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I) Introduction
Introduction
The methods developed by Gabriel Kron, for the tensor approach of networks
(TAN), offers a great source of applications for the geometrical and topo-
logical study of electrical networks. The language of tensorial analysis
is well adapted to the description of networks. Tools about discrete com-
binatorial topology are well adapted specifically to the study of graphs, for
example, the Euler-Poincaré characteristic, the simplest invariant in to-
pology is connected to a formula obtained by Kron connecting the nodes
of the graphs, edges, mesh currents and node pairs. Extensions using tools
of algebraic topology are possible in larger dimension. We thus find the node
law and the law of mesh The addition of differential geometry is used to
connect discrete data obtained from circuit and continuous phenomena for
example, transmission problems via antenna.

Keywords
Kron’s formalism, tensorial analysis of networks, relativity.
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II)Definition of a tensor by Elie Cartan

Cartan Definition
"Called tensor, a number system, analytically defining geometric (or physi-
cal) object with the property : by a change of cartesian coordinates, tensor
components change by linear transformations. In addition the coeffi-
cients do not depend on the numerical values of these components but
only on the two coordinate systems (and also on the nature of the ten-
sor)

Example
If we apply this to the methodology proposed by Kron , and we look at the
tensor impedances, for example in the space of the edges, a coordinate
transformation to express this tensor in the space of the mesh, does
not transform the tensor.
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III) N dimensional manifolds and Kron philosophy
Submanifold
A submanifold is the generalization of our familiar ideas on curves and sur-
faces immersed in an ambient space to objects of any size. Thus, a curve
in Euclidean three-dimensional space is parameterized locally by one num-
ber, generally over time (x(t), y(t), z(t)). In the case of two parameters,
e.g. the time and speed, it is possible to describe a surface.

Manifolds, Configuration space
We can introduce a more general notion, the notion of topological or dif-
ferentiable manifold that makes no reference to an embedding into
ambient space. The notion of tensor is transportable to the formalism of
differential geometry. A configuration space C is a space whose points
are the different states associated with an object during its evolution : an
ordinary rigid body in Euclidean space, has a configuration space 6 di-
mensional : three for the position of the body and three for his direction ;
An electromagnetic system coupled with three meshes, is a space of
three-dimensional configuration : three intensities depending time.
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III) N dimensional manifolds and Kron philosophy

Topology
Why this configuration space C is different from the continuous euclidian
space Rn, each "R" describing one degrees of freedom ? : In the Rn space,
one can pass from any point to another, continuous manner by transla-
tion. Another way characterize the vector space Rn is noted that any loop
can be reduced to a point by continuous deformation : its first homotopy
group (fundamental group) is trivial. However, a more general configu-
ration space C can has the presence of holes. these holes prevent an loop
surrounding them, to be reduced to a point : it is said that this space at a
nontrivial homotopy.



III) N dimensional manifolds and Kron philosophy
n-manifold associated to a network
A network, and its cellular description , serves to determine the vector of
currents in a selected space cell C and deduce the associated configuration
in the form of a current vector. Therefore how represent our manifold M ?
we can imagine it as the gluing of different local coordinate systems (or
"charts"), each chart being an open region. In this procedure will occur,
changing cards that will connect the coordinates of a first system based on
those a second in Rn.

Application
From the viewpoint of Kron, this arrangement is made in electrical ma-
chines. Coupling between coils ? Specifically, the passage of the current
expressions for angular position to the other is then, if we equip associated
manifold with a Riemannian structure via Christoffel coefficients. We de-
tail these points later. But we can already say that the justification of the
tensor character of the analysis proposed by Kron based fundamentally on
the specific behavior of magnetic couplings in electric machines.
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IV) The electric Kron machine, tensor according to Lynn
Tensors machines
Here we develop the arguments presented by Lynn in his book "Tensors
in electrical engineering : The equation of an electric machine is developed
here as a generalization the matrix equation attached to a set of fixed
coils. . The equations of a machine best simple, are then :

ve = Reaia + d
dt (Leaia)

d
dt (Leaia) = Lea

dia

dt + ia ∂Lea
∂θ

dθ
dt

(1)

