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Abstract

The last decade has seen max-stable processes emerge as a powerful tool for the
statistical modeling of spatial extremes and there are increasing works using them in
a climate framework. One recent utilization of max-stable processes in this context is
for conditional simulations that provide empirical distribution of a spatial field condi-
tioned by observed values in some locations. In this work conditional simulations are
investigated for the extremal t process taking benefits of its spectral construction.

The methodology of conditional simulations proposed by Dombry et al. (2013) for
Brown-Resnick and Schlather models is adapted for the extremal t process with some
original improvements which enlarge the possible number of conditional points. A sim-
ulation study enables to highlight the role of the different parameters of the model and
to emphasize the importance of the steps of the algorithm.

An application is performed on precipitation data in the south of France where ex-
treme precipitation events (Cevenol) may generate major floods. This shows that the
model and the algorithm perform well provided the stationary assumptions are fulfilled.

Keywords:
Max-stable processes, extremal t processes, spatial extremes, conditional simulation,
extreme precipitation.

1. Introduction

Extreme events are one of the major demonstrations of complex environmental sys-
tems. As they are inherently rare and often unexpected, society is not well prepared
to face them. One important feature of extreme events is that their probability de-
creases rapidly with increasing intensity, while damage increases strongly as does the
cost of protection against such events. Both analyses of observational data and projec-
tions from climate models suggest that the occurrence and magnitudes of some extreme
events will increase in the future (IPCC (2011)). A potential consequence is an increas-
ing number of catastrophes such as flooding, storms or crop failures. In addition to
their direct effects and costs in terms of human lives, building destruction or food se-
curity, these events will also have indirect impacts such as increasing costs for building
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or strengthening infrastructures, in addition to higher insurance premiums, and before
even mentioning the consequences of global population displacements (IPCC (2011)).
A better understanding and modeling of extreme events is therefore a crucial need in
many economic aspects and societal contexts for both public and private decision mak-
ers.

From a mathematical point of view, the suitable probabilistic framework for mod-
eling the frequency and intensity of those special events is the statistical theory of
extreme values. The extreme value theory is well established for univariate stationary
series. There is now a growing effort to develop methods and models to deal with com-
plex data involved in applications where space-time problems and non-stationarity are
the rule rather than the exception.

Multivariate extreme distributions have been used in climate and environmental ap-
plications in order to take into account extremal dependence (Coles and Tawn (1994),
De Haan and De Ronde (1998), Schlather and Tawn (2003), Fawcett and Walshaw
(2012)). For the study of extremes in a spatial context, max-stable processes are a
relevant framework for modeling and inference. Introduced by De Haan (1984) differ-
ent parametric models have been later proposed by Smith (1990), Schlather (2002) or
Kabluchko et al. (2009). The extremal t process (Padoan (2011), Opitz (2013)) is a
model of that family that extends the Schlather model. It has a supplementary pa-
rameter that lets the extremal coefficient function vary in a wider range. Max-stable
processes have been used in applications for modeling rainfall (Buishand et al. (2008),
Davison et al. (2012)), temperature (Davison and Gholamrezaee (2012), Fuentes et al.
(2013)), snowfall (Gaume et al. (2013)) or snow depth (Blanchet and Davison (2011)).
A main objective of these works is to provide return periods of rare events for prevention
purposes even in locations where no observations are available.

The aim of the present paper is to further investigate conditional simulations of
extreme precipitation. Conditional simulations provide empirical distributions of a
random field knowing the values observed at some given locations. Consequently, they
allow us to statistically generate extreme values at locations without any recording,
in agreement with surrounding observations. This capacity to generate time series
at observation-free locations is of major importance for some impact models, such as
hydrological models that require input data, e.g. precipitation values, correctly spatially
distributed. The spatial coverage of the meteorological inputs of such models has to be
as precise as possible. Furthermore, when other techniques provide individual values or
indicators, conditional simulations provide distributions at every new locations which
allows us to get numerous statistical quantities as e.g. quantile, dispersion indicators,
etc... The conditional simulation techniques are then of major importance.

For Gaussian and Boolean fields, algorithms for conditional simulations are well
established (Lantuéjoul (2002)). They have been used for representing physical phe-
nomena by integrating heterogeneous data and assigning confidential limits to the esti-
mates. For example, they have been used for predicting the geometry of oil reservoirs
or the grade of mining blocks (Chilès and Delfiner (1999)) and are used more and
more in the environmental sciences (Mariethoz et al. (2009)). Concerning max-stable
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processes, Wang and Stoev (2011) consider max-linear random fields, a special case of
max-stable processes, and provide an exact expression of the conditional distributions
as well as an efficient algorithm for the simulation. In a further work, Dombry and
Eyi-Minko (2013) derive the regular conditional distribution for the very general class
of max-infinitely divisible processes which encompasses the max-stable processes. This
result has been applied then to provide a methodology and an algorithm for Brown-
Resnick and Schlather processes (Dombry et al. (2013)). However, for processes which
are not regular, that is the exponent measure is not absolutely continuous with re-
spect to Lebesgue measure, the conditional distribution is not explicite. Oesting and
Schlather (2014) discuss the frameworks where Wang and Stoev (2011) and Dombry
et al. (2013) can be applied, and, in case of non regular models, propose an algorithm
based on martingale arguments.

In this paper we adapt the methodology of Dombry et al. (2013) to the extremal
t process. In this case all the calculations of the algorithm can be derived explicitely,
nevertheless some steps still present computational issues. In particular, one of the
steps of the algorithm involves an acceptance/rejection procedure for which the rate of
rejection increases very fast with the number of conditioning points. This limiting point
makes the algorithm inapplicable when the number of conditioning points is greater than
approximately 30. To bypass the issue, we propose some original modifications of the
algorithm to replace the acceptance/rejection step by a Gibbs sampler which speeds
up the calculations and enables a large number of conditioning points. Despite this
improvement, some difficulties persist in the algorithm, mostly due to the calculation
of high dimensional integrals that have to be approximated. Then to get a better
understanding of the algorithm mechanisms, a simulation study is led to assess the
influence of the parameters from the extremal t process and to evaluate the importance
of the most problematic and time-consuming step of the algorithm.

