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Abstract. According to the World Health Organization, starting from 2010, can-
cer has become the leading cause of death worldwide. Prevention of major cancer
localizations through a quantified assessment of risk factors is a major concern in
order to decrease their impact in our society. Our objective is to test the perfor-
mances of a modeling method that answers to needs and constraints of end users.
In this article, we follow a data mining process to build a reliable assessment tool
for primary breast cancer risk. A k-nearest-neighbor algorithm is used to compute
a risk score for different profiles from a public database. We empirically show that
it is possible to achieve the same performances as logistic regressions with less
attributes and a more easily readable model. The process includes the intervention
of a domain expert, during an offline step of the process, who helps to select one
of the numerous model variations by combining at best, physician expectations
and performances. A risk score made of four parameters: age, breast density,
number of affected first degree relatives and breast biopsy, is chosen. Detection
performance measured with the area under the ROC curve is 0.637. A graphical
user interface is presented to show how users will interact with this risk score.

1 Introduction

As cancer is becoming the leading cause of death worldwide, prevention of major types
of cancer through a quantified assessment of risk is a major concern in reducing its
impact in our society. Physicians have to inform patients about risk factors and have to
detect fatal diseases as soon as possible in order to treat them as quickly as possible.
Nowadays, this detection is led by prevention programs designed to target highest-risk
subsets of the population. For example, women over 50 years old in France and over
40 in USA are recommended to perform a mammography every two years to detect
breast cancer; mammography being the primary method for detecting early stage breast
cancer which is the most common cause of cancer for women [18]. As a consequence,
our society could benefit from a widely used risk score in order to give more accurate
counseling on how cancer is impacted by risk factors and to target smallest subset of
the population with higher risks. For example, using age at first mammogram as an



actionable variable, screenings programs for breast cancer could be extended: younger
women with high risk profiles could be offered more frequent screenings in order to
decrease death risk [27].

Even if some women may have genetic predisposition for breast cancer, environ-
mental factors have a large impact on the risk according to Lichtenstein [22]. Because
of this impact and due to acquisition cost and easyness-to-use constraints, we have de-
cided to focus on environmental factors as attributes to compute a risk for women who
never had breast cancer.

As pointed out by Testard-Vaillant [28], ”information, dialog and more patient in-
volvement in the decision-making process” are key words in dealing with cancer, there-
fore a major challenge in the field of medical counseling is to provide physicians and
radiologists with adequate tools to help them to assess their patients breast cancer risk
and to show easily how risk factors impact global risk. For many years, risk scores built
upon statistical models were not adopted in medical counseling domain despite their
performance. This may be because end-users of these tools are not oncologists nor clin-
icians and underlying models are too complex and too difficult to use during a medical
consultation. Thus, to build a new risk score tool, we need to consider the model read-
ability and the current medical decision process. Moreover, we will have to consider the
obligation to use imbalanced datasets with missing data. To the best of our knowledge,
no one has been interested in analyzing, with a mining approach, data from women who
never had cancer in order to create a risk score with a prevention purpose.

Showing similar cases may improve communication with the patient, therefore in-
crease its involvement in the prevention and decision process. Because core concept of
k-nearest-neighbor algorithm is to gather similar profiles using a distance computation,
we use it with help of a domain expert in order to build a tool to predict breast cancer
risk and measure its performances.

The paper is organized in seven sections. Section 2 provides an overview of related
works on risk models; section 3 presents our approach of the data mining process we
follow; section 4 summarizes needs and constraints of users for the final tool; section 5
describes source data and section 6 reports results, discuss them and present future
works.

2 Breast cancer risk scores

2.1 Statistical approaches

We present studies focusing on prevention and the use of environmental factors such
as reproductive and medical history. One major risk prediction model emerges in the
statistical field.