The principle will be to show that the last two terms of this expression can
be seen as a general form of the time derivative current and the equation
can be rewritten as :

ve = Reaia + Lea
δia

δt (2)
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IV) The electric Kron machine, tensor according to Lynn
covariant derivative, riemmannian connection

One vector,
−→
A can be expressed in terms of its contravariant coordinates :−→

A = Aq
−→a q. The differential of the vector

−→
A is then :

d
−→
A = dAq−→a q + Aqd−→a q (3)

Similarly we have :

∂
−→
A

∂x j = ∂Ai

∂x j
−→a i + Ai ∂

−→a j
∂x j
−→a i (4)

and with metric gij = −→a i .
−→a j :

∂gij
∂xk = ∂ai

∂xk
−→a j + ∂−→a j

∂xk
−→a i (5)

can be introduced by Einstein Riemannian connection : ∂
−→a i
∂xk
−→a k = [ij , k]
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IV) The electric Kron machine, tensor according to Lynn

covariant derivative, riemmannian connection
With metric gij = −→a i .

−→a j :

∂gij
∂xk = ∂ai

∂xk
−→a j + ∂−→a j

∂xk
−→a i (6)

can be introduced by Einstein Riemannian connection : ∂
−→a i
∂xk
−→a k = [ij , k]

Metric compatibility
We have metric compatibility :

[ij , k] = 1
2(∂gkj
∂x i + ∂gki

∂x j −
∂gij
∂xk ) (7)



IV) The electric Kron machine, tensor according to Lynn

Variationnal interpretation
By introducing the Lagrangian of a free particle moving in a Riemannian
space : T = 1

2mv2, noting, l = gabdxadxb, If we add a dissipative energy
(friction, electrical resistivity) and solving the Euler-Lagrange equation :

d
dt ( ∂T

∂ẋ c )− ∂T
∂x c = fc (8)

we find :
fc = 1

2m(∂gcb
∂xa + ∂gac

∂xb −
∂gab
∂x c )ẋaẋb + mgcb ẍb (9)
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∂x c )ẋaẋb + mgcb ẍb (9)



IV) The electric Kron machine, tensor according to Lynn

Application to Electric Machines
Electrokinetic analogy Kron machines gives, by replacing the speed by
the strength of the current, the Lagrangian can be written :

T = 1
2Lµν iµiν (10)

The equation of the electric machine is then given immediately from (9) :

vc = Rcaia + Lca
dia

dt + [ab, c]iaib (11)
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Topology : Euler Characteristic
Contents of a topological graph :
Topologically, a graph is a fairly simple structure, it can be planar or not, and
it is composed of "Lego" very simple basis, trees and cycles (or circuits),
as it is oriented or not, the trees virtue to retract one point, a non-cycle. A
suitable invariant, is the Euler characteristic Poincaré

Euler Characteristic
We can distinguish different kind of graph with a coarse invariant : the
Euler Poincaré characteristic that counts the number of vertices minus the
number of edges.

Segmentation
If two graphs are homeomorphic, or one is retract from each other, they
have the same Euler characteristic
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Invariant for a graph

Figure:



Euler Characteristic from Kron Point of view
Some topological extensions of tensor analysis on network
Basicly, Kron, on electrical circuits, proposes an extension of the tensor
calculus. He adds some concepts of combinatorial topology.A circuit, often
forming a graph, planar in the simplest case, There is an adaptation of the
famous Euler Poincaré formula. In the case of cellular complex C of two
dimensions, this relation well know give :

χ(C) = #face −#edges + #vertices (12)

This quantity is a very crude invariant that differentiates some topological
surfaces. In the case of electrical networks, Kron proposed the following
formula that will reflect the topology of the electrical circuits (Kron
relation) :

M = B − N + R
P = N − R

(13)



Euler Characteristic from Kron Point of view
example
For example in the following figure, we have :

Four physical nodes : n1...n4 : N = 4

Five branches : b1...b5 : B = 5

Three meshes : m1...m3 : M = 5

Two networks R1,R2 : R = 2

Two nodes pair : P = 2

Figure: Simple example

Algebraic topology defined by poincaré, from simplicial complexes, gives
some interesting application for the analysis of electrical networks.



