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Determination and comparison of optimal eco-driving cycles for hybrid
electric vehicles

Hippolyte Bouvier, Guillaume Colin and Yann Chamaillard

Abstract— The aim of this work is, while using an optimal
approach with dynamic programming (DP), to determine the
best eco-driving cycle starting from a given driving cycle. To
find the cycle with the minimum fuel consumption, two ways
of computing an eco-driving cycle are compared. For a Hybrid
Electric Vehicle (HEV), is it more efficient to compute an HEV
based eco-driving cycle or to compute a conventional vehicle
based eco-driving cycle and then to adapt it to a hybrid vehicle?
Hence, two different DP programs are developed, that lead
to two different eco-driving cycles: hybrid and conventional.
Finally, the fuel consumption of an HEV with two Energy
Management Strategies (EMS) will be compared: an off-line
optimal one based on the Pontryagin Minimum Principle and
an on-line suboptimal Equivalent Consumption Minimization
Strategy (ECMS). The paper shows that in order to generate
the best speed trajectory in terms of fuel consumption, it is
necessary to take the fact that the vehicle is an HEV into
account.

I. INTRODUCTION

For many years now, economic and ecological mutations
have been driving changes in the main industrial sectors. The
automotive sector is deeply concerned by these mutations as
shown by the recent interest and extensive research in eco-
driving strategies. Eco-driving could be defined as the way to
generate a vehicle speed profile that reduces fuel consump-
tion (and pollutant emissions) under some constraints (stop,
distance, duration, etc.). The main bases of eco-driving come
down to certain basic rules that anyone can respect: driving
at a low engine speed, not at full throttle, anticipating the
traffic, etc. With these rules, a driver can save 10% of fuel.
For a better gain in fuel consumption, other methods such as
computer simulation can be used [1], [2], [3]. These studies
generally compute eco-driving cycles for conventional or full
electric vehicles.

However, with two different sources of energy, the opti-
mization of a hybrid eco-driving cycle is more complex [4].
The optimal interaction (or torque split) between the electric
motor and the internal combustion engine (ICE) has to be
determined during the calculation of the speed profile. [5]
suggests a model that optimizes both the torque split and the
speed profile using a Gradient method. More recent work [6],
[7], combined Dynamic Programming (DP) with the energy
management strategy (EMS) of a Hybrid Electric Vehicle
(HEV) in order to obtain an eco-driving cycle. Lately, [8]
worked on the direct optimization of EMS on hybrid vehicles
with a view to reducing fuel consumption.
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In this work, the methodology comprises two main decou-
pled steps:

1) Determination of the eco-driving cycle with a 2-
Dimensional Dynamic Programming (section III).

2) Vehicle simulation on this cycle (section V) with an
optimal or suboptimal EMS detailed in section IV.

In the first step, different optimal eco-driving cycles are
computed using a 2-Dimensional Dynamic Programming
(2D-DP) algorithm [9]. Three different cycles are obtained:

• the initial cycle: e.g. an Artemis cycle,
• the conventional eco-driving cycle: based on the initial

cycle, a 2D DP generates a speed profile that minimizes
the fuel consumption considering a conventional vehi-
cle,

• the hybrid eco-driving cycle: based on the initial cycle,
a 2D DP generates a speed profile that minimizes the
fuel consumption considering an HEV.

Two models are therefore needed: the conventional vehicle
and the HEV (section II). The motion equations are the same
but the EMS is different. For the conventional vehicle, the
EMS is straightforward because only one source of energy
is taken into account. For the HEV model, the torque split
has to be found for each second of the cycle [10] in order
to minimize the fuel consumption on the whole cycle.

In the second step, the calculation of the torque split
is made using an off-line optimal strategy based on the
Pontryagin Minimum Principle, and an on-line suboptimal
Equivalent Consumption Minimization Strategy (ECMS).

The paper is then organized as follows. In section II,
the vehicle modeling is described. Dynamic programming
principles with their algorithms are presented in section III,
and the EMS are discussed in section IV. In the last section,
results are given and compared for different cycles.

