On the Ehrenfeucht-Mycielski Balance Conjecture
Résumé
In 1992, A. Ehrenfeucht and J. Mycielski defined a seemingly pseudorandom binary sequence which has since been termed the EM-sequence. The balance conjecture for the EM-sequence, still open, is the conjecture that the sequence of EM-sequence initial segment averages converges to $1/2$. In this paper, we do not prove the balance conjecture but we do make some progress concerning it, namely, we prove that every limit point of the aforementioned sequence of averages lies in the interval $[1/4,3/4]$, improving the best previous result that every such limit point belongs to the interval $[0.11,0.89]$. Our approach is novel and exploits an analysis of the growth behavior as $n \to \infty$ of the rooted tree formed by the binary strings appearing at least twice as substrings of the length $n$ initial segment of the EM-sequence.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|
Loading...