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1 Introduction.

The aim of this article is to show that in a reduced strongly n−concave1 complex
space Z with n ≥ 2, the space of closed n−cycles (not assumed compact) is in a
natural way endowed with a structure of complex space locally of finite dimension.
With its tautological family of n−cycles it represents the functor “analytic family of
n−cycles in Z” and also the functor “f-analytic family of n−cycles in Z” introduced
in [B.08] (see also [B.13] and [B.15-a]) parametrized by a banach analytic set.
This answers a question asked to me by Y-T. Siu forty years ago.
I was able to solve this question thanks to the notion of f-analytic family introduced
in loc. cit. and using the space Cf

n(Z) of finite type cycles with its natural topology.
We obtain the following results.

Theorem 1.0.1 Let n ≥ 2 be an integer. let Z be a strongly n−concave2 reduced
complex space and let ϕ : Z →]0, 2] be its C 2 exhaustion function. So it is proper and

1Our conventions will be precised below.
2See the section 2 for the definition.
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strongly (n− 1)−convex outside the compact set K := ϕ−1([1, 2]). For α ∈]0, 1[ and
X0 a n−cycle in an open neighbourhood of the compact set ϕ−1([α, 2]) there exists
β ∈]0, α[ such that, if Zβ := {z ∈ Z / ϕ(z) > β}, the cycle X0 extends in an unique
way to the open set Zβ and admits an open neighbourhood U in the space Cf

n(Zβ)
such that the ringed space defined by U and the sheaf of holomorphic functions on
U is a (reduced) complex space locally of finite dimension.

Recall that a holomorphic function h : U → C on an open set in Cf
n(Zβ) is a contin-

uous function on U such that for any holomorphic map f : S → U (corresponding
to an f-analytic family of n−cycles in Z, see loc. cit.) of a banach analytic set S to
U the composed function h ◦ f is holomorphic.

Theorem 1.0.2 Consider the same situation as in the previous theorem, and let
now X0 ∈ Cf

n(Z) be a finite type n−cycle in Z. Then there exists β ∈]0, 1[ and open
neighbourhoods V and U respectively of X0 dans Cf

n(Z) and of X0 ∩Zβ dans Cf
n(Zβ)

such that the restriction map
r : V → U

is well defined and bi-holomorphic.

The following corollary is of course the main point.

Corollary 1.0.3 Consider the same situation as in the previous theorems. Then
the ringed space given by the sheaf of holomorphic functions on Cf

n(Z) is a reduced
complex space locally of finite dimension. Moreover, endowed with its tautological
family of n−cycles it represents the functor “f-analytic family of n−cycles in Z” .

In fact, we show that under the same hypothesis, the obvious map Cf
n(Z) → Cloc

n (Z)
is an isomorphism of ringed space, so that Cf

n(Z) represents also the functor “analytic
family of n−cycles in Z” .

2 Hartogs figures.

2.1 Banachisation

For the analytic extension via Hartogs figures, the use of the Banach spaces H(Ū ,C)
of continuous functions, holomorphic inside on a compact polydisc Ū is not well
adapted. We shall use the Banach space B(U,C) of bounded holomorphic functions
on U with the “sup” norm on U . Of course, H(Ū ,C) is a closed banach subspace
in B(U,C).

Proposition 2.1.1 Let U be a relatively compact polydisc in C
n and let S be a

banach analytic set. Let F : S → B(U,C) be a holomorphic map. Then the corre-
sponding function f : S × U → C defined by f(s, t) := F (s)[t] for (s, t) in S × U is
holomorphic (and locally on S uniformely bounded on U).
Conversely, if we have a holomorphic function f : S ×U → C and an open polydisc
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U ′′ ⊂⊂ U , the the associated map F : S → B(U ′′,C), defined for (s, t) in S ×U ′′ by
F (s)[t] := f(s, t), is holomorphic.

Proof. The evaluation function ev : B(U,C)×U → C is holomorphic as one may
easily see by differentiation. Then the function f associated to F is the composition
of the holomorphic maps F × idU and ev. So it is holomorphic.
The converse is consequence of the linear isometric inclusion ofH(Ū ′′,C) in B(U ′′,C)
as F ′′ : S → H(Ū ′′,C) is holomorphic as soon as f is holomorphic (see [B.75] or
[B-M 2]). �

2.2 n−Hartogs figure on a complex space.

For α ∈ (R∗
+)

2 let M(α) be the open set in C2 defined by

M(α) := MP (α) ∪MC(α) with

MP (α) :=
{

|t1 − α1/2| < α1/4, |t2| < α2

}

MC(α) :=
{

|t1| < α1, α2/2 < |t2| < α2

}

and let also M(α) :=
{

(t1, t2) ∈ C
2 / |ti| < αi, i = 1, 2

}

.
for ε > 0 small enough. We define

M(α)ε := MP (α)ε ∪MC(α)ε with

MP (α)ε :=
{

|t1 − α1/2| < α1/4− ε/4, |t2| < α2 − ε
}

MC(α)ε :=
{

|t1| < α1 − ε, α2/2 + ε/2 < |t2| < α2 − ε
}

and also M(α)ε :=
{

(t1, t2) ∈ C
2 / |ti| < αi − ε, i = 1, 2

}

.

For a polydisc of radius R in C
m we shall denote by P ε the polydisc with same

center and radius R − ε for 0 < ε < R.

Definition 2.2.1 Let n ≥ 2 and p ≥ 1 two integers and let ∆ ⊂⊂ ∆′ be two open
sets in a reduced complex space Z. We shall call H := (M,M,B, j) a n−Hartogs
figure in Z relative to the boundary of ∆, the following data

• an embedding j of an open set Z ′ in ∆′ into an open set of Cn+p,

• open sets M ⊂⊂ ∆′ and M ⊂⊂ ∆ relatively compact in Z ′,

• a relatively compact polydisc B in C
p

such that there exists α ∈ (R∗
+)

2 and a relatively compact polydisc V in C
n−2 with

the following conditions:

i) The map j induces a closed embedding of M in M(α)× V ×B.
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ii) The map j induces a closed embedding of M in M(α)× V ×B.

iii) We have j−1
(

M̄(α)× V̄ × ∂B
)

⊂ ∆.

Definition 2.2.2 Let n ≥ 2 and p ≥ 1 two integers and let ∆ ⊂⊂ ∆′ be two open
sets in a reduced complex space Z. Let H = (M,M,B, j) be a n−Hartogs figure in
Z relative to the boundary of ∆ and let X0 be a n−cycle in ∆. We shall say that
H is adapted to X0 when the following condition is satisfied :

j−1(M̄(α)× V̄ × ∂B) ∩ |X0| = ∅. (@)

Remarks.