Based on an unstratified, unconditional logistic regression analysis, the most com-
monly used model was developed by Gail et al [15] using data from the Breast Can-
cer Detection Demonstration Program. Risk factor information was collected during a
home interview and the analysis was based on approximately 6000 cases and controls.
Among 15 risk factors obtained through patient interviews, only 5 were chosen: age,
age at menarche (first natural menstrual period), number of previous breast biopsies,



age at first live birth and number of first-degree relatives with breast cancer. Gail’s risk
score was validated on the population of United States with the Cancer and Steroid
Hormone Study (CASH) by Costantino et al [6] and in Italy on the Florence-EPIC Co-
hort Study by Decarli et al [8]. Chen et al [5] enhanced the Gail model by modeling
the risk with a new equation that includes the breast density. Both regression equation
parameters and coefficients are very differents than Gail’s ones. It does not facilitate
praticians understanding of risk evolution when adding new risk factors as attributes to
describe the risk level.

Barlow et al [3] also built a risk prediction model using a logistic regression on
the Breast Cancer Surveillance Consortium (BCSC) database (see Table 1 and down-
load data from http://breastscreening.cancer.gov) which contains 2.4 millions screen-
ings mammograms and associated self-administered questionnaires (see section 5). Two
logistic regression risk models were built with 4 or 10 risk factors depending on the
menopausal status. Compared to Gail’s model, it gains the use of breast density and
hormone therapy. As we will use the same database, it is worth highlighting that re-
ported area under ROC curve (see performance measurement in section 3.4) was 0.631
for premenopausal women and 0.624 for postmenopausal women.

Primary goal of these studies was not readability, but rather highest risk detection
performances and impact levels of each risk factors.

2.2 Data mining approaches and imbalanced data

Most similar data mining approaches dealt with slightly imbalanced data, mostly used to
predict a cancer relapse as a result of the Surveillance, Epidemiology and End Results
(SEER) database use. Here, we present two significant related studies involving both
medical data and mining algorithm.

Endo et al [11] implemented common machine learning algorithms to predict sur-
vival rate of breast cancer patient. This study is based upon data of the SEER program
with high rate of positive examples (18.5 %). Authors did not used ROC curve to assess
performances results but accuracy, specificity and sensitivity. Logistic regression had
the highest accuracy, artificial neural network showed the highest specificity and J48
decision trees model had the best sensitivity.

Jerez-Aragonés et al [20] built a decision support tool for the prognosis of breast
cancer relapse. They used similar attributes as Gail (like age, age at menarche or first full
time pregnancy, see section 2.1) but also biological tumor descriptors. A method based
on tree induction was conceived to select the most relevant prognosis factors. Selected
attributes were used to predict relapse with an artificial neural network by computing
a Bayes a posteriori probability in order to generate a prognosis system based on data
from 1,035 patients of the oncology service of the Malaga Hospital in Spain .

Such studies show how mining approaches can be used to built classification tools
on medical databases while dealing with missing data and business processes. But they
do not consider problems (such as readability) encountered by patients who never had
cancer nor physicians in their day to day interactions. Moreover, these approaches aim
at predicting a class for unlabeled data (e.g. cancer relapse or not) while our goal is to
provide a risk level without making the decision (breast cancer or not) in place of the



physician.

To build a risk score that helps to detect highest risk profiles among general popula-
tion, the mining algorithm has to provide a risk value without labeling a woman profile.
Dealing with general population means we are facing highly imbalanced data with a
breast cancer incidence rate lower than 1 000 new cases for 100,000 women. Dealing
with such imbalanced data can be done at both algorithmic [21] and data levels [29,
30]. At data level by choosing a different cost or rebalancing positives or negatives
examples. At algorithmic level, it is possible to make a k-nearest-neighbor algorithm
more sensitive to the minority class by modifying the neighborhood boundaries [21] or
by using a class confidence weight [23] to handle imbalanced data during the labeling
step.

3 Proposed process to build a risk score

3.1 Main objectives

The main objective of our approach is to provide physicians with a tool to assess a
cancer risk level for their patient and to promote dialog between them. As statistical
models spread with difficulty in the physician community, we aim to find models with
good scoring performance and good readability. In our case, we say a model has a good
readability if it allows a physician to explain the risk score to his patient:

– it has to be quickly readable by a physician during a medical appointment
– and has to give access to understanding the score,

Furthermore, we have other constraints: physicians have a priori ideas about good
attributes of a model, patients need actionable attributes to change their lifestyle, both of
them want immediately usable score (i.e. very low cost of data acquisition). In addition,
a generic algorithm that can be easily adapted to various pathologies is desirable.