We focus on the French Mediterranean basin, which is a key spot of occurrences
of meteorological extremes such as heavy precipitation (e.g. Ducrocq et al. (2008);
Lebeaupin et al. (2006); Beaulant et al. (2011); Vrac and Yiou (2010) or Vrac et al.
(2012)). Indeed, major extreme precipitation events are regularly observed in this
region near the Cevennes mountains. The modeling and the forecast of this extreme
precipitation – the so-called“Cevenol events”– are of major importance for hydrological
studies in this complex terrain since they often trigger major floods in this region (e.g.
Ducrocq et al. (2008)).

The structure of this article is the following. In Section 2, a short reminder on
max-stable processes is provided and the extremal t process is described. Section 3
contains theoretical considerations on conditional simulations of an extremal t process,
as well as the associated algorithm and its improvement. An extensive simulation study
is carried out in Section 5 to evaluate the performances of the algorithm. The use of
the continuous ranking probability score and the quantile score (Gneiting and Raftery
(2007)) enables us to assess the accuracy of our methodology and to compare it to other
models. This evaluation allows us to quantify the importance of the model parameters
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and of the algorithm steps. Section 6 displays an application to maximum precipitation
data in the south of France where extreme precipitation may cause major floods. Some
comments and conclusions are given in section 7.

2. Extreme Value Theory

2.1. Max-Stable Process

We will note vectors in plain text and vectors of vectors in bold. Let us consider a
stationary random field Z = {Z(x)}x∈Rd with a given distribution H0 and (Z1, . . . , Zn)
independent copies of Z. If there exist sequences an(x) ∈ R and bn(x) ∈ R+ such that
for all n ∈ N, {

maxi=1,...,n Zi(x)− an(x)

bn(x)

}
x∈Rd

(1)

follows the distribution H0, then Z = {Z(x)}x∈Rd is a max-stable process (De Haan
(1984)).
As a consequence, all finite dimensional marginal distributions are max-stable, and in
particular, the univariate margins Z(x) distribution belongto the Generalized Extreme
Value (GEV) family:

P(Z(x) ≤ z) =


exp

(
−
[
1 + ξ(x)

(z − µ(x)

σ(x)

)]−1/ξ(x))
if ξ(x) 6= 0,

exp

(
− exp

(z − µ(x)

σ(x)

))
if ξ(x) = 0,

(2)

where µ(x), σ(x) and ξ(x) are respectively the location, scale, and shape parameters at
site x. Furthermore, the sign of ξ(x) will determine the family distribution Z(x) belongs
to among Fréchet (ξ > 0), Gumbel (ξ = 0) or Weibull (ξ < 0), and consequently the
distribution tail characteristics.

Different max-stable models have been proposed and used in the past by several
authors, e.g. Brown and Resnick (1977), Smith (1990), Schlather (2002) or Kabluchko
et al. (2009).
Their margins are Fréchet distributed, i.e.

P(Z(x) ≤ z) = e−z
−1

. (3)

2.2. The extremal t process: definition and properties

The extremal t process (Padoan (2011)) belongs to the max-stable process family.
Opitz (2013) proposed a spectral construction of the extremal t process which leads to
the general expression

Z = {Z(x)} =
{
m−1/αα max

i≥1
ξiWi(x)

}
, α > 0, x ∈ X ⊂ Rd, with X a Borel set, (4)
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with mα =
√
π
−1

2(α−2)/2Γ((α+ 1)/2), ξi a Poisson point process on (0,+∞) with inten-
sity measure dΛ(t) = αt−(α+1)dt and Wi independent copies of a stationary standard
Gaussian process on Rd with correlation function ρ(·). Z margins are α-Fréchet dis-
tributed, i.e.

P(Z(x) ≤ z) = e−z
−α
. (5)

Unlike the usual representation of max-stable processes with unit-Fréchet margins, we
choose the α-Fréchet representation (as in Opitz (2013)) to highlight the major role of
the α-parameter.
It has to be noted that for α = 1, this representation leads to a Schlather process and
hence the extremal t process can be considered as a generalization of the Schlather
process, with a greater flexibility.

The parameter α and the correlation function ρ(·) determine the dependence struc-
ture. Furthermore, as will be seen in the next section, α characterizes the spatial
asymptotic dependence, that is the dependence in extreme values.

2.3. Extremal coefficient

For a max-stable process such that all margins are equally distributed the extremal
coefficient function θ(·) (Schlather and Tawn (2003)) is defined as

P(Z(x) < u,Z(x+ h) < u) =
[
P(Z(x) < u)

]θ(h)
. (6)

θ(h) ∈ [1, 2] measures the strength of asymptotic dependence, θ(h) = 1 corresponds
to the complete dependence case, θ(h) = 2 corresponds to the independence case. The
extremal coefficient of the extremal t process depends on α and is given by (Opitz
(2013))

θ(h) = 2tα+1( 1 | ρ(h), (α + 1)−1(1− ρ(h)2)), (7)

with tν(.|µ,Σ) the cdf (cumulative distribution function) of a Student distribution with
the parameters µ, Σ and ν (respectively location, shape and degree of freedom param-
eters).

In particular for the extremal t process with α ≥ 0, θ∞, the limit of θ(h) when
h tends to ∞, belongs to the interval ]1.5, 2[, while θ∞ = 1 +

√
2/2 (≈ 1.7) for the

Schlather process.
Consequently, thanks to this supplementary parameter α, the extremal t process

enables us to model a greater variety of situations for asymptotic dependence. Further-
more, this flexibility of the asymptotic dependency behavior is different from the one
given by the class of general Brown-Resnick processes (Kabluchko et al. (2009)).

3. Conditional simulations

Conditional simulations provide simulations of random fields at locations without
observation, given observations in fixed locations, according to a model. The simulated
fields are required to fit the observed values at the fixed locations. In contrast to
simple simulations for which simulated values follow a target distribution – i.e. Z is a
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realization from a distribution L –, conditional simulations take into account constraints
expressed by the observations, i.e.{

Z is a realization from a distribution L,
Z(xi) = zi, ∀zi observations at the locations xi, i = 1, . . . , k.