II. VEHICLE MODELING

A. Motion equations

The motion of the vehicle is the result of all the forces that
are applied on it. The following model is quite simple and
takes into account the main forces in a Galilean coordinate
system, with Newton’s second law of motion projected on
an axis:

mvehv̇veh = Ftrac − Fres (1)

where Ftrac is the force generated by the powertrain, Fres

the sum of resistance forces, mveh the vehicle mass and vveh



the vehicle speed. With the inertia of the vehicle Jveh =
mvehR

2
wheel, the following relation can be written:

Jveh
v̇veh
Rwheel

= (Ftrac − Fres)Rwheel = Twheel − FresRwheel

(2)

The resistance forces comprise the rolling resistance force
Frol (3), the aerodynamic drag force Faero (4) and a force
due to road grade Fgrade (5).

Frol = Cr mveh g cos(α) (3)

Faero = 0.5 ρ Cd A v2veh (4)
Fgrade = mveh g sin(α) (5)

where Cr is the rolling coefficient, A the front area of the
vehicle and Cd the drag coefficient. As the constant road
grade α is equal to zero, the third resistance force Fgrade is
negligible.

The wheel torque Twheel can easily lead to the engine
torque Ttot, knowing the gear ugb and the differential char-
acteristics:

Twheel = Ttot η Nf (ugb) Nt (6)

The model parameters are summed up in Table I.

TABLE I
VEHICLE MODEL PARAMETERS

Acronym Description Unit
mveh Vehicle mass kg
Jveh Vehicle inertia kg.m2

Rwheel Wheel radius m
Cr Rolling resistance coefficient -
g Gravitational constant m/s2

ρ Air density kg/m3

Cd Vehicle’s drag coefficient -
A Vehicle’s frontal surface m2

η Gear and differential efficiency -
Nf (ugb) Gearbox ratio -
Nt Differential ratio -
ωidle Engine idle speed rpm
Rint Battery resistance Ohm
Qmax Cell capacity C
NbCell Number of cells -
OCV Open Circuit Voltage V

By combining all the previous equations, a motion model
giving the acceleration v̇veh as a function of the transmission
torque Ttot and the gear ugb can be written:

v̇veh =
Rwheel

Jveh

{
TtotηNf (ugb)Nt−
Rwheel(Crmvehg + 0.5ρCdAv

2
veh)

}
(7)

For an HEV, the torque Ttot is a combination of the ICE
Torque and the electric motor Torque. In this work, a parallel
hybrid electric powertrain is considered.

Hence, the composition of the total torque Ttot is:

Ttot = Tice +RTelec (8)

with Tice=uTsTTot and RTelec = (1 − uTs)Ttot. Here,
the transmission ratio between the electrical motor and the

internal combustion engine R is set to 0.5. Maximum and
minimum authorized motor and ICE torques and speeds are
considered in this model. Finally, the model gives the accel-
eration v̇veh as a function of the gear ugb, the transmission
torque Ttot and the torque split uTs

.
During braking phases, it is assumed that that as much

energy as possible is recovered by the electric motor and
lost by the ICE. The rest energy is dissipated by the friction
braking system.

B. Internal combustion engine (ICE)
The ICE used for the tests is an engine with a maximum

torque of 140 N.m for an engine speed of 2500 rpm (red line
in Fig. 1). Hence, with the speed of the wheels the engine
speed can be computed:

ωtot = max(ωidle, ωwheelNf (ugb)Nt) (9)
ωice = ωtot (10)

ωelec =
ωtot

R
(11)

The fuel consumption ṁf (kg/s) is computed through a look-
up-table as a function of the engine speed and torque (Fig.
1).
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Fig. 1. Specific Fuel Consumption (g/kWh) of the internal combustion
engine versus engine speed (rpm) and torque (Nm)

C. Electric motor
As for the ICE, the maximum torque given by the electric

motor is known: 150 N.m for a motor speed of 2000 rpm
(red line in Fig. 2). The efficiency of the electric motor and
the electric converter function of motor speed and torque are
displayed on Fig. 2.

D. Battery
Pelec is the power needed by the electric motor to propel

the vehicle taken from the battery. Thanks to the Kirchhoff
laws applied to this simplified model of the battery, the
voltage and the current in the circuit were computed.

Ubat =
1

2
OCV +

1

2

√
OCV 2 − 4PelecRint (12)

Ibat =
OCV

2Rint
−

√
OCV 2 − 4PelecRint

4R2
int

(13)
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Fig. 2. Efficiency of the electric motor

where the Open Circuit Voltage (OCV ) is given by a look-
up-table as a function of the State of Charge (SOC), and
the internal resistance Rint is considered constant. The
continuous evolution of the State Of Charge (SOC) is given
by:

SOC(t) =
1

QmaxNbCell

∫ t

t0

−Ibatt(t)dt+ SOC(t0)

(14)

III. ECO-DRIVING CYCLE COMPUTATION

A. Dynamic programming (DP) principle

In dynamic programming optimization, the search for the
optimal trajectory is simplified using the Bellman principle
while searching from the final state backward in time (or
here in distance). The Bellman principle states the following:
An optimal policy has the property that whatever the initial
state and initial decision are, the remaining decisions must
constitute an optimal policy with regard to the state resulting
from the first decision [11].