1. Let H be a n−Hartogs figure in Z relative to the boundary of ∆. If the open
set ∆1 ⊂⊂ ∆′ has a boundary ∂∆1 near enough to ∂∆, thenH is again relative
to the boundary of ∆1. For instance, if ∆ := {ϕ > 0} where ϕ is a continuous
proper function on Z, we may choose ∆1 := {ϕ > ε} for ε > 0 small enough.

2. Note that the n−scale EH := (M(α)×V,B, j) on ∆ associated toH is adapted
to X0 as soon as the n−Hartogs figure H is adapted to X0.

3. If X̃0 is a n−cycle in ∆′ such that its restriction to ∆ is equal to X0, the
n−scale EH̃ := (M(α) × V,B, j) on ∆′ is adapted to X̃0 if and only if the
n−Hartogs figure H is adapted to X0.

Note that the n−scale EH̃ is not a n−scale on ∆ although the subset M̄(α)×V̄ ×∂B
is contained in ∆.

Definition 2.2.3 In the situation above we define, for ε > 0 small enough, the
n−Hartogs figure Hε on ∆ as follows :

Hε := (Mε,Mε, B, j)

where we use the notations

Mε := j−1(M(α)ε × V ε ×B) and also Mε := j−1(M(α)ε × V ε × B).

It is obvious to see that when H is relative to the boundary of ∆, then Hε is again
relative to the boundary of ∆ for all ε > 0 small enough.
Moreover, if H is adapted to the n−cycle X0 of ∆, so it is for Hε for all ε > 0 small
enough.

Lemma 2.2.4 Let V be a relatively compact open polydisc in C
q. The restriction

map
res : B(M(α)× V,C) → B(M(α)× V,C)

is a linear isometry of Banach spaces.
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Note that the restriction map induces also an isometry

res : B(M(α)ε × V ε,C) → B(M(α)ε × V ε,C)

for all ε > 0 small enough.

Proof. Let f(v, t1, t2) :=
∑

m∈Z am(v, t1).t
m
2 the Laurent expansion of the holo-

morphic function f : MC(α) × V → C. The holomorphic functions am, m ∈ Z on
the product of V by the disc {|t1| < α1} are given by the formula

am(v, t1) :=
1

2iπ
.

∫

|z|=r

f(v, t1, z).
dz

zm+1
with r ∈]α2/2, α2[.

As the holomorphy of f on MP (α) × V implies that am ≡ 0 for each negative m
on the open set {|t1 − α1/2| < α1/4} × V , we conclude that the functions am are
identically zero for m < 0 and so f is holomorphic on M(α)× V . This shows that
the restriction map res is bijective (and also it is linear continuous) between the
two Frechet spaces O(M(α) × V ) and O(M(α) × V ); so it is an isomorphism of
Frechet spaces.
Let us show that if f is in B(M(α)×V,C), then res(f), which belongs to the space
B(M(α)×V,C), has the same norm “sup”. For this purpose fix ε > 0 small enough.
As M̄(α)ε × V̄ ε is a compact polydisc in M(α) × V , the maximum of f on this
compact is obtain at some point z in the distinguish boundary of it. But as z is also
in the boundary of MC(α)ε × V̄ ε, the desired equality follows.
Conversely, if g is in B(M(α)× V,C), its analytic extension f to M(α)× V will be
bounded on the boundary of M(α)ε × V ε by the sup of g on MC(α)ε × V ε. So we
obtain the equality of the “sup” norms for g and f respectively on M(α) × V and
M(α)× V . �

The banach analytic set B(U, Symk(Cp)). Recall that if p ≥ 1 and k ≥ 1
are integers, there exists a closed embedding ( in fact given by a polynomial map)
of Symk(Cp) := (Cp)k

/

Sk into the vector space E(k) := ⊕k
h=1 Sh(Cp) given by

the elementary tensorial symetric functions3. If U is an open relatively compact
polydisc in C

n, the subset B(U, Symk(Cp)) is closed and banach analytic in the
Banach space B(U,E(k)). Indeed, if Q : E(k) → C

N is a polynomial map such that
Q−1(0) = Symk(Cp), then the holomorphic map

Q : B(U,E(k)) → B(U,CN ) defined by f 7→ Q ◦ f

satisfies Q−1(0) = B(U, Symk(Cp)).
Nevertheless, be aware that for an open set Ω in E(k) the subset B(U,Ω) is gen-
erally not open in B(U,E(k)) and so, for an open polydisc B ⊂⊂ C

p, the subset

3see for instance [B-M 1] chapter I §4.
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B(U, Symk(B)) is not open in B(U, Symk(Cp)) in general.

The obvious mapH(Ū , E(k)) → B(U,E(k)) is a closed (linear) isometry and induces
a holomorphic

iU : H(Ū , Symk(Cp)) →֒ B(U, Symk(Cp))

and for all ε > 0 the restriction

r : B(U,E(k)) → H(Ūε, E(k))

is a (linear and continuous) compact map which induces a holomorphic map

B(U, Symk(Cp)) → H(Ūε, Symk(Cp)).

Notations. Let k ∈ N and let U ′ ⊂⊂ U ⊂⊂ C
n and B ⊂⊂ C

p be polydiscs.
We shall note ΣU,U ′(k) the banach analytic set classifying the couples of an element
in H(Ū , Symk(B)) with its isotropy data on Ū ′. Recall that the natural projection
ΣU,U ′(k) → H(Ū , Symk(B)) is a holomorphic homeomorphism (see [B.75] ch. III
prop. 2 page 81 or [B-M 2] ch.V).

Our next result is the main tool for the analytic extension of n−cycles near a
n−concave boundary.

Proposition 2.2.5 Consider the open sets M(α)× V and M(α)× V in C
n. The

inverse of the restriction map is a holomorphic isomorphism of analytic extension

prlgt : B(M(α)× V, Symk(Cp)) → B(M(α)× V, Symk(Cp)).

Composed with the restriction to the compact set M̄(α)ε × V̄ ε it sends the subset
H(M̄(α)× V̄ , Symk(B)) in H(M̄(α)ε × V̄ ε, Symk(B)) for ε > 0 small enough.
Moreover, this holomorphic map induces a holomorphic map, again for ε > 0 small
enough

ΣM(α)×V, M(α)ε/3×V ε/3(k) −→ ΣM(α)ε/3×V ε/3, M(α)2ε/3×V 2ε/3(k)

which factorizes the restriction map

ΣM(α)×V, M(α)ε/3×V ε/3(k) → ΣM(α)ε/3×V ε/3, M(α)2ε/3×V 2ε/3(k)

through the restriction

ΣM(α)×V, M(α)ε/3×V ε/3(k) → ΣM(α)×V, M(α)ε/3×V ε/3(k).

