous

TUGboat, Volume 35 (2014), No. 3 279

ligatures between characters. In this case, the default
letter form is the isolated one. The presence of
a second letter changes the form of the first from
isolated to initial, and the one of the second from
isolated to final. A third letter will turn the second
letter into middle form and the third letter into final
(provided, of course, the second letter is quadriform),
and so on. More details are given in § 4.

2 The name

The next question was what to name the package.
Thanks to the Internet, search engines, social

media, and the like, people are becoming more and
more aware of other languages and writing systems.
Why not give this package an Arabic name, be it a
single letter?

The author has chosen the letter ,ض called d. ād,
because Arabic is traditionally called the “language
of the d. ād”, since this sound was historically consid-
ered as being unique to Arabic.

The reader is probably wondering how to pro-
nounce this letter, technically a “voiced velarized
alveolar stop” [18, p. 16]. Here is how [20, p. 10]
describes its pronunciation:

Pronounce the regular sound ‘d’ and you will
find that the tip of your tongue will touch
in the region of the upper front teeth/gum.
Now pronounce the sound again and at the
same time depress the middle of the tongue.
This has the effect of creating a larger space
between the tongue and the roof of the mouth
and gives the sound produced a distinctive
‘hollow’ characteristic, which also affects the
surrounding vowels. It is difficult to find a
parallel in English, but the difference between
‘Sam’ and ‘psalm’ (standard English pronunci-
ation) gives a clue. Tense the tongue muscles
in pronouncing ‘psalm’ and you are nearly
there. Now pronounce the a-vowel of ‘psalm’
before and after ‘d. ’, saying ‘ad. a’, keeping the
tongue tense, and that’s as near as we can get
to describing it in print.

3 How to use ض

The package provides three PostScript Type 1 fonts
(plain, bold and typewriter), “real” fonts (regular
TFM) and large virtual fonts (OVF and OFM files).
There are also rudimentary FD and STY files, a
MAP file, Perl scripts for conversion to (and from)
UTF-8, the Perl script which builds the font and
finally adjustment files, in case the user wants to
change kerning and diacritic placement.

It requires LuaTEX for change of direction and
OVF/OFM compliance.

To typeset in Arabic, one need only load the dad
package and use the macro \arab, which is a \long

macro: its argument may have multiple paragraphs.
Arabic text can be input in transliteration as

described in Table 1 or in UTF-8. To obtain, for
example, باتكِلا one would write \arab{AlkitAb} or
\arab{ باتِكلا }. By writing \arabtt{AlkitAb} one
obtains the typewriter version باتِكلا (which is less
appealing, but fits quite nicely with the Computer
Modern Typewriter font).

3.1 Rationale of the transliteration

Here are the rules of the proposed transliteration
(see Table 1):

1. pharyngeal ح = H, emphaticص = S,ض = D, ط =
T, ظ = Z and velar غ = R are uppercased —do not
confuse them with glottal ه = h, non-emphatic
س = s, د = d, ت = t, ز = z, and alveolar ر = r;

2. long vowels =ا) A, =و U, =ي Y) and ❡alif maqs.ūra

ى) = I) are also uppercased ;
3. some consonants are modified by adding a char-

acter h ذ) = dh, ث = th, ش = sh);
4. the stand-alone hamza is obtained by a vertical

bar | and letter ❢ayn by a grave accent (which,
in legacy TEX produces an inverted curly apos-
trophe, which is sometimes used to transliterate
this letter);

5. to avoid confusion between pairs of letters and
letters obtained by digraphs, one has to use a
dash to separate characters: compare هس = s-h

and ش = sh, or هت = t-h and ث = th;
6. more generally, the dash plays the rôle of zero-

width joiner :1 when writing ب = -b, the letter
bā❡ will be in final form; ب = b- and ب = -b- will
produce initial and middle letters, provided of
course the letter is quadriform (as is letter bā❡

in this example). This is very useful when de-
scribing grammar rules, to signify that a letter
(or letter group) is an affix;

7. the dash can also be used to reestablish con-
textual forms when combined with TEX com-
mands, for example, to colorize letters as in
Fig. 1. There is only one special case: when we
want to colorize a letter of an isolated ligature
ال , we add a digit 4 in front of the dash. For the
final ligature ال it will be a digit 5. Example: to
colorize the lāms of الالت , write

\arab{t-\textcolor{red}{-l5-}-A5%

\textcolor{red}{l4-}-A4}

1 Except for the case of letter ذ = dh which is biform and
hence is not connected with the following letter. By writing
هد = d-h one obtains letters dāl and hā

❡, but the hā
❡ is not in

medial form, as it would be in any other case when preceded
by a dash.