3.2 General process

Our approach follows the CRoss Industry Standard Process for Data Mining (CRISP-
DM) [4] data-mining methodology. Figure 1 shows the 6 steps of this process where
gray ones identify our major contributions. Business and data understanding steps are
not impacted because we want to work on the same data as [3] to be able to compare
our results.

Business understanding An expert with knowledge of the needs of physicians help
us to prioritize our objectives (see section 3.1) and to assess the situation. We decide to
focus on a scoring task (no classification or prediction).

Data understanding Despite limitations described in section 5, the BCSC database
contains most of the known breast cancer personal factors. It is the largest database
publicly available that includes breast density information.
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Fig. 1: General process based on CRISP-DM methodology - Gray steps identify our major con-
tributions

Data preparation To deal with data imbalance, we can apply rebalancing algorithms
on this data but it is not the focus of the paper. We do want to minimize modification
of data in order to compare our results with Barlow’s. The only modification we apply
is normalization. It was decided to keep the same split between training and validation
set.

Modeling Several data mining algorithms were considered at first, but domain expert
suggested to use a k-nearest-neighbor algorithm because it uses a concept of similar-
ity which is easily understandable by end-users without explaining a complex formula.
Moreover, such algorithm is able to deal with imbalanced data if there is enough positive
examples among neighbors. We generate models and search for the best combination of
attributes by performing an exhaustive search (see section 3.3) on a limited set of com-
binations. The reason is that the expert issued a recommendation of using a restricted
number of factors to make the risk score easy to use. Obviously, for large combinations,
computation time can increase sharply, but it is not a problem as models are generated
offline only once by us (see section 4.2), when a physician uses the final software, no
computation is necessary.

Evaluation Generated models can be evaluated from a discrimination or a calibration
perspective. Discrimination is needed to assess if women with breast cancer from the
validation set are given higher scores than women without breast cancer. We use the
Receiver Operating Characteristic method using Area Under Curve (AUC) in order to
sorts models by scoring performance . Calibration is needed to assess if the number of



predicted breast cancer cases is in line with the observed number of breast cancer cases
in the validation set. We use the ratio of expected cases number to observed cases num-
ber to compare models. Explanation for both evaluation criteria are given in section 3.4.

Deployment We are currently working to incorporate selected model configuration
into a computer software tool for physicians. It will come with a graphical explanation
of the concept of nearest neighbor. But it will not embed the database.

3.3 Focus on k-nearest-neighbor implementation

To provide experts with several interesting models, k-nearest-neighbor algorithm (see [14,
7]) is used with various size of attributes combinations (from 1 to 6 attributes), several
Minkowski generalized distance measure (p = 1 to 5) and several k values were used
(see section 6). Performance for each of hundreds of generated combinations is tested
for each values of k.

We implement the k-nearest-neighbor algorithm in two steps:

– Selection of neighborhood: for a combination of attributes (e.g. age and breast
density), a score value has to be computed for each combination of values (e.g.
age=5 and breast density=3). To compute such score value, a neighborhood has to
be defined for each values combination. To determine if a profile of the database
belong to the neighborhood of a combination of values, an euclidean distance is
used to compute the distance between a combination of values and every single
record of the training set using a normalized version of the coding values of the
BCSC database. Thus, at least k of the nearest records of the database are included
in the neighborhood. The neighborhood may not have always the same size because
for a given group at the same distance, if k is not reached yet, all neighbors at the
same distance are added to the neighborhood.

– Scoring function: the score of a combination of values, is the ratio between the
number of breast cancer cases (i.e. positive examples) and the size of the neigh-
borhood. In epidemiology, the rate of individuals having a disease in a population
is called prevalence. This rate was chosen because it is well known by physicians,
easily explainable to a patient and it is directly built on the number of patient diag-
nosed with breast cancer among patients with a similar profile.

To deal with missing data, we keep the same decision as Barlow, i.e. assign a high
value when missing. It will prevent a record with a missing value to be integrated in the
neighborhood.

3.4 Focus on evaluation

Mostly two kinds of evaluation are performed for epidemiological scores: discrimina-
tion and calibration. We explain why and how we use them.