Proof. The lemma 2.2.4 gives that the map

prlgt : B(M(α)× V,E(k)) → B(M(α)× V,E(k))

is an isometry of Banach spaces. It is clear that its inverse sends the analytic
subset B(M(α) × V, Symk(Cp)) in B(M(α) × V, Symk(Cp)) and that if the map
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f ∈ B(M(α) × V, Symk(Cp)) takes values in Symk(B), the same is true for its
restriction. This proves the first part of the proposition.
In order to prove the second part, it is enough to show that a holomorphic map of
a banach analytic set S with values in the subset

H(M̄(α)× V̄ , Symk(B))

which is isotropic on the product of S with any relatively compact subset in the
open set M(α)ε/3 × V ε/3 will have an analytic extension which will be isotropic on
any relatively compact open set in M(α)ε/3 × V ε/3. So it will be isotropic on the
closure of the open set M(α)2ε/3 × V 2ε/3. �

Proposition 2.2.6 Let n ≥ 2 and p ≥ 1 be integers and let U1×B1 the product
of two polydiscs with centers 0 respectively in Cn and Cp. Note (t1, · · · , tn, x1, · · · , xp)
coordinates on U1×B1. Let ϕ be a real valued function of class C 2 on U1×B1,
such that

ϕ(t, x) = Re(t1) +

n
∑

i=1

ρi.|ti|
2 +

p
∑

j=1

σj .|xj |
2 + o(||(t, x)||2) (@@)

where the real numbers ρ2, σ1, · · · , σp are positive.
Let ∆ be the open set {ϕ > 0} in U1×B1 and let ∆′ be an open neighbourhood of
the compact set ∆̄ in C

n+p. Let X0 be a closed analytic subset of pure dimension
n in ∆′ such that each irreducible component of X0 meets ∆ and such that

|X0| ∩ {t1 = · · · = tn = 0} ⊂ {0}. (*)

Then there exists α ∈ (R∗
+)

2 and polydiscs V and B ⊂⊂ B1 with centers 0
respectively in Cn−2 and Cp such that the following conditions are satisfied :

1. M(α)× V × B ⊂⊂ ∆′;

2. M(α)× V × B ⊂⊂ ∆;

3. M(α)× V̄ × ∂B ⊂ ∆;

4. |X0| ∩ (M(α)× V̄ × ∂B) = ∅ (this implies |X0| ∩ (M(α)× V̄ × ∂B) = ∅).

Proof. Choose the polydisc B ⊂⊂ B1 small enough in order that we have

X0 ∩ ({0} × B̄) ⊂ {0} and {0} × ∂B ⊂ ∆.

This is possible as we have |X0| ∩ {t1 = · · · = tn = 0} ⊂ {0} and as ϕ is
positive on a small enough punctured neighbourhood of the origin in the p−plane
{t1 = · · · = tn = 0} × Cp. So we shall have

|X0| ∩ (W̄ × ∂B) = ∅ and W̄ × ∂B ⊂ ∆
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for any small enough open neighbourhood W of the origin in Cn. A immediate
consequence is that conditions 1, 3 and 4 will be satisfied as soon as α and V are
small enough.
In order to check the condition 2, let us remark first that, up to choose the real
numbers ρ′1 > |ρ1|, ρ

′
2 ∈]0, ρ2[ and r > supi≥3 |ρi|, we obtain on W ×B choosen

small enough

ϕ(t, x) ≥ Re(t1)− ρ′1.|t1|
2 + ρ′2.|t2|

2 − r.(

n
∑

3

|ti|
2). (**)

with strict inequality as soon as x 6= 0. Then for

Vε = {(t3, · · · , tn) /
n

∑

3

|ti|
2 < ε2}

the following inequalities hold

ϕ(t, x) ≥
1

4
α1 − ρ′1.α1

2 − r.ε2 on MP (α)× Vε ×B (1)

ϕ(t, x) ≥− α1 − ρ′1.α1
2 +

1

4
ρ′2.α2

2 − r.ε2 on MC(α)× Vε × B (2)

for α and ε small enough in order that M(α)× Vε is contained in W .
This allows to fix α1, α2 and ε.
Now we shall choose α1 and ε smaller in order to satisfy the following conditions :

8α1 < ρ′2.α2
2 , α1 <

1

8ρ′1
and ε2 <

1

8r
α1. (3)

To obtain MP (α)× Vε × B ⊂⊂ ∆ it is enough to show that on MP (α)× Vε × B
we have, if we let α1 = u.α2 and ε2 = v.α1 = uv.α2

1

4
> ρ′1.α1 + r.v.

Indeed, as we assumed ρ′1.α1 < 1
8

and r.ε2 < 1
8
.α1 (so r.v < 1/8) the first

condition holds.
In order to satisfy MC(α)×Vε×B ⊂⊂ ∆ it is enough to show that onMC(α)×Vε×B
we have

1

4
ρ′2.α2 > u+ ρ′1u

2α2 + r.uv.

But our condition implies

ρ′1u
2α2 <

1

8
.u r.uv <

1

8
.u

which gives u+ ρ′1u
2.α2 + r.uv < 2.u. The condition 8α1 < ρ′2.α2

2 which implies
2u < 1

4
ρ′2.α2, allows to conclude. �
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Remarks.

1. We only used the condition (∗) for X0 and the inequality (∗∗) for ϕ in a
neighbourhood of the origin in the proof above.

2. Sufficient conditions on ϕ ∈ C 2 to satisfy (@@) are:

i) The origin is not a critical point of ϕ.

ii) The Levi form of ϕ at 0 has, at most, (n − 1) non positive eigenvalues
in the complex tangent hyperplane to the real hypersurface {ϕ(z) = 0};
the existence of ϕ ∈ C 2 such that ∆ = {ϕ > 0} and satisfying these two
conditions is equivalent to the fact that the open set ∆ has a strongly
n−concave (see the definition 2.3.3 given below) smooth boundary near
the origin. Indeed, if ϕ is not critical at 0 and has a Levi form at 0 with,
at most, (n−1) non positive eigenvalues values in the complex hyperplane
tangent to the real hypersurface {ϕ(z) = 0}, its order 2 Taylor expansion
at the origin is written, in suitable local holomorphic coordinates (τ, x)

ϕ(τ, x) = Re(τ1) +Re(Q(τ, x)) +

n
∑

i=1

ρi.|τi|
2 +

p
∑

j=1

σj .|xj |
2 + o(||(τ, x)||2)

where Q is a holomorphic homogeneous degree 2 polynomial and where
the real numbers ρ2 and σj , j ∈ [1, p] are positive. Define new local
holomorphic coordinates

t1 := τ1 +Q(τ, x), ti := τi for i ∈ [2, n] and xj := xj for j ∈ [1, p].