A simple Arabic typesetting system for mixed Latin/Arabic documents: d. ād

280 TUGboat, Volume 35 (2014), No. 3

Table 1: Transliteration of ض system

ء | آ ’A أ ’a ؤ ’u إ ’i ئ ’I

ا A ب b ة t* ت t ث th ج j

ح H خ x د d ذ dh ر r ز z

س s ش sh ص S ض D ط T ظ Z

ع ‘ غ R ف f ق q ك k ل l

م m ن n ه h و U ى I ي Y

ٱ A* ûْ o ûَ a ûِ i ûُ u ûً aN

ûٍ iN ûٌ uN ûّ + û� +a û� +i û� +u

û� +aN û� +iN û� +uN ûٰ a* ûê +a* ه�ل LLh

پ p گ g چ C ژ J ۀ e ڤ v

ے ’b ں ’n ڡ ’f ٯ ’q ûٓ a** û� +a**

8. finally, there is yet another use of the dash: when
doubled, it produces a kashida stroke: compare
ليل = lYl and لـيـل = l--Y--l. There is also a

\kesh command for extensible kashida (equiv-
alent to a \hrulefill using the default rule
thickness font dimension \fontdimen8):
l--\kesh--Y--\kesh--l. produces:

.لــيــل
9. some digraphs start with an apostrophe: the

hamza-carriers أ = ’a, إ = ’i, ؤ = ’u, ئ = ’I,
آ = ’A and also undotted letters bā❡ ے = ’b,
nūn ں = ’n, fā❡ ڡ = ’f and qāf ٯ = ’q;

10. other digraphs end with one or more asterisks:
the most frequent one is the tā❡ marbut.a ة =
t* (which can be used also in initial and me-
dial forms, and then becomes a regular tā❡).
The asterisk is also used for the was. la (which
is only placed on the ❡alif) ٱ = A* as well as for
the vertical fath. a (as in اذٰه = ha*dhA) and the
madda. The latter is normally used only on the
❡alif آ) = ’A) but can be found also in the notori-
ous muqat.t.a

❢āt in the Koran, as in قٓسٓعٓ (Koran

42:2) or صٓعٰٓيٰهكٓ (Koran 19:1)—sometimes it is
even combined with a šadda (as in صٓ�ملٓا , Koran

7:1 and [21, p. 111] for the šadda);
11. a special transcription is provided for the lig-

ature ه�ل = LLh used for the ةلالجلامسا “noun
of majesty”, which is the name of God ه�لا : in

this case—and in this case only—an upper-
case L is used. The reason is that we wish to
avoid ambiguity with other uses of the trigram
lām-lām-hā❡, for example ُهْللِضُْي (Koran 6:39)
where we encounter letters هلل but not with the
meaning “God”. In contrast to other systems,
the ه�ل ligature is available also in final form
(for هِ�لَِف which occurs six times in the Koran,
for example Koran 6:149), and it is possible to
add diacritics to its first glyph (as in هِ�لَِو , Koran

2:115 or هِ��ل , Koran 2:165).

3.2 Unicode input

Input can be transliterated or provided directly in
Unicode Arabic: \arab{YAnis} or \arab{ سِـناي } or
even \arab{ اي nis} or \arab{YA سِـن } will produce
the same result: سِناي .

All cells of Table 1 can be obtained by the cor-
responding Unicode characters (mostly via a single
character, except for šadda + vowel combinations
which require two characters). There is a special
case, though: the ه�ل ligature (see next section).

For the convenience of the user who wants to
write kashida (so that Arabic input is not disrupted)
we have defined a command (in Arabic characters)
طت \ (طت are the first two letters of ليوطت = tat.wyl, the

Arabic name of kashida) which is exactly equivalent
to \kesh and has to be placed between Unicode
U+0640 arabic tatweel characters.

Yannis Haralambous

TUGboat, Volume 35 (2014), No. 3 281

\documentclass{article}

\usepackage{dad}

\begin{document}

Weak. Weak verbs are those with one or more
weak letters و) or (ي as radicals. There are four
sub-classes:

• Assimilated. Assimilated verbs have ini-

tial و or (much more rarely) ,ي and two sound
radicals or middle ء and a sound final radical.
Typical doubled roots are سبي , لصو .

• Hollow. Hollow verbs have middle و or ي and
two sound radicals or initial ء and a sound
final radical. Typical hollow roots are لوق ,
ريص .

• Defective. Defective verbs have final و or
ي and two sound radicals. Typical roots are
وجر , يمر .