Conditional simulations are powerful tools which provide not only individual val-
ues at new locations, but probabilistic distributions at those locations, given a chosen
model. Those distributions allow the calculation of many statistical quantities as for
example quantiles, dispersion indicators, etc. . . .
For some models, such as Gaussian or Boolean, algorithms for performing conditional
simulations are quite straightforward and based on kriging techniques (Lantuéjoul
(2002)). Dombry et al. (2013) proposed a general framework for conditional simula-
tions of max-stable processes. The max-stable process Z is written as the point-wise
maximum over an infinity of continuous functions

Z(x) = max
i≥1

φi(x). (8)

Let x = (x1, x2, . . . , xk) ∈ X k the k conditioning points with X ⊂ Rd, z = (z1, z2, . . . , zk) ∈
Rk such that Z(xi) = zi and s = (s1, s2, . . . , sm) ∈ Xm the m locations the process Z
is to be simulated. For each conditioning point xi, an unique function φj almost surely
exists, called extremal function and denoted φ+

j such that φ+
j (xi) = zi. One extremal

function may be extremal for several conditioning points. Let τ = (τ1, . . . , τl) be a
partition of the set {x1, . . . , xk} with l = |τ | (≤ k) such that

φ+
j (xi) = zi if xi ∈ τj and φ+

j (xi) < zi if xi /∈ τj, (i = 1, . . . , k; j = 1, . . . , l). (9)

The partition τ is called a hitting scenario (Wang and Stoev (2011)). The conditional
simulation algorithm is then divided into three steps. The first one consists in drawing a
partition of {x1, . . . , xk} such that each class of the partition gathers conditioning points
that have the same extremal function. Then, for each class in the drawn partition, each
extremal function φ+

j is drawn according to the constraints (9) given by the conditional
observations. Finally a number N sufficiently large of non extremal functions denoted
φ−j are drawn such that for all conditioning points they verify

φ−j (xi) < zi for all xi (i = 1, . . . , k; j = 1, . . . N). (10)

The simulated values on the set s are obtained by taking the point-wise maximum of
{φ−j (s), φ+

j (s)}. To perform the three steps of the algorithm, the conditional distribution
of the partition, the {φ+} and the {φ−} are needed. Dombry et al. (2013) derived the
expression of the conditional distributions for the Schlather and the Brown-Resnick
process. The conditional distribution for the extremal t process is obtained thanks to
a slight adaptation.

6



3.1. Conditional distribution for the extremal t process

Let Z be an extremal t process. It can be written as

Z(x) = max
i≥1

φ
(α)
i (x) (11)

with
φ
(α)
i (x) = m−1/αα ξiWi(x), i = 1, 2 . . . . (12)

Φ(α) = {φ(α)
i }i≥1 is a Poisson point process on C0, the space of positive continuous func-

tion on X ⊂ Rd. The intensity measure Λ
(α)
x of the point process Φ(α)(x) = {φ(α)

i (x)}i≥1
on (0,+∞)k is

Λ(α)
x (A) =

∫ +∞

0

P[Φ(α)(x) ∈ A]ξ−(α+1)dξ, A ⊂ (0,+∞)k a Borel set. (13)

The extremal t process fulfills the conditions necessary for Λ
(α)
x being absolutely con-

tinuous with respect to the Lebesgue measure (Dombry and Eyi-Minko (2013)). The

density (Radon-Nikodym derivative) λ
(α)
x (z) such that Λ

(α)
x (dz) = λ

(α)
x (z)dz and the

conditional density

λ
(α)
s|x,z(u) =

λ
(α)
s,x(u, z)

λ
(α)
x (z)

, (s,x) ∈ Xm+k, z ∈ (0,+∞)k, u ∈ Rm. (14)

are given by :

λ(α)x (z) =
π
α−1
2

wk+α−2
|Σx|−1/2 [zTΣ−1x z]−(

k+α
2

)Γ((α + 1)/2)−1 (15)

and

λ
(α)
s|x,z(u) =

wk+α−2
wk+m+α−2

√
|Σs,x|−1|Σx|

[zTΣ−1x z](k+α)/2

[(u, z)T Σ−1s,x (u, z)](k+m+α)/2
, (16)

with wd = πd/2/Γ(d/2 + 1), | . | the determinant operator and Σx, Σs,x =

(
Σs Σs:x

Σx:s Σx

)
the covariance matrices of respectively W (x) and W (s,x). For the details of the calcu-
lations see Appendix A.

For α = 1, we note that the expressions (15) and (16) are the ones obtained for the
Schlather process (Dombry et al. (2013)). They are equivalent to those obtained by
Ribatet (2013a).

Conditionally to Z(x) = z, the Poisson point process Φ(α) can be decomposed into

two independent Poisson processes, such that Φ(α) = Φ
(α)+
x,z ∪ Φ

(α)−
x,z , with

Φ(α)−
x,z = {φ(α) ∈ Φ(α)| ∀i = 1, . . . , k, φ(α)(xi) < zi} = {φ(α)−

j }j≥1,

Φ(α)+
x,z = {φ(α) ∈ Φ(α)| ∃i = 1, . . . , k, φ(α)(xi) = zi} = {φ(α)+

j }j≥1. (17)
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3.2. Algorithm

The algorithm proposed by Dombry et al. (2013) for the conditional simulation of
Brown-Resnick and Schlather processes can easily be adapted for extremal t processes.
It is based on the density λ

(α)
x and the decomposition of Φ(α). The following notations

have been chosen to be consistent with notations of Dombry et al. (2013).
Let us note xτj = {xi | xi ∈ τj, i = 1, . . . , k}, zτj = {zi | Z(xτj) = zi, i = 1, . . . , k} and
τ cj the complementary of τj in {x1, . . . , xk}.

Step 1 Draw a random partition τ of the set (x1, . . . , xk) conditionally to Z(x) = z,
according to the distribution:

P[T = τ | Z(x) = z] ∝
|τ |∏
j=1

λ(α)xτj
(zτj)

∫
{uj<zτc

j
}
λ
(α)
xcτj |xτj ,zτj

(uj)duj. (18)

Step 2 Given a partition τ = (τ1, . . . , τl), draw l independent extremal functions

(φ
(α)+
1 , . . . , φ

(α)+
l ) at s with finite dimensional distribution

P[φ
(α)+
j (s) ∈ dv | Z(x) = z, T = τ ] ∝

{∫
1{uj<zτc

j
}λ

(α)
(s,xcτj )|xτj ,zτj

(v,uj)duj

}
dv. (19)

Set Z+(sj) = max(φ
(α)+
1 (sj), . . . , φ

(α)+
l (sj)) for j ∈ 1, . . . ,m.

Step 3 Independently of the two previous steps, draw a number N sufficiently large
of φ(α)− at (s,x) such that φ(α)−(x) ≤ z and set

Z−(sj) = max
i≥1
{φ(α)−

i (sj)} for j ∈ 1, . . . ,m, (20)

Then Z̃(s) = max{Z+(s), Z−(s)} is distributed according to the conditional distri-
bution of Z(s) given Z(x) = z.