Then we obtain (@@).

3. The condition (∗) implies that X0 has no local irreducible component at 0
contained in the hyperplane {t1 = 0}. In fact, as the coordinate t1 is choosen
in order to suppress the real part of the holomorphic homogeneous degree 2
term in the order 2 Taylor expansion of ϕ at 0 (see the previous remark), we
want that no local irreducible component ofX0 at the origin is contained in the
complex hypersurface τ1+Q(τ, x) = 0 locally defined near 0 for ϕ given. Then,
as soons as the restriction ϕ|X0

has not 0 as a critical point, the condition (∗)
could be realized when ϕ is strongly (n− 1)−convex near 0.

4. One may easily see that under our hypothesis, the cycle X0 meets the open
set ∆ when it contains 0. Indeed, the analytic subset

{t1 = t3 = · · · = tn = 0} ∩ |X0|

is non empty, has dimension at least 1 and meets the complement of ∆ only
at the origin.
Of course, assuming that 0 ∈ X0, the proposition shows that, in fact, X0

contains a branched covering of degree k ≥ 1 of MP (α)× Vε inside

MP (α)× Vε × B ⊂⊂ ∆.
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5. In the situation of the proposition 2.2.6, for any continuous family (Xs)s∈S
of n−cycles in ∆ parametrized by a banach analytic set S such that
Xs0 = X0 ∩ ∆, there exists an open neighbourhood S ′ of s0 in S, such
that for each s ∈ S ′ the condition 4 remains true after analytic extension
of the cycles (see the proposition 2.2.5), because, thanks to the condition 3,
M(α)× V̄ × ∂B is a compact subset in ∆. �

2.3 q−concave open sets.

Definition 2.3.1 Let ϕ : U → R be real valued C 2 function on an open set U in
C

N . We shall say that ϕ is strongly q−convex when its Levi form at each point
of U has at most q non positive eigenvalues.

So, with this definition a strongly 0−convex function is a strongly plurisubharmonic
function.

Definition 2.3.2 Let ϕ : Z → R a real valued C 2 function on a reduced complex
space Z. We shall say that ϕ is strongly q−convex if locally near each point of
Z it can be induced by a C 2 strongly q−convex function in a local embedding in an
open set of an affine space.

Remark that a strongly q−convex function on an irreducible complex space of di-
mension at least equal to q + 1 has no local maximum because there exists at any
point a germ of curve on which the restriction of ϕ is strongly p.s.h.

Definition 2.3.3 Let Z be a reduced complex space and let ∆ be a relatively
compact open set in Z. We shall say that ∆ has a smooth C 2 boundary
when for each point z in ∂∆ there exists a local smooth embedding of an open
neighbourhood W of z in an open set U of an affine space and an open set D with
smooth C

2 boundary in U such that ∆ = W ∩D.
We shall say that the open set ∆ ⊂ Z with smooth C 2 boundary is strongly
q−concave in a point z ∈ ∂∆ if, in some local smooth embedding of Z around
z, one can define ∆ in Z near z as the subset {ϕ > 0} ∩ Z where ϕ is a real
valued C 2 function such that

1. dϕz 6= 0 on the Zariski tangent space TZ,z de Z en z.

2. The restriction of the Levi form at z of ϕ to the complex hyperplane tangent
at z to the real hypersurface {ϕ(x) = ϕ(z)} has at most (q − 1) non positive
eigenvalues.

We shall say that ∆ is strongly q−concave if ∆ is strongly q−concave near each
point in ∂∆.
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Remark. Up to compose ϕ with a real strictly increasing (non critical) convex
C 2 function (this does not change the level sets {ϕ = constant}), it is possible to
assume that c ◦ ϕ is C 2 strongly (q − 1)−convex (and non critical) near z.
Conversely, if ϕ is a real valued C 2 function which is strongly (q − 1)−convex and
not critical near a point z ∈ Z, the open set {ϕ(x) > ϕ(z)} has a strongly q−concave
boundary in a neighbourhood of z.

With this terminology, using the remarks above, we may give the following refor-
mulation of the proposition 2.2.6:

Corollary 2.3.4 Let n ≥ 2 and p ≥ 1 be integers, let Z be a reduced complex
space of pure dimension n + p and let ∆ := {ϕ > 0} be an open set with C 2

smooth boundary in Z. Let X0 be a n−cycle in an open neighbourhood of a point
z ∈ ∂∆ such that the function ϕ|X0

is not critical at z.
Assume that ∆ is strongly n−concave near z ; then there exists a n−Hartogs figure
H := (M,M,B, j) relative to the boundary of ∆, adapted to X0, and such that the
point z lies in M. �

Proof. Using a local embedding of an open neighbourhood of z in an open set of
the Zariski tangent space TZ,z, it is enough to prove the corollary in the case where

Z is an open set in C
n+p′, with p′ ≥ p an integer. As we may choose the function

ϕ strongly (n − 1)−convex such that dϕz 6= 0 thanks to the previous remarks, we
can choose local coordinates near z in order to be in the situation of the proposition
2.2.6 in the case z ∈ X0, as we assumed that ϕ|X0

is not critical at z. In this case
the proposition gives the result.
If z is not in X0, the same construction in an open neighbourhood of z with no limit
point in X0 allows to conclude, and in this case the degree of X0 in the (adapted)
scale EH will be zero. �

Definition 2.3.5 Let n ≥ 2 and p ≥ 1 be integers and let ∆ ⊂⊂ ∆′ be two open
sets in a reduced complex space Z. Let H = (M,M,B, j) and H′ := (H′,M ′, B, j)
be two n−Hartogs figures in Z relative to the boundary of ∆ given by the same (local)
embedding j and having the same polydisc B ⊂⊂ C

p. We shall say that these two
n−Hartogs figures are boxed when we have M′(α′) ⊂⊂ M(α),M ′(α′) ⊂⊂ M(α)
and V ′ ⊂⊂ V .

For instance, if ε > 0 is small enough, the n−Hartogs figures (H,Hε) are boxed (see
the definition 2.2.3).

Proposition 2.3.6 Let n ≥ 2 and p ≥ 1 be integers, let Z be a reduced complex
space of pure dimension n + p and let ∆ ⊂⊂ Z be an open set with smooth C

2

boundary in Z which is strongly n−concave. Assume that ∆ := {ϕ > 0} and let
X0 be a n−cycle in an open neighbourhood ∆′ of the compact set ∆̄, such that
any irreducible component of X0 meets ∆. Then there exists a finite family of
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boxed n−Hartogs figures (H′
a,Ha)a∈A relative to the boundary of ∆, such that the

following conditions hold:

1. The M′
a for a ∈ A cover the boundary ∂∆.

2. For each a ∈ A the Ha and H′
a are adapted to X0.

3. For each a ∈ A any irreducible component of X0 meeting Ma meets the
open set M ′

a.