• Doubly weak. Doubly weak verbs have two
weak radicals, ,و ي or .ء Typical doubly weak
roots are يلو , ىوس , يتأ , يأر , ءوس .

\textbf{Weak}. Weak verbs are those with one

or more weak letters (\arab{U} or \arab{Y})

as radicals. There are four sub-classes:

\begin{itemize}

\item\textbf{Assimilated.} Assimilated verbs

have \emph{initial} \arab{U} or (much more

rarely) \arab{Y}, and two sound radicals or

middle \arab{|} and a sound final radical.

Typical doubled roots are \arab{Ybs},

\arab{USl}.

\item\textbf{Hollow.} Hollow verbs have

\emph{middle} \arab{U} or \arab{Y} and two

sound radicals or initial \arab{|} and a

sound final radical. Typical hollow roots

are \arab{qUl}, \arab{SYr}.

\item\textbf{Defective.} Defective verbs have

\emph{final} \arab{U} or \arab{Y} and two

sound radicals. Typical roots are \arab{rjU},

\arab{rmY}.

\item\textbf{Doubly weak.} Doubly weak verbs

have two weak radicals, \arab{U}, \arab{Y}

or \arab{|}. Typical doubly weak roots

are \arab{UlY}, \arab{sUI}, \arab{’atY},

\arab{r’aY}, \arab{sU|}.

\end{itemize}

In the middle of a verse hamzah is merged with
the final vowel of the preceding word, e.g., قََلهَك

َناَسْنإِْلا , He created man. Note that the َق or قََلَهك has
joined the ْل or َناَسْنإِْلَأ and while the hamzah sign
has disappeared from the text, ’alif is retained
but it is not pronounced.

Practice text 11
1. Man says — ُناَسْنإِْلاَلاَق
2. Does man think? — ُناَسْنإِْلاُبَسْحَيَأ
3. He said: How long hast thou tarried? — ْمَكَلاَق

َتْثِبَل
4. The truth is out— �قَحْلاَصَحصَْح
5. He created man from dry clay — َناَسْنإِْلاانََقَلهَك

ٍلاصَْلصَْنِم

In the middle of a verse \emph{hamzah} is

merged with the final vowel of the preceding

word, e.g., \arab{khalaqa Alo’iinosaAna},

He created man. Note that the \arab{qa}

or \arab{khalaqa} has joined the \arab{lo}

or \arab{’aalo’iinosaAna} and while the

\emph{hamzah} sign has disappeared from the

text, \emph{’alif} is retained but it is not

pronounced.\\[6pt]

\textbf{Practice text 11}\\

1. Man says --- \arab{qaAla Alo’iinosaAnu}\\

2. Does man think? --- \arab{’aaYaHosabu

Alo’iinosaAnu}\\

3. He said: How long hast thou tarried? ---

\arab{qaAla kamo labithota}\\

4. The truth is out --- \arab{HaSoHaSa

AloHaq+u}\\

5. He created man from dry clay ---

\arab{khalaqanaA Alo’iinosaAna mino

SaloSaAliN}

\end{document}

Figure 2: Sample LATEX document using ض ([16, p. 5] and [21, p. 54–55])

A simple Arabic typesetting system for mixed Latin/Arabic documents: d. ād

282 TUGboat, Volume 35 (2014), No. 3

3.2.1 The ه�ل ligature and Unicode

The ه�ل ligature is traditionally used for writing the
name of God: ه�لا . It can be found in religious texts,
but also in expressions (for example, ه�لاءاشنإ which
means “hopefully” appears even in the French lan-
guage as inchallah and in Portuguese as oxalá) and
in the very common surname ه�لادبع Abdullah.

The problem with this ligature is that it con-
tains a rather rare diacritic (a šadda combined with
a vertical fath. a—the latter is available in the Apple
Arabic keyboard layout but not the Microsoft one)
and, as a convenience, most standard fonts will re-
place the character string lām-lām-hā❡ (which would
normally look like هلل) by the complete ligature ه�ل ; in
other words: the font not only changes the glyphs
but, at the same time, also adds the diacritics. This
behavior is barely legitimate: a ligature (as in ‘fi’ or
‘ ال ’) is normally limited to a change of glyphs, and
should not add new characters (in this case, charac-
ters U+0651 arabic shadda and U+0671 arabic

letter superscript alef) since this means that
what is rendered no longer corresponds to the under-
lying Unicode character string.

Nevertheless, for the user’s convenience, we have
adopted that behavior also in ,ض but only in the
case of Unicode input. Therefore when the user
types Unicode lām-lām-hā❡ (the first lām must not
be preceded by a quadriform letter), the system will
produce the ه�ل ligature.