Step 1 is the most challenging one because of the tremendous number of partition
candidates. Indeed the number of possible partitions is equal to the Bell number (Spivey
(2008)). This number grows very fast with the number of conditioning points. For in-
stance, for k = 10, it is already equal to 115 975. Direct calculation of the probability
in equation (18) is therefore not possible for a realistic number of conditioning points.
In order to bypass this computational issue, Dombry et al. (2013) propose drawing
the partition using a Gibbs sampler (Casella and George (1992)) which changes the
class partition of one observed value at a time. Then once the transition probabilities
involved simplified, the chain runs through the space of all possible partitions and con-
verges to the target law described in equation (18).

Nevertheless, there are still some issues that need to be solved. The major problem
is that the integrals involved in the transition distribution (see equation (18)) have to
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be calculated at each step of the Gibbs sampler. The dimension of these integrals can
be as high as (k − 1). The values of the integrals can be estimated by classic Monte-
Carlo methods or quasi Monte-Carlo methods (Caflisch (1998)) but in both cases, the
estimation requires a huge number of points to get satisfying results and the Gibbs
sampling can become computationally heavy.

For Step 2, it is necessary to simulate from the distribution λ
(α)
s|x,z. Using the same

arguments as in Dombry et al. (2013), it can be shown that λ
(α)
s|x,z(u), u ∈ Rm is the

density of a multivariate Student distribution with (k + α) degrees of freedom, with
location parameter

µ = Σs:xΣ−1x z, (21)

and scale matrix

Σ̃ =
ax(z)

k + α
(Σs − Σs:xΣ−1x Σx:s) with Σs,x =

(
Σs Σs:x

Σx:s Σx

)
and ax(z) = zTΣ−1x z. (22)

Therefore 1{uj<zτc
j
}λ

(α)
(s,xcτj )|xτj ,zτj

(v,uj) involved in the integral of (19) is a truncated

multivariate Student distribution and step 2 results in a simulation under constraints.
A procedure to perform this simulation is proposed and detailed in the following section.

Step 3 is the most accessible one. It consists in simulating values for an extremal
t process at every conditioning and unconditioning location and check whether they
respect the constraints given by the conditioning points using an acceptance/rejection
procedure. In this context, the rejection rate of the algorithm is not very high even for
a large number of conditioning points. Indeed, it rarely happens that one of the φ

(α)−
i

becomes greater than the conditioning value, because in this model, the conditioning
values are meant to be, by construction, extreme realizations of these functions.

To simulate Z−, especially the Poisson point process ξ, we adapted the simulation
techniques described in Schlather (2002) for the Schlather process by noting that

ξ =

{( n∑
i=1

ei

)−1/α}
n∈N

, (23)

with ei ∼ E(1) a standard exponential distribution, is a Poisson point process with
intensity measure αt−(α+1)dt.
By construction the sequence ξ is decreasing and for i large enough ξiWi(.) will not
participate to the maxima Z− for any x ∈ X provided that Wi(x) < C for all x ∈ X .
C can be set to 5, and we choose the number N of sub-extremal functions such that
the probability that the last built one contributes to the maximum is lower than 0.001.
This number depends on α and increases with it.
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3.3. Multivariate Student under constraints

A straightforward way to sample from a truncated multivariate Student distribution
is to simulate from a multivariate Student distribution and add an acceptance/rejection
procedure (Dombry et al. (2013)). Nevertheless, the rate of acceptance of this algorithm
becomes very low for a number of conditioning points higher than 30. We propose using
the general methodology developed by Geweke (1991) for sampling a p-dimensional
vector y from a multivariate Student distribution with p linear constraints i.e.

y ∼ tν(µ,Σ),with a ≤ Dy ≤ b,

with D a full rank p× p matrix and some elements of the p-dimensional vectors a and
b can be equal respectively to −∞ and +∞. This method involves two steps simu-
lating alternatively the denominator and the numerator of the multivariate Student
random vector. The denominator is a constrained χ2 variable simulated via an ac-
ceptance/rejection procedure (on the ratio between the multivariate normal realization
and the χ2 variable) and the numerator is updated sequentially according to a Gibbs
sampler. The whole procedure is repeated until convergence.

It has to be noted that the rejection rate of the χ2 variable simulation is low be-
cause the constraint is univariate, and that the Gibbs sampler avoids using an accep-
tance/rejection procedure on vectors.The adaptation of this methodology to the step
(2) (equation (19)) of the algorithm is straightforward setting for each j ∈ {1, . . . , l},
all a components to −∞, D to the (m+ #(τ cj ))-dimensional identity matrix , the first
m components of b to +∞ and the #(τ cj ) last ones to zτcj . Consequently, all tools are
available to perform conditional simulations of extremal t processes with this algorithm.

4. Comparison criteria

For assessing the quality of the results, criteria comparing distributions resulting
from the conditional simulations and a value corresponding to an observation have to
be used.

The accuracy of conditional simulations is assessed using first the continuous ranking
probability score crps (Gneiting and Raftery (2007)). Letting F be the predictive
cumulative distribution function derived from the n conditional simulations {ŷ(j)}j=1,...,n

and y the test observation, the continuous ranking probability score is written

crps(F ; y) =

∫ +∞

−∞

[
F (t)−H(t− y)

]2
dt, (24)

where H(u) is the Heavyside function which is equal to 0 for u < 0 and 1 otherwise.
The steeper the cdf is around the real value, the better. A good score is a score close to
0. It also appears that the calculation of the crps will result in a value with the same
unit as the variable of interest.

Generally, there is no closed-form expression for this integral. Nevertheless, when
F denotes a GEV distribution, a closed-form expression exists (Friederichs and Tho-
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rarinsdottir (2012)).
Moreover, the conditional simulations are also evaluated based on the quantile score

(qs) defined as

qsp(F ; y) = νp(y − F−1(p)) (25)

where p is the probability of interest and νp(u) = pu if u ≥ 0 and νp(u) = (p − 1)u
otherwise. As shown by Friederichs and Thorarinsdottir (2012), the crps is proportional
to the integral of the qsp over all possible probabilities p. Then a good qsp is a qsp close to
0 as well. By choosing a high probability p, the quantile score focuses on the predictive
performance in the upper tail (Gneiting and Raftery (2007)).