Let us denote V the minimum of the criterion J =∫ t

t0
L(u(t), t)dt to minimize:

V (xt, t) := minJ(x(t),u(t), t). (15)

Bellman’s principle states the following: let t ∈ [t0, tf [ and
xt ∈ Rn be given, then for all real r ∈ [t, tf ]

V (xt, t) = min
u∈U

{∫ r

t

L
(
x(τ),u(τ), τ

)
dτ + V

(
x(r), r

)}
(16)

The structure of the algorithm is then simple. First,
the problem is discretized or meshed: ∆t for the time tk,
∆x for the states x(tk) = xk and ∆u for the inputs uk.
Then, proceeding backward from the final state in tf , the
algorithm computes the cost from one state to another while
the loop is in its initial state at t0. Finally, the optimal saved
control states are simulated in order to obtain the trajectory
with the minimal cost (optimal trajectory).

Fig. 3 represents the principle of the DP algorithm for one
state. The horizontal axis represents the time (or here the

distance) and the vertical axis the state. Due to the state and
time loops, the algorithm simulates the control sets (green
ellipse) and saves only the optimal trajectory (red line) and
puts the cost of the optimal trajectory to V (xk, tk).

Definition of the final cost V (x, tf )

• Start of time or spatial loop for tk = tf : −∆t : t0
– Start of state loop for xk = xmin : ∆x : xmax

∗ Find u∗(xk, tk) = arg min
uk∈Uk

{∆tL(xk,uk, tk) +

V (xk + ∆tf(xk,uk), tk + 1)}
– End of state loop

• End of time or spatial loop

time(s) 

x 

tf  t r 

¢x  

Direction of the process 

Fig. 3. Dynamic programming representation

The problem of dynamic programming is that the compu-
tation time increases with the number of states and control
inputs. In our study, the distance d and the vehicle speed v
are the two states, so that it is a 2D-DP. The control inputs
are:
• the total torque delivered by the propulsion system Ttot,
• the gear ratio ugb,
• the torque split uTs if the vehicle is an HEV.

B. Methodology for eco-driving cycle computation

To compute the eco-driving cycle, the initial driving cycle
constraints [7] have to be included:
• vehicle speed limitations (km/h): conventional European

limitations (0, 30, 50, 70, 80, 90, 100, 110, 130, 160),
• the same distance (m) and the same number of stops,
• almost the same duration (s).

Then, starting from an initial cycle, the goal is to find a
new cycle with a lower fuel consumption that takes these
constraints into account. For eco-driving cycle, vehicle stops
are relevant in distance and not in time. The relationship
between vehicle speed v, distance s and time t is:

dv

ds
=

1

v

ds

dt
(17)



The discrete model of the vehicle is:

xk+1 =

[
vk+1

dk+1

]
=

[
f(vk,uk)
dk + ∆d

]
(18)

where f is the discrete form of equation (7).
Then, two cases are considered:
• Conventional vehicle eco-driving cycle
• HEV eco-driving cycle
1) Conventional eco-driving cycle:

In this case, the control input is u = [Ttot, ugb], and the cost
function is:

L(xk,uk) = ṁf (xk,uk) + β∆t+ Penalty (19)

β∆t is essential to constrain the trajectory in time, so β is
adjusted to obtain almost the same final time eco-driving
cycle. The time could be added in state vector (18), but
the computation time would be a problem [7]. The Penalty
function penalizes the speeds that exceed the limits.

2) Hybrid eco-driving cycle:
In this case, the control input is u = [Ttot, ugb, uTs ], and the
cost function is:

L(xk,uk) = ṁf (xk,uk)− Λ∆SOC + β∆t+ Penalty
(20)

As with the β coefficient, the Λ coefficient is adjusted
to obtain a final SOC of 50 %. To compute ∆SOC, the
information on OCV is needed. However, in backwards,
i.e. beginning from the final state, no information about the
battery SOC is available. An average OCV is therefore used
here.