This method will not work if a diacritic is in-
serted between the two lāms, or if the first lām

follows a quadriform letter and hence will be medial.
For that case, we have defined a macro هلل / (the
macro name is in Arabic script so that right-to-left
direction is not disrupted) which takes an argument:
the vowel between the two lāms. Hence, to obtain
هِ�لَِف the user can choose between one of the following:

ûِ {ûِ } هلل / َـف

faLiLhi

The dotted circle, used to show the combining nature
of short vowels and other diacritics, can be obtained
by the macros \arabdottedcircle or ةرئاد / with
the macro name in Arabic script.

4 TEXnicalities

The ض font is a tour de force of smart ligature use:
for example, to obtain k1t2b3 (بتك) out of ktb =
k0t0b0 (or "0643"062A"0628) input, one needs the
following smart ligatures:

k0 LIG/ t0 → k1 t0

k1 /LIG t0 → k1 t3

t3 LIG/ b0 → t2 b0

t2 /LIG b0 → t2 b3

∅
l0

ل
ll0

لل
ll5A3

الل

ll1k3

كلل
LLh0

ه�ل
l1k3

كل
l4A4

ال

l0 ل l0 ل A0 ا

k0 h0ك k0ه ك
A0 ا

Figure 3: Finite state automaton starting with an
isolated lām (❡alif ا stands for the set of letter A = { ,ا
,أ ,إ ,آ ٱ }; ك stands for any Arabic letter besides ه and
set A.

as well as the following four for Unicode input:

"0643 LIG/ "062A → k1 t0

k1 /LIG "062A → k1 t3

t3 LIG/ "0628 → t2 b0

t2 /LIG "0628 → t2 b3

The first ligature of each group leaves t/"062A un-
changed (isolated) and turns k/"0643 into initial
form. Then the second ligature takes k1t0/k1"062A,
leaves k unchanged (initial) and turns t/"062A into
final form. But, because of the following b/"0628,
the third ligature will turn t into medial form, leaving
b/"0628 unchanged. And, finally, the fourth ligature
will leave t unchanged and turn b/"0628 into final
form. It is noteworthy that t changes form thrice:
from isolated (default) it turns into final and then
into medial form.

All basic Arabic glyphs are placed into the first
8-bit table. Then one 8-bit table (except for table
"06xx which is used for Unicode input) is added for
every letter + diacritic(s) combination, so that we
have, in total, 20 tables. The complete font contains
3,514 virtual glyphs, 403,913 ligatures (321,935 of
which are smart) and 7,810 kerns.

The most challenging letter is lām: the font
contains 3 initial lāms, 4 medial ones as well as 3
“fake” ligatures lām-lām (“fake” in the sense that
they are only needed because of TEX’s approach of
building ligature stepwise and hence needing inter-
mediate steps for all ligatures of length three and
more: to obtain the lām-lām-hā❡ ligature (see § 3.2.1)
one needs an intermediate lām-lām, even though this
pair of letters does not take any special form. In
Fig. 3 the reader can see the finite state automaton
starting with an isolated lām.

The virtual OVP font is built from the met-
rics of the PostScript Type 1 font by a Perl script.
This script also reads configuration files specifying
all kern pairs as well as all horizontal and vertical
adjustments of diacritics. By this method, every
letter has its diacritics placed at optimal positions.
To compile the OVP file produced by the script into

Yannis Haralambous

TUGboat, Volume 35 (2014), No. 3 283

OVF, it is mandatory to use tool wovp2ovf of ver-
sion higher than “1.13 (build 34787)”, which will be
included in TEX Live 2015.

Names of PostScript glyphs are standard,2 so
that copy-paste from a PDF file results in almost
perfect Unicode strings.

4.1 Conversion to and from UTF-8

As a tool for users, we provide two Perl scripts al-
lowing conversion from UTF-8 to our transliteration
scheme and back. These scripts can be applied se-
lectively using, for example, the feature of many
advanced text editors of applying text filters to se-
lected text areas.

5 Conclusion

There was a period (in the early days of non-Latin-
alphabet TEX [4, 5, 14]) where transliteration of in-
put text was the only available method. Then, when
Unicode was sufficiently widespread, TEX switched
to tools allowing direct non-Latin input. In the case
of Arabic, because of the particular characteristics
of this script, this is—even today—not always the
optimal solution, especially when we are dealing with
short extracts of Arabic text combined with Latin-
alphabet text and TEX commands. Maybe now is
the time to return to methods based on translitera-
tion, as an alternative to direct-input methods. We
have implemented this approach, using only smart
ligatures, as defined by Donald Knuth in 1990 [13],
and the large virtual font format introduced by Ω
and taken over by LuaTEX.