Then, overall scores are built from equations (24) and (25), by averaging on all
points:

CRPS((F1, . . . , Fm); (y1, . . . , ym)) =
1

m

m∑
i=1

crps(Fi; yi).

QSp((F1, . . . , Fm); (y1, . . . , ym)) =
1

m

m∑
i=1

qsp(Fi; yi). (26)

In addition to these two univariate scores, which assess the marginal qualities of the
conditional simulation, we propose a multivariate score:

MSd(ŷ1, . . . , ŷn; y1, . . . , ym) =
∑

I∈Pm(d)

n∑
j=1

||ŷ(j)I − yI ||d (27)

with ||.||d the euclidean norm in Rd, Pm(d) the ensemble of indices of length d in

{1, . . . ,m}, yI = {yi|i ∈ I} and ŷ
(j)
I = {ŷ(j)i |i ∈ I}. This score enables us to assess the

spatial coherency of the conditional simulations.
In order to compare models, skill scores can be built (Gneiting and Raftery (2007)):

Sskill =
Smod − Sref

Sopt − Sref
(28)

with Smod, Sref and Sopt the score of the current model, the score of a reference model
and the optimal score respectively. For models that improve on the reference model,
Sskill belongs to [0, 1] with 1 correspond to the optimal case. For CRPS, QSp and MSd,

CRPS
opt

= QS
opt

p = MSoptd = 0 and the corresponding skill scores can be written for
these three scores as

CRPSS =
CRPS

ref − CRPS
mod

CRPS
ref

,QSSp =
QS

ref
p −QS

mod
p

QS
ref
p

,MSSd =
MSrefd −MSmodd

MSrefd
. (29)

which corresponds to the percentages of CRPS, QSp or MSd improvement brought by
the current model with respect to the reference model.
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5. Simulation Study

In order to check the properties of the conditional simulations provided by this
algorithm, simulations according to extremal t processes are drawn, and conditional
simulations at non conditioning points (test sample) are compared to their real values.
100 points are sampled at random in a unit square. 20 are kept as conditioning points,
and the other 80 are used as test values. For all simulations the covariance function is
the exponential with scale parameter 1.

5.1. Influence of the partition

As stated in the section 3, the first and hardest step for conditional simulation
is to draw a partition of the conditioning points according to the distribution given
in equation (18). Indeed, it appears that the Gibbs sampler converges very slowly
to the target law and then it is likely that we do not draw the partition from the
target distribution. We investigate how the resulting partition distribution, obtained
at different convergence stages of the Gibbs sampler, influences the performance of the
whole algorithm. For each α ∈ {2, 4, 6}, we simulate extremal t fields and compare the
performance of the algorithm when (i) the real partition is known, (ii) when it is drawn
from a Gibbs sampler (10 000 iterations) according to the distribution (18) and (iii)
when the partition is drawn randomly. Table 1 gives the CRPSS calculated by taking
the random partition model as the reference.

Real Part. Gibbs sampler Part. Random Part.

α 2 4 6 2 4 6 2 4 6

CRPS 0.158 0.132 0.118 0.237 0.182 0.173 0.250 0.192 0.175

CRPSS 36.8% 31.2% 32.8% 5.1% 5.2% 1.2% 0 0 0

Table 1: Importance of a good estimation of the partition: values of the CRPS and CRPSS for
α = 2, 4, 6, (i) when the real partition is known, (ii) when the partition is drawn from a Gibbs sampler
(10 000 iterations) according to the distribution (18) and (iii) when the partition is drawn randomly.

When the partition is drawn from the Gibbs sampler, the CRPSS is slightly greater
than 5% for α=2 and α=4 and around 1% for α=6. However, it is greater than 30%
when the real partition is used. This demonstrates the strong gain to be had by drawing
close to the real one and confirms that the efforts made for this step of the algorithm are
inevitable and should even be developed. Indeed, the gain in drawing the partition with
the Gibbs sampler is not very high compared to using a random partition (less than
6%) and far from the 30% obtained with the real partition. We can think that drawing
randomly the partition instead of performing a Gibbs sampler for time-saving reasons
for instance, would not change considerably the results especially when the number of
conditioning points is high.

5.2. Influence of α

We investigate how the value of the parameter α influences the quality of the con-
ditional simulations. For each value of α, 15 simulations of an extremal t process are

12



drawn and 20 conditioning points are sampled for each simulation. Then 50 conditional
simulations are performed according to each conditioning point set. We suppose that
the real partition is known, just as α and ρ(.) which are not estimated.

The conditional simulations of the extremal t process are compared to conditional
simulations of a Schlather process (Schlather (2002)), a Brown-Resnick process (Brown
and Resnick (1977)), and a Gaussian process with the same conditioning points and un-
conditional simulations of the extremal t process. Ordinary Kriging (Chilès and Delfiner
(1999)) is set as the reference prediction for the CRPSS calculation. The conditional
simulations of the Schlather and Brown-Resnick processes are performed according to
the algorithm of Dombry et al. (2013) and with SpatialExtremes (Ribatet (2013b)).
For the Gaussian process conditional simulations, we apply first a Gaussian margin
transformation and then perform the methodology described in Lantuéjoul (2002) for
Gaussian processes (even if it is only marginally Gaussian). For the ordinary kriging
and the Gaussian simulations, the covariance function is estimated from the data.

Figure 1 describes the evolution of the different CRPSS with α. As expected since
it is based on the right model, the extremal t model gives better CRPSS than do the
other models. It also appears that the unconditional extremal t simulations become
more and more efficient as α increases. Indeed, when α increases, the variance of the
extremal t process tends to 0 (Opitz (2013)) and the simulated samples show very little
variability, making the information added by the conditional values less influential. It is
worth noticing that Gaussian margin transformation followed by conditional simulations
of Gaussian fields shows surprisingly good results and it appears to be very efficient
specially when α is high. The relevance of this approach in conditional simulation
framework has also been stated in Oesting and Schlather (2014).
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Figure 1: Evolution of the CRPSS (in %) with the α with ordinary kriging as reference.

Nevertheless, for every values of α, the CRPSS of the extremal t simulations is
around 20% showing more stability in good performances than any other tested models.