Discrimination using ROC evaluation The Receiver Operating Characteristic (ROC)
[10] is used to measure discrimination due to the continuous nature of our classifier:
performance has to depict how positive instances are assigned with higher scores than
negative ones. The ROC curve allows to measure detection performances using a mov-
ing threshold to classify examples of the validation set. Moreover, it allows direct com-
parison with Barlow’s results and epidemiological-based scores in general.

Negative examples labeled as positive by the algorithm are called a false positives
whereas positive examples labeled as positives are called true positives. The ROC curve
is plotted with the false positive rate on the X axis and the true positive rate on the Y
axis [13], both rates being calculated for a given threshold. It can be summarized in
one number: the Area Under the ROC Curve (AUC). The area being a portion of the
unit square, its value is in the [0,1] interval. The best classifier will have an AUC of 1.0
(i.e. all positive examples are assigned with higher score than negative ones) whereas
an AUC of 0.5 is equivalent to random score assignment. The AUC can also be seen as
the probability that randomly chosen positive and negative examples will be correctly
ranked.

Calibration using E/O ratio The Expected cases number to Observed cases number
ratio is used to measure the calibration of a model. Women from the validation set
are sorted by scoring value and the validation set is split in 10 groups. In each group,
the mean score is computed and converted to an expected number of cases. The sum
of the 10 expected numbers of cases is then compared to the observed number of the
validation set using a ratio. The best E/O ratio is 1.0, meaning that the model predict
the same number of cancer cases than the actual number of cases.

To help the expert to choose the best model, each k value of each combination of
attributes is assigned with an AUC and a E/O ratio value.

4 A mediation tool for physicians and patients

Providing physicians with a tool to assess a cancer risk level for their patient and pro-
moting dialog between them, we identified constraints that arise from the users needs,
we describe a solution and a we show a graphical user interface prototype that fits users
needs.

4.1 Users needs and impacts on the tool

As pointed out in the introduction, the risk score is not only used to compute a risk level,
but it has to be a way to promote dialog between the patient and the physician. These
constraint has two majors impacts on the process that lead to the risk score construction.

First, the risk score has to be readable in how it operates. The basics of the modeling
method have to be understandable by both patients and physicians: readability impacts
the choice of the algorithm used to compute a score. Need of readability also impacts
attributes chosen to characterize a profile. The process to build the risk score has to
allow intervention from domain expert: he will choose the best combination in terms of
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Fig. 2: Offline process with stakeholders intervention

high risk profile detection, attributes acceptability for end users and capacity to promote
dialog between patient and physician, using attributes actionability for example.

Second, the risk score has to be provided in real time. To promote dialog and allow
quick appropriation by users, the risk score has to be displayed instantly on a computer
screen. The need of immediacy impacts the building process. The chosen algorithm
has to be used in a way that allow results to be instantly available. Need of immediacy
also impacts the way attributes have to be chosen depending on their time and price of
acquisition. For example genetic or blood sample tests are excluded, while questions
about lifestyle and women relatives are allowed.

4.2 An offline process to create the risk score

Three major constraints affect our process to build a risk score in a way that results in
building our risk score in an offline manner :

– as explained in section 4.1, the risk score level has to be displayed in almost real
time. Computing all profiles risk scores offline makes instant display very easy, es-
pecially when using a k-nearest-neighbor algorithm may lead to large computation
time (see modeling step in section 3.2).

– very often, epidemiology databases are not publicly available because health data
are sensitive and their collection are expensive. Offline computation of risk scores
prevents making data available in a k-nearest-neighbor based software.

– all stakeholders have to intervene in the process of building the risk score models
(see Fig. 2). Having the attributes selection and modeling steps done offline allows
to implement in our process the domain expert, the contractor and the data-miner
recommendations.

4.3 An online graphical user interface prototype

As all computation will be done offline, risk score values will be displayed instantly
through a responsive graphical user interface (see Fig. 3).

On the graphic, the curve represents the standard incidence of breast cancer depend-
ing on the age of the woman. The curve does not evolve when using the software. At
the top of the vertical line, the circle represents the woman risk: if the circle is over the
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Fig. 3: A graphical user interface prototype

curve, the relative risk to standard women is over 1.0 meaning the risk is higher than
the average woman of her age. If under, the relative risk is under 1.0, meaning that the
risk is lower than the average woman of her age.