4. No compact irreducible component of X0∩∆ meets the union of the compact
sets M̄a, a ∈ A.

Remark. Let X0 be any n−cycle in ∆′. Up to shrink the open set ∆′ around
the compact set ∆̄, we can assume that the cycle X0 has only finitely many
irreducible components in ∆′ and that each of them is not compact and meets ∆̄.
Note that, in this situation, any irreducible component of X0 meets ∆, because
the strong n−concavity of ∂∆ (see the remark 3 following the proposition 2.2.6).

Corollary 2.3.7 In the situation of the proposition 2.3.6, if we assume that the
open set ∆′ contains ∆̄, any irreducible component Γ of the cycle X0 in ∆′

satisfies for all a ∈ A and all η > 0 small enough:

Γ ∩ (Mη
a × V η

a ×Ba) = prlgta
[

Γ ∩ (Ma × Va ×Ba)
]

where prlgta : H(M̄a×V̄a, Sym
k(Ba)) → H(M

η

a×V̄ η
a , Sym

k(Ba)) is the holomorphic
map of analytic extension built in the proposition 2.2.5.

Remark. In the situation of the previous corollary there exists, for each a ∈ A, a
holomorphic extension map which lifts the map prlgta :

iprlgta : ΣMa,IMa(k) −→ ΣMη
a,IM

η
a
(k)

and it allows to extend in this setting an analytic family of branched coverings in
Ma parametrized by a banach analytic set S and which is isotropic on S × M ′

a to
an analytic family of branched coverings in Mη

a which is isotropic on S ×M′η
a.

Proof of the proposition 2.3.6. The corollary 2.3.4 and the remark following
it implies the existence, for each z ∈ ∂∆ of a n−Hartogs figure Hz relative to the
boundary of ∆, contained in ∆′ and satisfying the following properties:

i) z ∈ Mz;

ii) Hz is adapted to X0 ;

iii) each irreducible component of X0 meeting Mz meets the open set Mz;
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iv) No compact irreducible component of X0 ∩∆ meets M̄z.

As the open sets Mz cover the compact set ∂∆ we can find a finite sub-cover.
Then the properties 1, 2, 3 and 4 are consequences of i), ii), iii) and iv) by letting
H′ := Hε and by choosing ε > 0 small enough. �

proof of the corollary 2.3.7. Let Γ be an irreducible component of X0

meeting Ma for some a ∈ A. Then Γ meets Ma. As Γ does not meet
M̄(α)a × V̄a × ∂Ba because Ha is adapted to X0, the intersection Γ ∩ M̄a is the
graph of an element γ ∈ H(M̄(α)a × V̄a, Sym

ka(Ba)) with ka ∈ N∗ 4.
The closed analytic subset Y of the open set Mη

a defined by analytic extension,
Y := prlgta

[

Γ∩Ma

]

, is not empty, of pure dimension n and is contained in Γ. So it
is an union of irreducible components of Γ∩Mη

a. But it contains a non empty open
set in each irreducible component of this branched covering. So these two analytic
subsets coincide.
If an irreducible component of X0 does not meet any M̄a it has to be compact
and contained in ∆. In this case the desired equality is obvious. �

3 The extension and finiteness theorem.

3.1 Some useful lemmas.

The Sard’s lemma below is more or less classical.

Lemma 3.1.1 Let Z be a reduced complex space and let ϕ : Z → R be a real valued
C 1 function. Then the set of critical values of ϕ has Lebesgue measure 0.

Proof. First note that a point z ∈ Z is critical for ϕ if, by definition, the differ-
ential of ϕ vanishes on TZ,z, the Zariski tangent space of Z at z. Remember also
that a complex space is, by definition, countable at infinity ; so Z and its singular
locus have only countably many irreducible components. As a countable union of
sets of measure 0 is again of measure 0, it is enough to prove the lemma when Z is
irreducible. We shall prove the lemma by induction on the integer dimZ.The case
dimZ = 0 is obvious. Assume the lemma true for dimZ ≤ n − 1 for some integer
n ≥ 1 and take an irreducible complex space Z of dimension n. The singular set S
of Z has dimension at most (n− 1), and for each irreducible component Si of S the
image of the critical set of ϕ|Si

has measure 0. So the critical set of ϕ|S is again of
measure 0. But a critical point of ϕ which belongs to S is a critical point of ϕ|S.
So it is enough to show that the set of critical values of ϕ restricted to the complex
connected manifold Z \ S has measure 0. This is the classical Sard’s lemma. �

4as it exists some (m, v) ∈ M̄(α)a × V̄a such that Γ ∩ ({m, v)} ×Ba) 6= ∅.
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Lemma 3.1.2 Let V be an open set and K be a compact set in Ū× B̄. The subset
V in H(Ū , Symk(B)) consisting of the X such that any irreducible component
meeting K meets V is an open set in H(Ū , Symk(B)).

Proof. First let us clarify the meaning of an irreducible component of X in
H(Ū , Symk(B)) : we call irreducible component of such a X the closure in Ū ×B of
an irreducible component of the branched covering of U defined by the projection
of X ∩ (U × B) on U .
Let X0 be such that any irreducible component of X0 which meets K meets V , and
assume that (Xν)ν≥1 is a sequence converging to X0 such that for each ν ≥ 1 there
exists an irreducible component Γν of Xν meeting K but not V . Up to pass to a
subsequence, we may assume that the sequence (Γν)ν≥1 converges uniformely on any
compact of U×B to a non empty n−cycle Γ with closure contained in X0 and which
is a branched covering of U . Then Γ̄ meets K and not V . Indeed, if (t0, x0) would
be in Γ̄ ∩ V , there exists open neighbourhoods U1 and B1 of t0 et x0 respectively
in Ū and B̄ such that U1 × B1 is contained in V . But then, as U2 := U1 ∩ U and
B2 := B1 ∩B are non empty open sets, and for t2 in U2 the fibers of the Γν at t2 for
ν big enough will meet {t2} × B2 and so V . As at least one irreducible component
of Γ meets K without meeting V and as its closure is an irreducible component of
X0, this gives a contradiction. �

Of course, in the case V = ∅ we get back the fact that the subset ofX ∈ H(Ū , Symk(B))
which do not meet K is open.

Lemma 3.1.3 Let Z be a complex space and let (Ui)i∈I be an open covering of Z.
Assume that for each i ∈ I a closed n−cycle Xi is given in Ui. Assume that the
following patching condition holds :

∀(i, j) ∈ I2 Xi ∩ Uj = Xj ∩ Ui

as an equality of cycles in Ui ∩ Uj.
Then there exists an unique closed n−cycle X in Z such that for each i ∈ I we
have X ∩ Ui = Xi.