5.3. Asymptotic dependence properties

We now investigate a notion related to the asymptotic dependence for the condi-
tional simulations. As mentioned by Dombry et al. (2013), Z(.)|{Z(x) = z} is not
max-stable and cannot be asymptotically dependent. However, the process integrated
on all the conditional events recovers the max-stability property, and its asymptotic
dependence can be characterized by the madogram (Cooley et al. (2006)). Using the
madogram we compare the pairwise extremal coefficient estimates θest to the theoretical
extremal coefficient function θth(h) at a distance h in order to check that the asymptotic
dependence behavior of the conditional simulations is similar to that of the theoretical
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one.
For each α ∈ {2, 4, 6}, we simulate 1 000 extremal t fields at the same 20 conditional

points and estimate the extremal coefficient function from the remaining 80 points with
the R package SpatialExtremes (Ribatet (2013b)). Figure 2 compares the theoretical
extremal function θth(h) and the estimated one θest(h) calculated from the madogram
of the integrated conditional simulations.

For the three values of α, the conditional simulations respect the expected asymp-
totic dependence behavior. Indeed, the theoretical extremal coefficient function fits
relatively well the pairwise extremal coefficient estimates, although it tends to over-
estimate them when α becomes high.

Figure 2: Extremal coefficient: comparison of θth(h) and θest(h) for α ∈ {2, 4, 6}.

6. Application to precipitation data

6.1. Description and margin modeling

To check the behavior of the model and the algorithm on real data, we extracted
daily precipitation data from the SAFRAN analyses (Quintana-Segúı et al. (2008)) in
the southeast of France covering the region [3.4◦E, 6.0◦E] x [43.2◦N, 44.5◦N] – as rep-
resented by the red square in Figure 3 – with a spatial resolution of 8 km × 8 km,
which corresponds to 457 grid cells. Then, for each cell, we computed the autumnal
maximum daily precipitation (from 91 days between September 1st and November 30th)
for 1960 − 2007: hence, for each grid cells, we have 48 autumnal maximum daily pre-
cipitation values. 50 grid cells have been randomly selected as conditioning points.
Conditional simulations are then performed on the 407 remaining grid cells given the
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observation of the 50 conditioning spots.

Figure 3: Study area of SAFRAN data subset.

The choice of the autumnal period allows us to make the temporal stationarity as-
sumption, as it is commonly accepted that rainfall data can be considered as stationary
within a given season.

In order to perform the conditional simulations presented in section 3 the margins
have first to be transformed into an α-Fréchet distribution. If Z is distributed according
to a GEV(µ, σ, ξ), then Y defined as

Y =

(
1 +

ξ(Z − µ)

σ

)1/αξ

+

(30)

follows an α-Fréchet distribution (Beirlant et al. (2004)).

To avoid the estimation of the parameters (µ, σ and ξ) of the GEV for all points
and to deal with spatial non-stationarity, these parameters are modeled as functions of
the spatial coordinates LAT and LON except ξ that is assumed to be constant for the
whole region:

µ = exp
[
µ0 + µ1 ∗ LAT + µ2 ∗ LON

]
σ = exp

[
σ0 + σ1 ∗ LAT + σ2 ∗ LON

]
ξ = ξ0 (31)

It can be observed that the exponential formulation is employed for µ and σ as σ
has to be positive for model definition reasons and µ is chosen to be positive because
of the nature of the observed phenomenon (precipitation).
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6.2. Inference

The parameters of the model, i.e.:

1. µ0, µ1, µ2, σ0, σ1, σ2, ξ, the parameters for the margin model,

2. α, the extremal t parameter,

3. and a the scale parameter of the exponential correlation function of W ,

have to be estimated from the data. Nevertheless, for dimensions higher than 2, the
multivariate density of the extremal t process is not tractable and usual likelihood
maximization methods are not available. Alternatively, composite likelihood (Lindsay
(1988), Varin et al. (2011)) can be used. It consists in calculating bivariate densities
for each pair of points and maximizing their weighted sum. Let us note {zm,xi} the
autumnal maximum onm = 1, . . . ,M years for a given xi in (x1, . . . , xk). The composite
log-likelihood is

LC(Ψ; z) =
M∑
m=1

k−1∑
i=1

k∑
j=i+1

wijlij(Ψ) (32)

with lij(Ψ) = logf(zm,xi , zm,xj ; Ψ) the bivariate log-density for points xi and xj with Ψ
the vector of parameters to estimate, and wij the corresponding weights. These weights
wij have been chosen to be decreasing (exponentially) with the distance between xi and
xj. The maximization of this composite likelihood leads to consistent estimations of
the target parameters (Padoan et al. (2010), Xu and Reid (2011)).

6.3. Results

The inference has been driven by the data over the whole time period. The maxi-
mization of the composite likelihood gives α = 2.2 (with θ∞ = 1.83) which means that
even for long distances there is still some asymptotic dependence. Furthermore, the es-
timated range of the exponential covariance function is equal to 360 km.The estimated
parameters and the confidence intervals are presented in Table B.1.

The validation is performed only for the year 2007 with 100 conditional simulations.
The most represented partition in the history of the Gibbs sampler is composed of 5
classes. However, there is no notable spatialization of these classes (not shown).

Figure 4 shows the individual crps scores (as defined in equation (24)) computed
for the year 2007 taking the observed values as test observations (yi) and the empirical
distributions of the conditional simulations as the predictive cdf (Fi).
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Figure 4: Map of the crps (in mm) for 2007. For further illustrations, four grid cells have been
arbitrarily selected and are indicated here (from 1 to 4).

In addition, Figure 5 describes the distributions of the conditional simulations at
four arbitrarily chosen grid cells specified on Figure 4. It appears naturally that the
closer to conditioning points the new location is, the better the simulation (e.g. points
2 and 4 are close to conditioning points whereas point 3 is far). However, this is clearly
not the only important criterion. Indeed, point 1 is quite close to conditioning points
yet its simulations are not as good as expected.
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Figure 5: Histograms of the conditional simulations at 4 locations, with the real value (in red).

In order to evaluate the quality of these conditional simulations, other models and
algorithms are considered and compared:

(A) conditional simulation of extremal t model, with Gibbs sampler,

(B) conditional simulation of extremal t , with random partitions,

(C) analog model,

(D) historical model,

(E) unconditional simulation of extremal t model.

For simulations based on the analog model (C) (e.g. Barnett and Preisendorfer
(1978); Zorita and Von Storch (1999) or Pascal et al. (2013)), at each non conditioning
location we consider the nearest conditioning grid cell. Then we look at the history
of this point (1960-2006) to find the year with the closest observed value: the value
observed this year at the non conditioning location is taken as the estimate value for
the non conditioning point. For the so-called “historical” model (D), we randomly draw
a value in the history of a non conditioning location and consider it as the value of the
simulation.