Each time a cursor is moved, the graphic will be instantly updated to reflect the risk
of the profile. It means that the appropriation of the evolution of the risk level will be
made easier for users. Patients or physicians will be able to enter the profile of a woman
thanks to the sliders at the top of the interface in order to display the risk level based on
real data sources used during the offline part of the process.

This kind of graphical user interface will be tested through a platform in the biggest
health center dedicated to oncology in Europe, the Gustave Roussy Institute, using
french data [16].

5 Data source

To build such a graphical tool and to ensure result reproducibility, we have to run the
offline part of the process and therefore choose a public database with environmen-
tal factors to compute risk levels. The Breast Cancer Surveillance Consortium (BCSC)
makes available a database that fits these major constraints. Each of the 2,392,998 lines
match to a screening mammogram for a woman. This publicly available database pro-
vides 12 attributes to describe the woman including cancer status.



Table 1: BCSC database publicly available attributes

Full name Short name Description & coding
Menopausal status menopaus Premenopausal or postmenopausal
Age group agegrp 10 categories from 35 to 84 years old
Breast density density BI-RADS breast density codes
Race race White, Asian/Pacific Islander, Black, Native American,

Other/Mixed
Being hispanic hispanic Yes or no
Body mass index bmi 4 category from 10 (underweight) to 35 and more (obese)
Age at first birth agefirst Before or after 30 at first live birth or nulliparous (i.e. no

children)
First degree relatives nrelbc Number of first degree relatives with breast cancer 0, 1 or

more than 2
Had breast procedure brstproc Prone to breast biopsy, yes or no
Last mammogramm lastmamm Last mammogram was negative or false positive
Surgical menopause surgmeno Natural or surgical menopause
Hormone therapy hrt Being under hormone therapy
Cancer status cancer Diagnosis of invasive breast cancer within one year, yes or

no

5.1 BCSC database: data collection

Originally, the consortium was conceived to enhance understanding of breast cancer
screening practices [2]. The consortium aims at establishing targets for mammography
performance and a better understanding of how screenings affect patients in term of
actions taken after the mammography. Domain experts from the surveillance consor-
tium identified critical data elements for evaluating screenings performances reaching
a consensus on a standard set of core data variables. Then, from 1996 to 2002, data
were collected in seven centers across the United States: mammograms and their de-
tailed analysis were collected and, at the same time, women were asked to complete a
self-administrated questionnaire.

BCSC database provides personal factors (see Table 1) such as factual factors (age,
race, body mass index), reproductive history (age at first birth, menopausal status, hor-
mone therapy) and medical history (number of first degree relatives with breast cancer
or type of menopause). In addition, breast density was recorded when the classic Breast
Imaging Reporting and Data System (BI-RADS) [26] was used by the radiologist. To
ensure good quality of data, exclusion rules were set: for example, women who have un-
dergone cosmetic breast surgery were excluded as well as women with previous breast
cancer and women with no known prior mammogram.

Eventually, breast cancer cases were identified by linking cancer registries to BCSC
database, i.e. for each record of the database, the class of the example is positive if
the corresponding women was diagnosed with breast cancer within one year after the
mammogram and completing the questionnaire and negative otherwise.



Table 2: Missing data level by attribute

Attribute Missing data level
Body mass index 55.9 %
Age at first birth 55.5 %
Surgical menopause 52.1 %
Hormone therapy 41.0 %
Breast density 26.3 %
Last mammogramm 23.4 %
Being hispanic 20.3 %
Race 15.9 %
First degree relatives 15.2 %
Had breast procedure 10.5 %
Menopausal status 7.6 %
Age group 0 %
Cancer status 0 %

Table 3: Breast cancer incidence rate per
100,000

Age category SEER rate BCSC rate
(2003-2007) (1996-2002)

35-39 58.9 142.7
40-44 120.9 168.1
45-49 186.1 250.5
50-54 225.8 360.7
55-59 280.2 436.4
60-64 348.9 478.5
65-69 394.2 512.3
70-74 410.0 575.1
75-79 433.7 632.0
80-84 422.3 709.4
85+ 339.2 Unavailable

5.2 BCSC database: exploratory analysis

Among the 2,392,998 records of the database, 9,314 cases of invasive breast cancer
were diagnosed in the first year of follow up. We are facing highly imbalanced data
with a positive class accounting for only 0.39 % of all records.