For the easy proof see [B.75] or [B-M 2].

The following variant will be used.

Lemma 3.1.4 (Variant.) In the situation of the previous lemma replace the patch-
ing condition by the following two conditions :

1. For each couple (i, j) ∈ I2 an open subset Wi,j ⊂⊂ Ui ∩ Uj is given and we
ask that Xi ∩Wi,j = Xj ∩Wi,j.

2. For each couple (i, j) ∈ I2 we ask that any irreducible component of the cycle
Xi ∩ Uj meets the open set Wi,j.

Then the conclusion is the same.
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Proof. Let Γ be an irreducible component with multiplicity δ in the cycle
Xi ∩ Uj . Let Γ′ be the irreducible component of Xi which contains Γ, and put
Xi = X ′

i + δ.Γ′. Then Γ′ meets Wi,j and there exists a closed analytic subset Y
of pure dimension n in |Xj| such that its restriction to Wi,j is equal to Γ′ ∩Wi,j:
indeed, Y is the union of the irreducible components of Xj containing a non empty
open set in Γ′ ∩ Wi,j. Note that each of these irreducible components of Xj has
multiplicity δ in the cycle Xj. Then put Xj = X ′

j + δ.Y . We see that the cycles
X ′

i and X ′
j respectively in Ui and Uj satisfy again the patching condition

X ′
i ∩Wi,j = X ′

j ∩Wi,j.
This allows, for fixed (i, j), to make a descending induction on the number (neces-
sarily finite as Wi,j is relatively compact) of irreducible components of Xi ∩Uj , to
show that the condition Xi ∩ Uj = Xj ∩ Ui holds. This reduces this lemma to the
previous one. �

3.2 Ajusted scales.

Definition 3.2.1 1. Let Z be a coplex space. We shall call adjusted n−scale
on Z, written down E := (U, U ′, U ′′, B, B′′, j), the data of a n−scale on Z,
E := (U,B, j), with additional polydiscs U ′′ ⊂⊂ U ′ ⊂⊂ U and B′′ ⊂⊂ B.
We call E the underlying scale of the adjusted scale E.

2. We shall say that the adjusted scale E is adapted to a n−cycle X in Z
when we have

j−1(Ū × (B̄ \B′′)) ∩ |X| = ∅.

Note that this implies that the underlying scale E is adapted to X, but this
condition is more restrictive.

3. When the adjusted scale E is adapted to the n−cycle X, we shall call degree
of X in E the degree of X in E.

4. We shall call domain of the adjusted scale, written down D(E), or more
simply, D(E), the open set j−1(U ×B) in Z which is also the domain of the
scale E.

5. We shall call domain of isotropy of the adjusted scale, written down
D′(E), the open set j−1(U ′ ×B) in Z.

6. We shall call domain of patching of the adjusted scale, written down
D′′(E), the open set j−1(U ′′ × B′′) in Z.

Remarks.

1. The open set D′′(E) is relatively compact in D′(E).
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2. When a n−scale E is given, for any compact set K in D(E), there exists an
adjusted n−scale E such E is the underlying scale of E and withK ⊂ D′′(E).
Moreover, if E is adapted to a n−cycle X0 in Z, we may choose E in order
that it is adapted to X0.

3. As for X ∈ Cloc
n (Z) the condition to avoid a compact subset is open in Cloc

n (Z),
when the adjusted scale E is adapted to a cycle X0 there exists an open
neighbourhood, written down Ωk(E), of X0 in Cloc

n (Z) such that Ωk(E) is the
subset of all n−cycles X in Z for which E is adapted and degE(X) = k where
k := degE(X0).

Let Z be a reduced complex space and let E be an adjusted scale on Z. For
a given integer k consider the continuous map sending a branched covering in
H(Ū , Symk(B′′)) to its isotropy data on Ū ′

T : H(Ū , Symk(B′′)) → H(Ū ′, F ⊗ E ′).

The graph ΣU,U ′(k) of this map is a banach analytic set5, thanks to [B.75], propo-
sition 2 p.81 (see also [B-M 2]).
The set of couples (f, T (f)) in ΣU,U ′(k) for which the associated branched cov-
ering is contained in j(Z) is a closed banach analytic subset of ΣU,U ′(k) being
the pull-back by the projection of the subset of elements in H(Ū , Symk(B′′)) con-
tained in j(Z) which is a closed banach analytic subset of H(Ū , Symk(B′′)) by the
proposition 4 p.27 of [B.75] (see also [B-M 2] ch. V).

Definition 3.2.2 We shall denote Gk(E) this banach analytic set and we shall call
it the the k − th classifying space of the adjusted n−scale E on Z.

We have then a tautological family of n−cycles in the open set D(E) parametrized
by Gk(E). It is an analytic family of cycles in the open set D′(E), in the sense of
[B.75], and the fact that, for k ≥ 1, locally on Gk(E), any irreducible component of
a branched covering in this family meets Ū ′′ × B̄′′ implies that we have a f-analytic
family of cycles in D′(E).

Be careful that the tautological family of cycles on the open set D(E) parametrized
by Gk(E) is not, in general, an analytic family of n−cycles ; see the example of [B.75]
p.83 (and also [B-M 1] ch.IV).

The next lemma is an obvious consequence of loc. cit.

Lemma 3.2.3 Let E be an adjusted n−scale on a reduced complex space Z and
let k be an integer. The tautological family of n−cycles in the open set D′(E)
parametrized by Gk(E) has the following “almost universal” property:

5homeomorphic to H(Ū , Symk(B′′)) via the projection !
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• For any analytic family of n−cycles (Xs)s∈S in Z parametrized by a banach
analytic set S such that for each s ∈ S the adjusted scale E is adapted to Xs

with degE(Xs) = k, there exists an unique holomorphic map

f : S → Gk(E)

such that the pull-back by f of the tautological family is the restriction to the
open set D′(E) of the given family.

Of course, conversely, a holomorphic map gives a f-analytic family of n−cycles on
the open set D′(E).
Note that the pull-back family is in fact defined on the open set D(E) but, as
already noticed above, it may not be analytic outside D′(E).

As a consequence of this “almost universal” property, we obtain that for any analytic
family (Xs)s∈S of n−cycles in Z such that for a point s0 ∈ S the adjusted n−scale E
is adapted to the cycle Xs0 with degE(Xs0) = k, there exists an open neighbourhood
S ′ of s0 in S such that the previous lemma applies for the family parametrized by
S ′. So we shall have a holomorphic classifying map f : S ′ → Gk(E) in this situation.