Euler Characteristic from Kron Point of view
example
For example in the following figure, we have :

Four physical nodes : n1...n4 : N = 4

Five branches : b1...b5 : B = 5

Three meshes : m1...m3 : M = 5

Two networks R1,R2 : R = 2

Two nodes pair : P = 2

Figure: Simple example

Algebraic topology defined by poincaré, from simplicial complexes, gives
some interesting application for the analysis of electrical networks.



Euler Characteristic from Kron Point of view

Figure: 6 Elements of the chosen topology

Topology choice for the first network
we choosing arbitrarily on our first network, the node 1 as an initial reference,
we depart of this Node worm node 2, we have an return of Node 2 to Node 1.
We construct by this return , the first couple P1 who will wear the current
source J1, and will be in final, our current injected in the first network
coming from the second network.we verify the relationship for node pair :
P = N − R = 4− 2 = 2and meshes :M = B − N + R = 5− 4 + 2 = 3.



Connectivity : toward algebraic topology
k-connectivity
Another important concept a notion of graph theory is the notion of k-
connectivity : a graph is k-connected if it is sufficient to break k edges,
to disconnected.

Complete graph
A complete graph is a graph in which every pair of vertices connected :
it thus has the maximum connectivity.

Homotopy
Poincaré sets, new invariants thanks to its Homotopy theory is based on
the concept of related and adapts to topological spaces more general
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Algebraic topology
Algebraic Topology
Algebraic Topology refines the search for invariants and rests on two pillars
of homotopy, homology. Its formalization, gives homological algebra homo-
topy

homotopy
Poincaré invented the fundamental group and the groups of higher homo-
topies , this allows to transpose at the continu topological spaces notion of
k-connectedness "discreet" graphs.

homology
Poincaré invented at the same time that detects homology to the Default
a cycle to be the boundary of a domain.
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Homotopy groups

n-loop
one loop is a map : I/∂I ' S1 → X de similary une n − loop is a map :
In/∂In ' Sn → X and define πn(X ) n-th higher homotopy group and test
n-connectivity

Case of X = Sn

map f :Sn → Sn is characterized by its degree, it shows that : πn(Sn) ' Z

Long exact sequence of a fibration
Given a fibration E → X and F the fiber type that has the long sequence
→ πn(F , f0)→ πn(E , f0)→ πn(X , x0) ∂−→ πn−1(F , f0)...→ π0(E , f0)→ 0
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Spheres connectivity

Figure:



Singular homology
Simplex, singular simplex
Name r -simplexe de Rnthe set denoted σr et défini par :
σr = {x ∈ Rn/x =

∑r
i=0 cipi , ci ≥ 0,

∑r
i=0 ci = 1}

It is assumed that the simplexes are oriented. Define singular p-simplex
a map σ from standard simplex of dimension p to the topological space X :
σ : ∆p → X

Singular complex
we can then define the group of p-chains, and an boundary operator on a
simplex : ∂ with ∂ ◦ ∂ = 0 we obtain a singular complex :
... −→ Cn(X ) ∂n−→ Cn−1(X ) ∂n−1−→ Cn−2(X )... ∂1−→ C0(X ) −→ 0

Singular homology
The p − th singular homology group is given by : Hp(X ) = Zp(X )/Bp(X ).
Read default for a cycle to be an boundary
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The homology and Euler characteristic Poincaré
Simplex, Simplex singular
Taking the real coefficients, homology groups : becames vector spaces
so :
dim(Ci (X )) = dim(Ker∂i ) + dim(Im∂i )
βi = dim(Hi ) = dim(ker∂i )− dim(Im∂i+1) (Betti numbers)
The dimension of the vector space Ci (X ) is equal, according to i independent
in the triangulation of X :

Alternating sum of the Betti numbers
we deduce (case of a surface X ) :
β0 − β1 + β2 = dim(C0(X ))− dim(C1(X )) + dim(C2(X )) soit :
β0 − β1 + β2 = S − A + F = χ(X )

Finer invariants
It follows that the Betti numbers represented less coarse invariants.
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V-4) Tensorial analysis of network and algebraic topology

Electrical networks and homology
We can define a complex chain directly suited to the study of electrical
networks We can define the dual spaces associated. As in algebraic to-
pology, the definition of homology and cohomology spaces is possible. A
re-intrepretation of Poincaré duality, allows to recover Kirchhoff’s laws.



