The Height of List-tries and TST - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2007

The Height of List-tries and TST

Résumé

We characterize the asymptotics of heights of the trees of de la Briandais and the ternary search trees (TST) of Bentley and Sedgewick. Our proof is based on a new analysis of the structure of tries that distinguishes the bulk of the tree, called the $\textit{core}$, and the long trees hanging down the core, called the $\textit{spaghettis}$.
Fichier principal
Vignette du fichier
dmAH0118.pdf (258.6 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01184784 , version 1 (17-08-2015)

Identifiants

Citer

N. Broutin, L. Devroye. The Height of List-tries and TST. 2007 Conference on Analysis of Algorithms, AofA 07, 2007, Juan les Pins, France. pp.271-282, ⟨10.46298/dmtcs.3536⟩. ⟨hal-01184784⟩

Collections

TDS-MACS
56 Consultations
852 Téléchargements

Altmetric

Partager

More