We shall generalize now the concept of classifying space to a finite family of adjusted
n−scales.

Definition 3.2.4 Consider a reduced complex space Z and a finite family of ad-
justed n−scales (Ei)i∈I on Z. Assume that they are adapted to a given finite type
n−cycle X̂0 in Z. Assume that any irreducible component of X̂0 meets the open
set W ′′ := ∪i∈I D′′(Ei).
We shall call patching data for X̂0 associated to the family (Ei)i∈I , written
down R((Ei)i∈I , F ) or more simply R when there is no ambiguity, a finite col-
lection of n−scales (Fi,j,h) for (i, j) ∈ I2, i 6= j, where h belongs to a finite set
H(i, j) for each couple (i, j) ∈ I2, i 6= j, such that the following properties hold:

i) Fi,j,h is a n−scale on the open set D′(Ei) ∩D′(Ej).

ii) The n−scales Fi,j,h are adapted to X̂0.

We shall say that the patching data R are complete when, moreover, the
following condition also holds :

iii) For each i 6= j given, the union of domains of the scales Fi,j,h, h ∈ H(i, j),

covers the compact subset D′′(Ei) ∩D′′(Ej) of D
′(Ei) ∩D′(Ej).
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Notations.

1. In the sequel, when we shall consider a reduced complex space Z and a finite
family of adjusted n−scales (Ei)i∈I , adapted to a finite type n−cycle X̂0 in
Z, such that any irreducible component of X̂0 meets the open set

W ′′ := ∪i∈I D′′(Ei),

we shall say that the family (Ei)i∈I is convenient for X̂0.

2. In this setting we shall use the following definitions :

• W := ∪i∈I D(Ei) ;

• W ′ := ∪i∈I D′(Ei) ;

• W ′′ := ∪i∈I D′′(Ei) ;

• K := ∪i∈I j−1
i (Ūi × (B̄i \B

′′
i )).

• When the family (Ei)i∈I is convenient for a finite type n−cycle X̂0, K
will be a compact neighbourhood of K disjoint from X̂0.

3. For X̃ ∈
∏

i∈I Gki(Ei) we shall denote X i the closed cycle in D(Ei)

associated to the i−th component of X̃ .

Lemma 3.2.5 Let (Ei)i∈I a finite family of adjusted n−scales on Z, convenient
for a n−cycle X̂0 of finite type in Z, and let R be some corresponding complete
patching data. There exists an open neighbourhood V of the image X̃0 of X̂0

in the product
∏

i∈I Gki(Ei) such that for each X̃ ∈ V we have the following
properties:

1. No X i meets the compact set K.

2. For each i ∈ I, any irreducible component of X i meeting D′′(Ei) ∩D′′(Ej)
with j 6= i, meets the open set ∪h D(Fi,j,h).

3. For each (i, j, h) the scale Fi,j,h is adapted to X i and Xj.

4. For each (i, j, h) we have degFi,j,h
(X i) = degFi,j,h

(Xj) = degFi,j,h
(X̂0) = ki,j,h.

Proof. The conditions 1, 3 and 4 are clearly open. An easy consequence of the
condition 1, of the inclusion ii) of the definition 3.2.4 and of the lemma 3.1.2 is that
the condition 2 is also open. �

For a n−scale E := (U,B, j) on Z we shall abbreviate H(Ū , Symk(B)) in Gk(E).
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Definition 3.2.6 Let (Ei)i∈I a finite family of adjusted n−scales on Z, convenient
for a n−cycle X̂0 of finite type in Z, and let R be some corresponding patching
data. Let ki be the degree of X̂0 in the adjusted scale Ei. For each (i, j, h), i 6= j
we have a couple of holomorphic maps

∏

α∈I Gkα(Eα)
//
// Gki,j,h(Fi,j,h)

obtained by the change of projections Ei → Fi,j,h and Ej → Fi,j,h, because, by
construction, we have D(Fi,j,h) ⊂⊂ D′(Ei) ∩D′(Ej).
We shall note S(R) the intersection of the kernels of these double maps6 with the
open set V built in the lemma 3.2.5. It is a banach analytic set and we shall call
it the classifying space associated to (Ei)i∈I , X̂0 and R.

Remark that the patching data R are not assumed to be complete in the previous
definition.

Proposition 3.2.7 Consider a finite family of adjusted n−scales which is conve-
nient for the n−cycle X0 in Z and let R be some complete patching data
associated. Keeping the previous notations we have for each (X i)i∈I ∈ S(R) an
unique n−cycle X ∈ Cf

n(W
′) such that X ∩D′(Ei) = X i ∩D′(Ei), ∀i ∈ I.

Moreover, this defines a tautological family of cycles in W ′ which is a f-analytic
family of cycles satisfying the following “almost universal”property :

• For any analytic family of n−cycles (Xs)s∈S in an open neighbourhood of
W̄ parametrized by a banach analytic set S7 such that for s0 ∈ S we have
Xs0 = X0 in a neighbourhood of W̄ , there exists an open neighbourhood S ′

of s0 in S and an unique holomorphic map

f : S ′ → S(R)

such that the pull-back by f of the tautologiical family parametrized by S(R)
is the restriction to the open set W ′ of the family (Xs)s∈S′.

Proof. For each X̃ ∈ V any X i does not meet K. As R is complete, we may
use the lemma 3.1.4 with Ui := D′(Ei) et Wi,j = ∪h D(Fi,j,h) to associate to X̃
a finite type n−cycle X of the open set W ′. The f-analyticity of the so defined
family is obvious. The “almost universal”property is then clear. �

6The kernel of a double map f, g : A→ B is the pull-back of the diagonal in B×B by the map
(f, g) : A→ B ×B.

7Recall that, by definition, this means that for any n−scale E := (U,B, j) on Z, adapted to
some Xs0 , s0 ∈ S, with degE(Xs0) = k, we have an open neighbourhood S0 of s0 in S and a
classifying map for the corresponding family of branched coverings f : S0 × U → Symk(B) which
is isotropic.
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3.3 Shrinkage.

Definition 3.3.1 Let Z be a reduced complex space and let E := (U, U ′, U ′′, B, B′′, j)
be an adjusted n−scale on Z. For any real τ > 0 small enough we shall note Eτ

the adjusted n−scale on Z defined as Eτ := (U τ , U ′τ , U ′′, B, B′′, j). We shall call
Eτ the τ−shrinkage of E. Recall that for a polydisc P of radius R, P τ is the polydisc
with same center and radius R − τ . The definitions of M(α)τ ,M(α)τ are given in
the section 2.2.

Remarks.