Geometrical and algebraic intoduction

Cellular complex T with geometrical objects :
vertices s ∈ T 0

edges a ∈ T 1

faces f ∈ T 2

volums k ∈ T 3

etc !

Spaces of chains : formal vector space Tj
generated by the previous components :

j = 0 : vertices basis |s>∈ T0
j = 1 : edges basis |a>∈ T1
j = 2 : faces basis |f>∈ T2
j = 3 : volums basis |k>∈ T3

Tj =
∑
σ∈T j

ασ |σ>
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Geometrical and algebraic intoduction (ii)
We distinguish

the set T j of geometrical objets of dimension j
vector space associated Tj generated by the

corresponding vectors :

Tj = < {|σ>} , σ ∈ T j > , j ∈ N

So we introduce space of chaînes T =
⊕
j∈N
Tj

for applications, space T is finite dimension

The boundary boundary operator ∂
linear
correspond at geometrical intuition

Boundary of an edge is a set of two vertices
Boundary of triangular face is a set of three edges
etc.
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Geometrical and algebraic intoduction (iii)

We have
∂1/2 : T0 −→ {0}
∂j+1/2 : Tj+1 −→ Tj if j ≥ 1

thus by linearity ∂ : T −→ T

Propriété Fundamental property :
The boundary of the boundary is réduced to zero : ∂ o ∂ = 0

which comes to write im ∂j+1/2 ⊂ ker ∂j−1/2

Definition
j i-th homology space : Hj ≡ ker ∂j−1/2 / im ∂j+1/2
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Geometrical and algebraic intoduction (iv)

Duality : space of co-chain of degree j
T ∗j : dual of space Tj of chains of degree j :

So < σ, s > is well define for s ∈ T0 and σ ∈ T ∗0
as well < α, a > with a ∈ T1 and α ∈ T ∗1
and for < Φ, f > with f ∈ T1 and Φ ∈ T ∗1

Cobord polar operateur ∂o of the boundary operator ∂
By definition, for ϕ ∈ T ∗j et g ∈ Tj+1

< ∂oϕ, g >≡< ϕ, ∂g >
we obtain ∂o : T ∗j −→ T ∗j+1

The boundary ∂ make reduce the dimension
while the coboundary ∂o make it grow ! !



Geometrical and algebraic intoduction (v)
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Writing Kirchhoff’s laws

The electrical courant I is define by the edges
of cellular complexe

I ∈ T1

The electrical potential V acts on the vertices
V ∈ T ∗0

The duality product < V , ∂I > therefore makes sense.
By assumption of Kirchhoff’s laws, this expression is null :

< V , ∂I >= 0.
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Writing Kirchhoff’s laws (ii)

This condition is expressed by taking V arbitrary :
one expresses thus the node law :

the sum (algebraic !) of currents
which lead to a vertex given is null.

I1 + I2 + I3 = 0
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Writing Kirchhoff’s laws (iii)
Duality of the node law : < ∂oV , I >= 0.

We calculate this coboundary , with la convention :
∂ |a >=

∑
s∈T 0

∂s a |s >

Thus after an elementary calculation, for σ ∈ T 0 :
∂o< σ∗ | ≡

∑
b∈T 1

∂σ b < b∗ | ,

and adding a ∗ means the passage to the dual basis.