We also observe a high level of missing data (see table 2). Two main reasons explain
missing data:

– Data were collected in different registries with non-standardized self-reported ques-
tionnaire: some questions were not asked and for any question, each woman had the
possibility not to answer.

– Collection of some risk factors did not start at the same time. For example, height
and weight were added later, explaining such a high rate of missing data for the
body mass index.

Last, one has to notice that data of the BCSC are not representative of the USA
breast cancer incidence rate (number of new cases during a specified time for a given
population). Table 3 offers a comparison between the BCSC and the SEER incidence
rate [1] by age categories.

Indeed, depending on data sources, the breast cancer incidence usually increase
slowly from approximatively 60 to 80 years old and starts to decrease after 80 years
old. But such a slower increase or decrease does not occur in the BCSC database.

6 Experimental results

6.1 Scoring performances

An experiment set was designed to test how the k-nearest-neighbor algorithm perform
on the BCSC data. As one of our constraint is to build a readable risk score (see sec-
tion 3.1), we select all combinations with a size s of 1 to 6 attributes among n = 12



Table 4: Best discrimination performances by combination size

Metrics for all combinations by size Metric for one combination
Size Combi-

nations
AUC
Mean

AUC Std
Deviation

AUC
Median

Best combination (See Table 1) AUC

1 12 0.536 0.030 0.529 agegrp 0.614
2 66 0.563 0.031 0.553 agegrp+density 0.635
3 220 0.581 0.029 0.601 agegrp+density+brstproc 0.641
4 495 0.593 0.026 0.597 agegrp+density+brstproc+lastmamm 0.642
5 792 0.602 0.023 0.586 agegrp+density+brstproc+lastmamm+menopaus 0.642
6 924 0.607 0.019 0.603 agegrp+density+brstproc+lastmamm+hrt+nrelbc 0.637

available attributes, meaning we have
�6

s=1
n!

s!(n−s)! = 2509 combinations to test. A
first way of assessing results of these combinations is to look at the best combinations
by size (see Table 4). These results are obtained in an euclidian space using a 2-norm
euclidian distance as they are not significantly better, when improved, using another
p-norm measures.

Among one attribute combinations, agegrp is by far the best factor to score breast
cancer risk in the BCSC database with an AUC of 0.614, while the next best attribute
(not shown), menopaus for menopausal status, performs only at 0.563. This result con-
firms expert knowledge since it is widely known that age is a major breast cancer risk
factor.

For combinations size from 1 to 3 attributes, mean, median and best AUC rise,
whereas for sizes of 4 and 5 attributes, maximal performances level off around 0.64
with a slight decrease with 6 attributes for best combinations. It is interesting to obtain
the best results using less possible attributes to improve model readability. Furthermore,
our 3 attributes agegrp, density, brstproc combination has an AUC of 0.641 while in
Barlow’s results (see section 2.1), at least 4 attributes are needed to achieve an AUC of
0.631 on a subset of data that includes only premenopausal women only.

A first list of all possible combinations (from 1 to 6 attributes), is produced and
sorted by performances (see Table 5-A). We observe that with an AUC of 0.642, the
agegrp, density, brstproc, lastmamm combination perform better than the two special-
ized regression models obtained on pre- and postmenopausal women by [3].

6.2 Use of expert knowledge

As stated in section 3.1, besides scoring performances, our main objectives also include
readability and integration of a priori ideas from physicians. This step of the process
involves contribution from a domain expert (see section 3.2). From our domain expert
point of view, when considering Table 5-A, it appears that the result of the last mam-
mogram is a costly piece of information to obtain from women during a counseling
appointment with a physician compared to performance improvement. Domain expert
chooses to reduce his choices list to available combinations without lastmamm. Top 15
performances measures without lastmamm attribute are shown in Table 5-B.