IV. ENERGY MANAGEMENT STRATEGY

In an on-line Energy Management Strategy (EMS), it is
necessary to find the best distribution between the electric
path and the thermal path from the requested torque Ttot
(generally deduced from the driver demand). The previous
section generates an off-line strategy which is not realistic.
In our case, it consists in finding the two control inputs ugb,
uTs for a torque demand Ttot. Most of the time, energy
optimization in hybrid vehicles consists in minimizing the
fuel consumption [12], [13]. Hence, energy management is
a problem of optimal control with a finite horizon subject
to system dynamics (generally the state of charge SOC) and
final constraints (final SOC). Let X ⊂ Rn and U ⊂ Rm

be the state and control sets. The m control variables are
denoted u ∈ U and the n states denoted x ∈ X . The optimal
control problem consist in minimizing J(x,u) ∈ R with the
following system dynamics:

ẋ = f(x,u), (21)

where (x,u) 7→ f(x,u) is a function of class C1. Moreover,
an initial condition is imposed x(t0) = x0.

Hence, the optimization problem can be summarized in:

P0(x,u) :


min
u∈U

J(x,u)

subject to ẋ = f
(
x,u
)

x(t0) = x0,
(22)

with a performance index to minimize:

J(x,u) = Φ
(
x(tf )

)
+

∫ tf

t0

L
(
x(t),u(t), t

)
dt, (23)

where x 7→ Φ
(
x(t)

)
and (x,u, t) 7→ L(x,u, t) are of class

C1. Generally, L is the instantaneous fuel consumption and
J the total one.

In order to solve this problem it is necessary to know
the whole trip. As the driving conditions are generally
not known in advance, the theoretical optimal solution of
problem (22) gives the achievable reference. Two methods
have been developed to solve problem (22), a numerical
solution called dynamic programming [14], [15], [10] and a
analytical solution called equivalent dual problem [16], [10].
The second solution, which is very interesting for a real time
use in a vehicle, is used here. It consists in defining a dual
problem that has the same solution as the first one while
putting the constraints and the cost function into a single
function.

Let us define the Hamiltonian

H
(
x(t),u(t),λ(t), t

)
= L

(
x(t),u(t), t

)
+ λ(t)T f(x,u), (24)

where λ is the Lagrange variable (or co-state) associated to
the state x. The resolution is based on the maximum principle
stated by Lev Pontryagin [17] and the problem is simply
solved by:

u∗(t) = arg min
u∈U

H(x,u,λ∗, t). (25)

The main difficulty of this method is to obtain λ∗.
The Equivalent Consumption Minimization Strategy

(ECMS) uses this principle of optimal control, while con-
trolling the distribution between electrical energy and thermal
energy by a penalty coefficient [10], [16], [18]. For a Hybrid
Electric Vehicle, (24) can be rewritten into power flow, which
is easier to interpret,

Heq

(
u(t),λ(t), t

)
= Pf

(
u(t), t

)
+ s(t)TPe(u, t), (26)

where
• Pf

(
u(t), t

)
= HLHV ṁf (u(t), t) is the thermal power

with HLHV the lower heating value of the fuel and
ṁf (u(t), t) the fuel flow,

• Pe(u, t) = − ˙SOC(t) · OCV · Qmax is the battery
electrical power with OCV the Open Circuit Voltage
and Qmax the nominal battery capacity.

The penalty coefficient s(t), under the hypothesis of λ̇ ≈ 0,
is often considered as a constant function of the driving cycle.
In order to ensure charge sustaining operation, some authors
propose to control this coefficient as a function of the State
of Charge (SOC) [12], [19].

In this work, two strategies are considered in order to find
the control inputs ugb and uTs :

1) an off-line optimal strategy where s(t) is determined
by binary search in order to have SOC(tf ) = 50%,

2) an on-line suboptimal strategy where s(t) = s0 +
kp e(t) + ki

∫ t

t0
e(t)dt. s0 is determined for the initial

cycle and e(t) = SOCref − SOC(t).



V. RESULTS

As previously explained, the simulations comprised two
main steps:

1) Determination of the cycle: initial, ICE based eco-
driving or HEV based eco-driving.

2) Computation on this cycle of the fuel consumption of
the vehicle: Conventional, HEV with optimal EMS or
HEV with suboptimal EMS.

To determine the eco-driving cycle, the following mesh was
chosen: a spacing of 5 Nm for Ttot, of 1 for the gear box
ratio ugb (from 1 to 5), of 0.2 for the torque split uTs (from
-1 to 1), of ∆d = 1 m for the distance d, and of 0.2 m/s for
the vehicle speed v.