Alors pour V =
∑

s∈T 0

Vs < s∗ | arbitrary, we have

∂oV =
∑

a∈T 1

( ∑
s∈T 0

∂s a Vs
)
< a∗ |

which allows to introduce the potential difference :
Ua ≡

∑
s∈T 0

∂s a Vs , a ∈ T 1
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Writing Kirchhoff’s laws (iv)

So we have ∂oV =
∑

a∈T 1

Ua < a∗ |

with Ua ≡
∑

s∈T 0

∂s a Vs for a ∈ T 1

We introduce a closed circuit γ.
We test the relation < ∂oV , I >= 0 for I = I0

∑
a∈γ
|a >

Thus < ∂oV , I >= I0
∑

a∈T 1

∑
b∈γ

Ua < a∗ |b >= I0
∑

a∈T 1

Ua

expression of the mesh law :
∑
a∈γ

Ua = 0

the sum of the potential differences
along a closed circuit is zero.
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Writing Kirchhoff’s laws (v)

mesh law :
∑
a∈γ

Ua = 0

the sum of the potential differences
along a closed circuit is zero.
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V) Some applications of tensor calculus to electrical
machines

two mesh interaction
We consider two circuits made each of one resistor and one capacitor. The
network is shown fig.1.

Figure: Simple example



V-1) Two mesh interaction

We can define the metric in the edge space, i.e. the impedance fonctions
of each edge (we meean by impedance the generalized operator giving the
relation between a current in an edge and the voltage dopred across). Seeing
this metric, the nature of each edge appears clearly. Edges are numbered
from 1 to 4, the edge space dimension is 4. For example we describe the
impedance tensor (metric) as :

zab =


R1 0 0 0
0 1

C2p 0 0
0 0 1

C3p 0
0 0 0 R4

 (14)

p is the Laplace’s operator. For the moment, we don’t have cross talked
between the edges.



V-1) Two mesh interaction
It could be possible, some functions may have been added to translate
interactions between them. Making the bilinear transformation we obtain :

zµν = L a
µ zabLb

ν =
[

R1 + 1
C2p 0

0 1
C3p + R4

]
(15)

Now we can add some inductances values associated with each circuit, co-
ming from their loops :

zµν = L a
µ zabLb

ν =
[

R1 + 1
C2p + L1p 0
0 1

C3p + R4 + L2p

]
(16)

And finally, add the interaction through mutual inductance m between the
two loops (we don’t care here of the exact formulation of these elements.
Our study is abstract and we theorize the problem) :

zµν = L a
µ zabLb

ν =
[

R1 + 1
C2p + L1p −m12p
−m21p 1

C3p + R4 + L2p

]
(17)
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V-1) Two mesh interaction
two mesh interaction
We consider two circuits made each of one resistor and one capacitor. The
network is shown fig.1.

Figure: Simple example

We see that the various steps in the problem construction follow the natural
minding of an engineer. That’s a very interesting side of the approach.
Another fact is that the mesh space dimension is here only 2, two times
lower than the edge one.



V-1) Two mesh interaction
two mesh interaction
We consider two circuits made each of one resistor and one capacitor. The
network is shown fig.1.

Figure: Simple example

We see that the various steps in the problem construction follow the natural
minding of an engineer. That’s a very interesting side of the approach.
Another fact is that the mesh space dimension is here only 2, two times
lower than the edge one.



V-2) Lorentz mesh

Lorentz Mesh and special relativity
Relativistic transformation of a cell is studied. We place ourselves in the ap-
proximation qv = I, either by confusing current and electrical pulse. Consider
four branches as shown following picture :

Figure: Lorentz mesh



V-2) Lorentz mesh

Lorentz Mesh and special relativity
It is assumed that the speeds are not negligible compared to the speed
of light : The four branches of the square mesh are numbered from 1 to 4
The first horizontal leg (at the top) is written as if the mesh moves with
the velocity V in the direction l :

qv1{i}(l) → q v1{V}(l) + V
γ(1 + βc−1v1{V}(l))

β = Vc−1, γ =
√
1− β2

−1
(18)
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V-2) Lorentz mesh
The mesh bottom :

qv3{i}(l) → q v3{V}(l) + V
γ(1 + βc−1v1{V}(l))

(19)

Vertical legs :

qvk{i}(ω) → q vk{V}(ω)