Based on his domain knowledge, the expert highlights that the number of first de-
gree relatives affected by breast cancer (nrelbc) is widely recognized as an important



Table 5: Top 15 performance results before and after expert advice

A. Best combinations before expert advice AUC
agegrp, lastmamm, density, brstproc 0.642
menopaus, agegrp, lastmamm, density, brstproc 0.642
agegrp, density, brstproc 0.641
menopaus, agegrp, density, brstproc 0.641
bmi, agegrp, density, brstproc 0.640
bmi, agegrp, lastmamm, density, brstproc 0.640
agegrp, hispanic, density, brstproc 0.640
agegrp, density, brstproc, agefirst 0.639
agegrp, hispanic, lastmamm, density, brstproc 0.639
bmi, agegrp, density, brstproc, race 0.638
menopaus, agegrp, hispanic, density, brstproc 0.638
hrt, agegrp, lastmamm, density, brstproc 0.638
agegrp, density, brstproc, race 0.638
agegrp, surgmeno, lastmamm, density, brstproc 0.638
agegrp, lastmamm, density, brstproc, race 0.638

B. Best combinations after expert advice AUC
agegrp, density, brstproc 0.641
menopaus, agegrp, density, brstproc 0.641
bmi, agegrp, density, brstproc 0.640
agegrp, hispanic, density, brstproc 0.640
agegrp, density, brstproc, agefirst 0.639
bmi, agegrp, density, brstproc, race 0.638
menopaus, agegrp, hispanic, density, brstproc 0.638
agegrp, density, brstproc, race 0.638
menopaus, agegrp, surgmeno, density, brstproc 0.638
agegrp, hispanic, density, brstproc, agefirst 0.638
bmi, agegrp, hispanic, density, brstproc 0.638
menopaus, agegrp, density, brstproc, agefirst 0.638
bmi, agegrp, density, brstproc, agefirst 0.637
menopaus, hrt, agegrp, density, brstproc 0.637
agegrp, density, brstproc, nrelbc 0.637

factor in breast cancer risk whereas other risk factor, like the body mass index (bmi),
are not that important compared to others. According to this expert, a good candidate
for our risk score would be the agegrp, density, brstproc, nrelbc combination with an
AUC of 0.637. In addition, this performance is equivalent to the best performances of
Barlow’s logistic regression models (AUC of 0.624 to 0.631 depending on menopausal
status). This combination uses relevant attributes for physicians according to our ex-
pert and performance loss, from 0.642 to 0.637, is acceptable. Compared to the agegrp,
the chosen combination is a valuable performance increase. Moreover the domain ex-
pert states that the acceptability of the agegrp, density, brstproc, nrelbc combination by
physicians, is better than the acceptability of a risk score based on agegrp only. It is
worth highlighting that on a french database, being specifically built for breast cancer
studies, the age of woman attributes only performs a 0.552 [16].

Calibration results shows that the chosen combination (agegrp, density, brstproc,
nrelbc) has an E/O ratio of 1.01. It is better than the 1.02 E/O ratio of both top combi-
nations agegrp, density, brstproc and agegrp, lastmamm, density, brstproc (Table 5). It
is also better than the 1.02 E/O ratio of agegrp alone.

6.3 Performances with respect to k

In order to run a k-nearest-neighbor algorithm, the size of neighborhood has to be set.
Since only k closest neighbors are used to compute the ratio healthy vs. diseased, risk
score value depends on k value. If the neighborhood is too small, few breast cancer cases
are included and if the neighborhood is too large, patient profiles are too different: in
both cases the risk score is not reliable. For each of the 2509 combinations of attributes,
we tested the scoring function with 40 values of k from 100 to 100,000.

Using, as an example, the top 15 combinations from Table 5-B, we plotted the evo-
lution of the performance (using the AUC mean) depending on the size of the neigh-
borhood (see Fig. 4). With an undersized neighborhood, performances are low but then,
as k increases, performances increase with a maximum of 0.638. From 2500 to 8400
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Fig. 5: Zoom on performances of top 15 combinations from Table V-B

neighbors (see Fig. 5), performances are always higher than 0.637 meaning that the
algorithm is relatively stable depending on k and ultimately on the number of positive
examples in the neighborhood. Eventually, as k increases, performances decrease be-
cause using a larger neighborhood leads to compute a ratio with increasingly dissimilar
profiles and poor targeting.