19



Table 2 gives the CRPS, CRPSS, QS95, QSS95, MS2 and MSS2 for each method with
the historical model (D) as reference.

Method CRPS CRPSS QS95 QSS95 MS2 MSS2

(A) Cond. Sim. Gibbs 10.05 -4.1% 1.95 34.8% 27.55 31.3%
(B) Cond. Sim. Random 10.96 -13.1% 2.02 32.4% 28.99 27.7%
(C) Analog 10.53 -9.1% 5.68 -90.0% 18.41 54.1%
(D) Historical 9.65 0% 2.99 0% 40.11 0%
(E) Uncond. Sim. 12.71 -31.6% 3.33 -11.4% 48.07 -19.9%

Table 2: CRPS, CRPSS, QS95, QSS95, MS2 and MSS2 for the methods (A), (B), (C), (D) (as reference)
and (E).

The historical model appears as the best one regarding the CRPS score. In term of
MS2, the model analog, which respects by construction the spatial coherency, gives the
best results. Model (A) shows good results in terms of QS95 and generally appears to be
the most versatile method adapted to different purposes (for each score, it gets at worst
the second best value). It is also important to note that method (A) is better than
method (B): there is a real gain in running a Gibbs sampler to estimate the partitions.

Generally, models (A)-(B) are the best to catch high quantile behavior (see QS95).
Nevertheless, as crps is the overall score of qsp integrated over all probabilities p, it
indicates that for lower probabilities, model (A) is not as good as the others. It appears
that for p ≥ 0.75, QSp of model (A) calculated over the whole region is the best.

Furthermore, by deepening the analysis of the results, it appears that for some
points the error (in terms of crps) is fairly high, especially for model (A). Those points
are located in the upper left corner of Figure 4 (i.e., the northwest of the region), corre-
sponding to the higher region(s) of the Cevennes mountains. The climate characteristics
in this area are very different from the rest of the region and it is likely that the chosen
covariates (LAT and LON) are not sufficient to overcome the inhomogeneity of this
region.

Then, for comparison purposes inside the stationary framework, we removed these
points for the calculation of the scores. Table 3 shows the new scores.

Method CRPS CRPSS QS95 QSS95 MS2 MSS2

(A) Cond. Sim. Gibbs 8.85 4.4% 1.78 37.2% 30.14 21.8%
(B) Cond. Sim. Random 9.46 -2.1% 1.80 36.5% 30.79 20.0%
(C) Analog 10.14 -9.4% 5.55 -95.7% 18.15 52.9%
(D) Historical 9.27 0% 2.83 0% 38.51 0%
(E) Uncond. Sim. 11.13 -20.3% 3.09 -9.1% 47.24 -22.7%

Table 3: CRPS, CRPSS, QS95, QSS95, MS2 and MSS2 for the methods (A), (B), (C), (D)(as reference)
and (E) with removal of the outliers area.
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The CRPSS is now better for method (A), with a gain of 4.4% with respect to the
reference model and both QSS95 and MSS2 remain good. It also appears that the CRPS
and CRPSS have been improved for all methods.

It is also interesting to check whether the conditional simulations follow the temporal
variations of the real values. To this aim, we have simulated 50 conditional fields on
50 grid cells from the SAFRAN database, on the period 2000 − 2007 with the same
estimated parameters. As running the Gibbs sampler for each year with 50 conditional
points would be too time-consuming, the partitions are drawn randomly for each year.
Figure 6 shows the temporal evolutions of the means of the conditional simulations at
the four previously chosen grid cells.

Figure 6: Comparison of the evolution of the mean of the conditional simulations (in red), the historical
model (in blue), analog model (in orange) and the test values (in black).

For points 2 and 4, the temporal evolutions of the conditional simulations are almost
the same as for the test values, whereas for point 3, there is a big discrepancy in the
first period and a good match in the second period. A constant significant bias is noted
for point 1, which is a location in the already mentioned mountain region, and it can
be suspected that it behaves in a quite different way than do the conditioning points
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even though it approximately follows the temporal variations.

Figure 7: Correlation between the simulated values and the test values.

The scatterplot of the simulated values vs. the test values is represented in Figure
7. The Pearson correlation coefficient is equal to 0.71. It appears that the conditional
simulations roughly follow the intrinsic variations of the data over the years. Indeed, a
correlation coefficient of 0.71 is a satisfying result which indicates that the method is
able to reproduce the general evolution of the observed phenomenon. In comparison,
the correlation coefficient is 0.47 for the historical model and 0.33 for the analog model.

7. Discussion and conclusions

We have investigated conditional simulations for maxima precipitation using the
extremal t model. Thanks to its parametrization, this model offers a great flexibility in
modeling the asymptotic dependence. The conditional simulation algorithm designed
by Dombry et al. (2013) for Brown-Resnick and Schlather models has been adapted to
the extremal t process and the second step, consisting in simulating from a multivariate
Student distribution under constraints, has been improved by a two-state Gibbs sampler
proposed by Geweke (1991) enabling us to handle a greater number of conditioning
points.

A simulation study highlighted that the methodology of conditional simulations for
the extremal t process is effective for a large range of α (∈ [1, 6]). Moreover, when
the value of α is too high, its estimation becomes more and more uncertain. In such
cases, we would advise the use of the conditional simulations of Gaussian processes
with transformed Gaussian margins (Oesting and Schlather (2014), Lantuéjoul (2002))
which are faster than the general Brown-Resnick processes (Kabluchko et al. (2009))
which show similar properties to those of an extremal t process for high values α.

A major aspect that needs to be improved is the way to generate the partitions of
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the conditioning points. Indeed, the Gibbs sampler requires too many computational
resources to provide better results. Some alternative methods have to be considered
in order to avoid the calculations of the multiple integrals involved in the transition
probabilities.

The application performed on a dataset of rainfall in the south of France showed that
the model is relevant and that the algorithm performs well, provided that the spatial
and temporal assumptions of stationarity are fulfilled. The margins modelling and
transformation (equations (33) and (34)) intended to make the transformed process
spatially stationary. However, the sole use of the coordinates (LAT+LON) is likely
not sufficient to remove all the spatial heterogeneity of the process especially at the
boundaries or where some other major climatic factors have to be taken into account.
For this example, a small sub-region with different climate characteristics has been
identified where the spatial coordinates do not seem to be sufficient to get satisfying
results. Hence, the introduction of other covariates, such as altitude or information
from climate or meteorological situations, could help to improve the simulations.