A. Short urban Artemis cycle

The algorithms were first tested on a short cycle, extracted
from the Artemis Urban cycle. First, the initial driving
cycle was computed versus distance and its maximum limits
saved. Next, the 2D-DP was performed to generate the eco-
driving cycles. The speed profiles are shown on Fig. 4 versus
distance and on Fig. 5 versus time. Fig. 4 shows that the
distances and the stops for each cycle are the same. Fig. 5
shows that the durations of the cycles are a little different,
so the variable β could be readjusted in order to have the
same duration. Note that the duration of the stops was set to
zero.
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The fuel consumptions are compared in Table II. For
the conventional vehicle, the minimum fuel consumption
is obtained with the ICE based eco-driving cycle and for
the HEV, the minimum fuel consumption is obtained with
the HEV based eco-driving cycle and the optimal Energy
Management Strategy (EMS). Simulations were performed
with kp = 0.1 and ki = 0.01 to compute the penalty
coefficient s(t) of the suboptimal EMS. Note that readapting
the EMS (here the constant s0) is also important to reduce
the fuel consumption of the vehicle on the driving cycle.
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TABLE II
CORRECTED FUEL CONSUMPTION (L/100KM) OBTAINED FOR THE

THREE DIFFERENT CYCLES FOR THREE VEHICLES BASED ON A SHORT

URBAN ARTEMIS CYCLE

Initial Cycle ICE eco cycle HEV eco cycle
Conv. vehicle 6.99 4.74 4.84
HEV opt EMS 4.55 3.82 3.69
HEV subopt EMS 4.61 3.83 3.75

B. Worldwide harmonized Light vehicles Test Cycle

The algorithms were then tested on the Worldwide har-
monized Light vehicles Test Cycle (WLTC). The same
methodology as in section V-A was used. The speed profiles
are shown on Fig. 6 versus distance and Fig. 7 versus time.
Fig. 6 shows that the distances and the stops for each cycle
are the same.
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The fuel consumptions are compared in Table III for the
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WLTC. As in section V-A, the minimum fuel consumption
was obtained with the ICE based eco-driving cycle for
the conventional vehicle and with the HEV based eco-
driving cycle and the optimal EMS for the HEV. The same
conclusions can be drawn with the WLTC as with the short
Artemis urban cycle. On this example, the fuel consumption
of a conventional car with eco-driving is lower than the fuel
consumption of an HEV without eco-driving. Unsurprisingly,
combining eco-driving and HEV gives the best results.

TABLE III
CORRECTED FUEL CONSUMPTION (L/100KM) OBTAINED FOR THE

THREE DIFFERENT CYCLES FOR THREE VEHICLES BASED ON THE WLTC

Initial Cycle ICE eco cycle HEV eco cycle
Conv. vehicle 6.51 4.91 4.96
HEV opt EMS 5.08 4.17 4.06
HEV subopt EMS 5.23 4.22 4.10

For the WLTC, eco-driving decreases the fuel consumption
by 16 % (ICE based) to 19 % (HEV based) for an HEV.
Hence, taking into account the fact the vehicle is an HEV in
the generation of the eco-cycle saves from 2 to 3 % of fuel
for both cycles. Finally, readapting the strategy (i.e. s(t) of
(26)) function of the eco-driving cycle saves from 1 % to
2 % of fuel.

VI. CONCLUSIONS

In this paper, an optimal approach using dynamic pro-
gramming was used to determine the best eco-driving cycle
starting from a given driving cycle for a conventional car
and a Hybrid Electric Vehicle. The results show that the
minimal fuel consumption is obtained when combining eco-
driving and HEV. To generate the best speed trajectory in
terms of fuel consumption, it is necessary to take the fact
that the vehicle is a Hybrid Electric Vehicle into account,
although eco-driving behavior is more important than the
way in which the eco cycle is computed (considering that the
vehicle is hybrid or not). Moreover, readapting the Energy

Management Strategy function of the eco-driving cycle also
reduces the fuel consumption of the vehicle.

Finally, whatever the chosen strategy for generating the
cycle, eco-driving with a conventional car saves as much
fuel as with an HEV. However, as eco-driving depends on
the acceptability of the driver while HEV does not, eco-
driving could be seen as a potential gain and HEV as a real
gain. With autonomous cars, this potential gain will become
a real one.
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