γ(1 + βc−1v1{V}(l))
k = 2, 4

(20)

Calculate the transformation applied to the spatial components of the pro-
duct resistance - current. for resistance aligned along the x axis parallel to
the relative velocity V, we have :

z =
(

0 0
0 R

)
(21)
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V-2) Lorentz mesh

Transformation of the resistance
starting from its classical expression becomes :

R = 1
σ

x
yz →

1
γσ

x
yz = R

γ
(22)

by contraction of the length and for the current we have this time, using
4-current density :

I = SJ → Sγ(J ′ + βcρ′) (23)

The S section being perpendicular to the displacement undergoes no
contraction. RI product becomes :

RI → RI ′ + RβScρ′ = RI ′ + RIe (24)
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V-2) Lorentz mesh
Relativistic effects
Ie could be called "the drive current." The transition from one referential
to another is therefore Consequently a change in the metric :(

0 0
0 R

)
→
(

0 0
0 R

)[(
1 0
0 1

)
+
(

1 0
0 Ie/I

)]
(25)

Figure: Lorentz mesh



V-3) Curvature applied to electromagnetic field

Recall about curvature
Recall that in a manifold equipped with a linear connection, parallel Trans-
port of a vector along a parallelogram of following a broken geodesics, is
used to define the torsion and curvature. If in addition the connection is the
Levi-Civita, the connection is without torsion, the parallelogram describe
a closed curve, it is by this means that we define the Riemann curvature
tensor,

R(X ,Y )Z = (∇X∇Y −∇Y∇X −∇[X ,Y ])Z (26)

We have in locate coordinates :

Rk
lij =

∂Γk
j,l

∂x i (p)−
∂Γk

i ,l
∂x j (p) + Γk

i ,s(p)Γs
j,l (p)− Γk

j,s(p)Γs
i ,l (p) (27)



Parallel transport

Figure: Parallel transport



V-3) Curvature applied to electromagnetic field

Electromagnetic analogy
It was speculated that the scale of a network of gravitational curvature was
negligible.we can ask if that would be printed to the reluctances is done ?
Considering the presence of masses magnetic this curvature can be cal-
culated initially with a similar approach that for gravitational fields starting
on the assumption that we consider that the magnetic energy outcome of
these masses that these are then weighted. We know that the computation
for geodetic space-time Einstein determine the trajectories of the photons
so far field. It will therefore no need to repeat this calculation for the actual
chords.



V-3) Curvature applied to electromagnetic field

Electromagnetic analogy
Letmagnetic energy 2WH = µabHaHb. By differentiating each component
of this energy is found : PH = µabḢaḢb = µabhahb. The root of this
amount refers to a emf. This emf is a work of the field on any curved path.
It can therefore integrate for express the action integral S of the field between
two points A and B (this also means following the flow or reluctances lines) :
Let S the action for this :

S =
∫ B

A
dλ
√
µabhahb (28)



V-3) Curvature applied to electromagnetic field

Electromagnetic analogy
The Euler equation for this set up is :

d
dλ( ∂L

∂hα −
∂L
∂Hα

= eα (29)

Under these conditions, the tenseur of Riemann curvature applied to
the electromagnetic field are given in local coordinates is given by :

Rk
lij =

∂Γk
j,l

∂H i (p)−
∂Γk

i ,l
∂H j (p) + Γk

i ,s(p)Γs
j,l (p)− Γk

j,s(p)Γs
i ,l (p) (30)



Conclusion

The generalized interaction terms under the tensorial analysis of networks
invented by Kron in 1939 allows to take into account many kind of cou-
pling. Various applications was made using these principles in information[2],
guided waves, cavities[3], power choppers[4], etc. Each time it gives very ef-
ficient and optimized modelling giving fast and accurate results. Next step
could be to apply the approach for numerical schematic. It allows to mix
quite easily integral, PEEC and GTD in a common FEM for a numerical tool
in Maxwell field computation. But more than anything, the global technique
gives a very powerful tool to analyze theoretically the problems of engineers,
even in non linear cases[5].
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