However, for simulations of fields of maxima precipitation in a future climate change
context, no conditioning points (i.e., really observed at locations) are available. The
only information stems from Global Climate Models (GCM) or Regional Climate Models
(RCM) driven by various greenhouse gas emission scenarios. Those models provide
many data but at low spatial resolution (from about 300 km down to about 10 km
at best, so far). Hence, the best those models can give will be mean precipitation
values over relatively large regions. Those data are clearly not adapted to feeding
hydrological, ecological or, more generally, environmental impact models, which require
high-resolution input climate data. Hence, the use of a max-stable process to simulate
data for the future and provide those simulations to environmental impact models needs
to be based on a change of spatial resolution. In other words, the max-stable process will
not have “station” values available as conditioning points but only large-scale climate
conditioning information. Therefore, one important need is to be able to condition
max-stable processes by those large-scale climate data, which corresponds to performing
a “statistical downscaling” to generate high-resolution fields of extreme precipitation.
This downscaling in a spatial modeling framework will enable us to statistically generate
fields and times series that will be useful for many impact studies trying to anticipate
the potential consequences of extreme precipitation events in a climate change context.

Appendix A. Calculation of the density and the conditional density

Proof. According to equation (13), we have

Λ(α)
x (A) =

∫ +∞

0

P(m−1/αα ξW (x) ∈ A)ξ−(α+1)dξ (A.1)

=

∫ +∞

0

∫
Rk
1{m−1/α

α ξz∈A}gx(z)dzξ−(α+1)dξ
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with for z ∈ Rk,

gx(z) = (2π)−(k/2)|Σx|−1/2exp[−1

2
zTΣ−1x z].

Setting y = m
−1/α
α ξz, we get

Λ(α)
x (A) =

∫ +∞

0

∫
A

gx

(
y

ξm
−1/α
α

)
1

m
−k/α
α

ξ−(k+1+α)dydξ (A.2)

and then

λ(α)x (y) =

∫ +∞

0

gx

(
y

ξm
−1/α
α

)
mk/α
α ξ−(k+α+1)dξ.

= (
√

2π)−k|Σx|−1/2mk/α
α

∫ +∞

0

exp

[
− 1

2m
−2/α
α ξ2

yTΣ−1x y

]
ξ−(k+α+1)dξ(A.3)

By noting that for l ≥ 2,∫ +∞

0

exp

[
− zTΣ−1x z

2m
−2/α
α ξ2

]
ξ−ldξ = 2(l−3)/2 [zTΣ−1x z]−(

l−1
2

) m−(l−1)/αα Γ
( l − 1

2

)
(A.4)

λ
(α)
x (z) can be written:

λ(α)x (z) = π−
k−1
2 |Σx|−1/2 [zTΣ−1x z]−(

k+α
2

) Γ
(k + α

2

)
Γ((α + 1)/2)−1

=
π
α−1
2

wk+α−2
|Σx|−1/2 [zTΣ−1x z]−(

k+α
2

)Γ((α + 1)/2)−1 (A.5)

and

λ
(α)
s|x,z(u) =

λ
(α)
s,x(u, z)

λ
(α)
x (z)

=
wk+α−2
wk+m+α−2

√
|Σs:xΣ−1x |

[zTΣ−1x z](k+α)/2

[(u, z)T Σ−1s,x (u, z)](k+m+α)/2
(A.6)

with wd = πd/2/Γ(d/2 + 1) the volume of the unit ball in d dimensions.
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Appendix B. Estimated parameters

Parameters Estimation CI (95%)
µ0 -3.0565 [ -3.0942 ; -3.0187 ]
µ1 -0.2227 [ -0.2233 ; -0.2221 ]
µ2 0.1804 [ 0.1803 ; 0.1805 ]
σ0 -4.3431 [ -4.3732 ; -4.3129 ]
σ1 -0.3665 [ -0.3675 ; -0.3654 ]
σ2 0.2084 [ 0.2084 ; 0.2085 ]
ξ 0.1145 [ 0.1128 ; 0.1163 ]
α 2.2077 [ 2.0354 ; 2.3945 ]
a 1.2262 [ 1.1304 ; 1.3301 ]

Table B.1: Estimated parameters (and CI) with composite likelihood maximization.
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Dombry, C., Éyi-Minko, F., Ribatet, M., 2013. Conditional simulation of max-stable
processes. Biometrika 100 (1), 111–124.

Ducrocq, V., Nuissier, O., Ricard, D., Lebeaupin, C., Thouvenin, T., 2008. A numerical
study of three catastrophic precipitating events over southern france. ii: Mesoscale
triggering and stationarity factors. Quarterly Journal of the Royal Meteorological
Society 134 (630), 131–145.

Fawcett, L., Walshaw, D., 2012. Estimating return levels from serially dependent ex-
tremes. Environmetrics 23 (3), 272–283.

Friederichs, P., Thorarinsdottir, T. L., 2012. Forecast verification for extreme value dis-
tributions with an application to probabilistic peak wind prediction. Environmetrics
23 (7), 579–594.

Fuentes, M., Henry, J., Reich, B., 2013. Nonparametric spatial models for extremes:
application to extreme temperature data. Extremes 16 (1), 75–101.

Gaume, J., Eckert, N., Chambon, G., Naaim, M., Bel, L., 2013. Mapping extreme
snowfalls in the french alps using max-stable processes. Water Resources Research
49 (2), 1079–1098.

26



Geweke, J., 1991. Efficient simulation from the multivariate normal and student-t dis-
tributions subject to linear constraints and the evaluation of constraint probabilities.
In: Computing science and statistics: Proceedings of the 23rd symposium on the
interface. Citeseer, pp. 571–578.

Gneiting, T., Raftery, A. E., 2007. Strictly proper scoring rules, prediction, and esti-
mation.

IPCC, 2011. Managing the risks of extreme events and disasters to advance climate
change adaptation. Tech. rep., Intergovernmental Panel of Climate Change (IPCC).

Kabluchko, Z., Schlather, M., de Haan, L., 09 2009. Stationary max-stable fields asso-
ciated to negative definite functions. The Annals of Probability 37 (5), 2042–2065.
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