We hope that this package will be useful to users
seeking a straightforward method to introduce short
Arabic extracts into Latin-alphabet documents.

References

[1] Adobe Systems. Adobe glyph list.
http://partners.adobe.com/public/developer/

en/opentype/glyphlist.txt, 2002.

[2] Hàn Thé̂ Thành. Micro-typographic extensions
to the TEX typesetting system. TUGboat,
21(4):317–434, 2000. http://pdftex.org.

[3] John Hammersley, John Lees-Miller, et al.
The writeLATEX online collaborative LATEX editor.
http://www.writelatex.com.

[4] Yannis Haralambous. Arabic, Persian and
Ottoman TEX for Mac and PC. TUGboat,
11:520–522, 1990.

[5] Yannis Haralambous. Towards the revival of
traditional Arabic typography through TEX.

2 These names are either taken from the Adobe Glyph
List [1], or using the standard convention uniXXXX.var where
XXXX is the Unicode position of the character and var ∈ {ini,
med, fin, iso}. Ligatures are named by the names of their
components, concatenated using underscores.

In Proceedings of EuroTEX’92, pages 293–305.
CSTUG, 1992.

[6] Yannis Haralambous. Fonts & Encodings. O’Reilly,
2007.

[7] Yannis Haralambous, Yassir Elidrissi, and Philippe
Lenca. Arabic language text classification using
dependency syntax-based feature selection.
Submitted to CITALA 2014.

[8] Yannis Haralambous and John Plaice.
First applications of Ω: Adobe Poetica, Arabic,
Greek, Khmer. TUGboat, 15:344–352, 1994.

[9] Yannis Haralambous and John Plaice. Multilingual
typesetting with Ω, a case study: Arabic. In
Proceedings of the International Symposium on

Multilingual Information Processing ’97, pages
137–154. ETL, Tsukuba, Japan, 1997.

[10] Yannis Haralambous and John Plaice. The design
and use of a multiple-alphabet font with Ω.
In Electronic Publishing, Artistic Imaging,

and Digital Typography, volume 1375 of LNCS.
Springer, 1998.

[11] Taco Hoekwater. LuaTEX. TUGboat, 28:312–313,
2007. http://luatex.org.

[12] Jonathan Kew. X ETEX, the multilingual lion:
TEX meets Unicode and smart font technologies.
TUGboat, 26:115–124, 2005. http://tug.org/

xetex.

[13] Donald E. Knuth. The new versions of TEX and
METAFONT. TUGboat, 10:325–328, 1989.

[14] Klaus Lagally. ArabTEX—Typesetting Arabic
with vowels and ligatures. In Proceedings

of EuroTEX’92, pages 153–172. CSTUG, 1992.

[15] Ahmed Lakhdar-Ghazal. Pour apprendre

et mâıtriser la langue arabe. Institut d’études et
de recherches pour l’arabisation, Rabat, Morocco,
1991.

[16] John Mace. Arabic verbs and essential grammar.
Teach yourself books, 1999.

[17] Nicole Richert. Arabisation et technologie.
Institut d’études et de recherches pour
l’arabisation, Rabat, Morocco, 1987.

[18] Karin C. Ryding. Arabic. A linguistic introduction.
Cambridge University Press, Cambridge, 2014.

[19] Michael Shell. IEEEtran LATEX class.
http://ctan.org/pkg/ieeetran, 2007.

[20] John R. Smart. Arabic. Teach yourself books,
1986.

[21] Barakat Ahmad Syed. Introduction to

Quranic script. Curzon Press, 1984.

⋄ Yannis Haralambous
Institut Mines Télécom, Télécom Bretagne,

UMR CNRS 6285 Lab-STICC
Technopôle Brest Iroise CS 83818,

29238 Brest Cedex 3, France
yannis.haralambous (at) telecom-bretagne

dot eu

A simple Arabic typesetting system for mixed Latin/Arabic documents: d. ād

http://partners.adobe.com/public/developer/en/opentype/glyphlist.txt
http://partners.adobe.com/public/developer/en/opentype/glyphlist.txt
http://pdftex.org
http://www.writelatex.com
http://luatex.org
http://tug.org/xetex
http://tug.org/xetex
http://ctan.org/pkg/ieeetran

	Introduction
	Existing systems and their pitfalls
	The long and winding road towards a solution

	The name
	How to use [arabic] dad
	Rationale of the transliteration
	Unicode input
	The [arabic] LLh ligature and Unicode

	TeXnicalities
	Conversion to and from UTF-8

	Conclusion