It means that performance of the combination is not obtained with a local maximum
for a single value of k. It rather depicts overall prediction ability of a combination in-
dependently of the value of k as long as the size of the neighborhood is large enough to
be statistically reliable (according to the law of large numbers) and stringent enough to
eliminate too dissimilar profiles.
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Fig. 6: Performances of best combination depending on k and the weighting function

Eliminating dissimilar profiles can be done using a weighting function [9] to de-
crease neighbors weight (wi) in the prevalence computation (see section 3.3 in which
wi implicitly worth 1) depending on the euclidean distance (di):

wi =

�
di

dmax

�p

with dmax, the greatest distance among the neighborhood and p ∈ {0.25, 0.5, 0.75,
1.0, 2.0, 3.0, 4.0}.

The prevalence is computed for the agegrp, density, brstproc, nrelbc combination
selected by domain expert with k ∈ [1000; 30, 000] neighbors. AUC performance re-
sults are plotted in Fig. 6 only for p = 0.25, p = 0.5, p = 0.75 and p = 1.0 because
performances curves for p = 2.0, p = 3.0 and p = 4.0 weighting functions are indis-
tinguishable from curve for p = 1.0. Maximal performances peak is not significantly
enhanced as AUC increase is less than 0.001. But when p tends to decrease, mean value
of AUC increases for k in [1000; 30, 000]. It suggests that the choice for the k value
in the k-nearest-neighbor algorithm is less critical when using a weighting function
because the stability range, where performances are upon a minimal value, is larger.
Optimal value of k can be found more easily, making the use of the k-nearest-neighbor
algorithm more independant from k.

6.4 Discussion

As statistical risk scores are not commonly used in the medical community, we think
there is a possibility to improve risk scores to offer both readability in its elaboration and
possibility for experts to integrate their knowledge (regarding end users expectations
and the disease itself) in the process. A standard methodology called CRISP-DM was



followed in the process of building such a risk score. The database from the BCSC was
selected because a regression-based score was already built upon it and because the
database itself was publicly available. We chose to run extensive test with a k-nearest-
neighbor algorithm to score profiles with different combinations of attributes. Every
combinations with 1 to 6 attributes were tested, each for several values of k neighbors.
Thus, we were able to allow experts to establish rules to keep or reject combinations by
weighting between performance versus attributes usefulness and risk factors expected
by physicians.

Nevertheless, our study has some limitations. First, on one hand, even if we selected
one of the few databases large enough to be representative of the targeted population,
findings from database of volunteers require cautious extrapolation to general popula-
tion. On the other hand, as we use prevalence to link a profile to a risk level, even if some
profiles are under or over-representated compared to general population, it has limited
impact on the risk score because we used the prevalence as a score value. Second, if
the concept of similarity used in the algorithm is easy to understand for everyone, per-
formances may be limited due to imbalanced data and the constraint of not modifying
data used in this paper in order to be able to compare results. However, options are
available to improve steps of the process. Better performances may be obtained using
another algorithm, potentially with balance of data in the data preparation step [12, 19,
24], or by combining k-nearest-neighbor with another algorithm [21, 23, 25]. Use of
expert knowledge could be improved by selecting models which are provided to the
expert to avoid complications due to the size of the list of combinations.

Increased acceptatbility could be reached by integrating actionable attributes. In-
deed, to make more interactive softwares and increase patient involvment in the risk
measurement process, actionnable risk factors as attributes may improve the prevention
process with the goal to lower the risk. It implies close work with epidemiologists who
lead data collection.

Since k-nearest-neighbor algorithm gives good results, we will continue to test this
process on another database that include continuous attributes that were not discretized.
For example age or breast density are some of the most predictive attributes and more
specific data should improve performances. Higher risk profiles should be more accu-
rately targeted leading to increased performances.

In the same time, we are developing softwares for physicians use based on prototype
presented in section 4.3.

7 Conclusion

On a medical dataset, we obtain good results on readability on the modeling method
with a k-nearest-neighbor algorithm easy to understand for physicians and patients. In
addition, the score is very easy to use for end-users with only four attributes needed
through a prototype of a graphical user interface. Thanks to our offline process, we also
allow the expert to choose a combination that has not necessarily the best detection
performance, but show qualities like physician acceptance and inclusion of performant
attributes recognized by the community.



Our approach is innovative and successful because we have shown that it is possible
to build a simple and readable risk score model for primary breast cancer prevention that
performs as good as widely used logistical models.
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