1. By definition, the shrinkage of E does not change the polydiscs U ′′, B, B′′.

2. As j is a closed embedding of an open set in Z in an open neighbourhood of
the compact set Ū × B̄, it is clear that for any given adjusted n−scale E on
Z, there exists a real ε > 0 (depending on E) such that for any τ ∈]0, ε[, Eτ

is again an adjusted n−scale on Z.

3. If E is adapted to the n−cycle X0 in Z, for τ small enough (depending on
E and X0), the adjusted n−scale E

τ remains adapted to X0 and we shall
have also degEτ (X0) = degE(X0).

4. If E is adapted to the n−cycle X0 in Z, there exists an open neighbourhood
U of X0 in Cloc

n (Z) and a real ε > 0 such that for any X ∈ U and
any τ ∈]0, ε[, the adjusted scale E

τ remains adapted to X with again
degEτ (X) = degE(X0).

5. In the situation of the previous proposition 3.2.7, we may, for τ > 0 small
enough, keep the same patching data R on the finite family (Eτ

i )i∈I of
adjusted n−scales; if it was complete, it remains complete and if it was con-
venient for the n−cycle X0, it remains convenient for the n−cycle X0. Then
we have a holomorphic restriction map

S(R) → Sτ (R)

which is induced by a finite product of linear (continuous) compact maps. �

3.4 Excellent family.

In order not to make our notations too heavy we shall introduce the following con-
ventions when H is a n−Hartogs figure in C

n+p ; we shall put, using the notations
introduced above

U := M(α)× V, U ′ := M(α)ε
′

× V ε′, U ′′ := M(α)ε
′′

× V ε′′, B′′ := Bε′

where ε′ > 0 is small enough, and where 0 < ε′′ < ε′. The choices of ε′ and ε′′ will
be precised when they are useful. We shall associate to H the adjusted n−scale on
∆ given by :

EH := (U, U ′, U ′′, B, B′′, j).
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We shall put also

Ũ := M(α)× V, Ũ ′ := M(α)ε
′

× V ε′, Ũ ′′ := M(α)ε
′′

× V ε′′

the holomorphy envelopes respectively of U, U ′ and U ′′. Then we shall have a family
of adjusted n−scales on ∆′, written down:

E
η

H̃
:= (Ũη, Ũ ′

η
, Ũ ′′, B, B′′, j) with Ũη := M(α)η×V η, Ũ ′

η
:= M(α)ε

′+η×V ε′+η,

where η is a positive real number, small enough (for η = 0 we shall simply write
EH̃).
Then we shall have the isotropic classifying spaces Gk(H) := ΣU,U ′(k) and also
Gη
k(H̃) := ΣŨη ,Ũ ′

η(k). The proposition 2.2.5 gives a holomorphic analytic extension
map such that the following diagram commutes:

Gk(H̃)

res

��

resη // Gη
k(H̃)

Gk(H)

prlgtη

::
u
u
u
u
u
u
u
u
u

Definition 3.4.1 Let Z be a reduced complex space of pure dimension n + p, let
∆ ⊂⊂ Z be a strongly n−concave open set in Z and X̃0 a n−cycle in an
open neighbourhood ∆′ of ∆̄ in Z. We shall say that a finite family (Ha)a∈A
of n−Hartogs figures relative to the boundary of ∆ is excellent for the cycle X̃0

when the following conditions hold, where we write Ẽa and Ea the adjusted scales
respectively on ∆′ and ∆ associated to the n−Hartogs figure Ha :

1. The adjusted scales Ẽa and Ea are adapted to the cycle X̃0.

2. We may choose the patching domains of the adjusted scales (Ẽa)a∈A in order
that the union

D̃′′(A) := ∪a∈A j−1
a (Ũ ′′

a × B′′
a)

contains the compact set ∂∆.

3. There exists a finite family of adjusted n−scales (Eb)b∈B on ∆, adapted to
X̃0, such that the finite families (Ec)c∈A∪B and (Ẽc)c∈A∪B are convenient
for X̃0, where we put Ẽb = Eb for b ∈ B.
Moreover we ask that the union D′′(B) of the patching domains of the (Eb)b∈B
covers the compact set ∆ \ D̃′′(A) of ∆; so D̃′′(A)∪D′′(B) in an open set
containing ∆̄.

As a consequence, the union D̃′(A)η ∪ D′(B) of the isotropy domains will cover ∆̄
for η > 0 small enough.
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Proposition 3.4.2 (Existence of an excellent family.) Let Z be a reduced com-
plex space of pure dimension n + p, ∆ ⊂⊂ Z be a strongly n−concave open set
with smooth boundary and X̃0 a n−cycle in an open neighbourhood ∆′ ⊂ Z of
∆̄ such that any irreducible component of X̃0 meets ∆.
Then there exists a finite family (Ha)a∈A of n−Hartogs figures relative to the
boundary of ∆ which is excellent for the cycle X̃0.

Proof. First we use the proposition 2.3.6 to cover ∂∆ by a finite family of
n−Hartogs figures relative to the boundary of ∆ adapted to the cycle X̃0 such
that the conditions 1 and 2 hold. Then we build a finite family of adjusted n−scales
(Eb)b∈B on ∆, adapted to X̃0 in order that the condition 3 holds. �

3.5 The extension and finiteness theorem.

The next theorem will allow to prove the theorem 1.0.1.

Theorem 3.5.1 Let Z be a reduced complex space of pure dimension n + p, where
n ≥ 2, p ≥ 1. Let ∆ be a relatively compact open set with C 2 boundary in Z
which is strongly n−concave. Let X̃0 a closed n−cycle of an open neighbourhood
∆′ of ∆̄ in Z such that any irreducible component of X̃0 meets ∆. Then there
exists an open neighbourhood ∆′′ of ∆̄ in ∆′ and a f−analytic family (X̃ξ)ξ∈Ξ of
n−cycles in ∆′′ parametrized by a reduced complex space Ξ (of finite dimension)
such that Xξ0 = X̃0 ∩ ∆′′ and such that Ξ is an open neighbourhood of X̃0 ∩∆′′ in
Cf
n(∆

′′). It satisfies the following universal property:

• For any f-analytic family (Xs)s∈S of n−cycles in ∆ parametrized by a banach
analytic set S and such that its value at some s0 ∈ S is equal to X̃0∩∆, there
exists an open neighbourhood S ′ of s0 in S and an unique holomorphic map

h : S ′ → Ξ

satisfying the equality Xs = X̃h(s) ∩∆ for each s ∈ S ′

Proof. Assume that ∆ := {ϕ > α}, 0 < α < 1, where ϕ : Z →]0, 2] is an C 2

exhaustion of Z which is strongly (n − 1)−convex on the open set ϕ−1(]0, 1[).Up
to replace ∆ by {ϕ > α′}, α′ < α, α′ very close to α, we may assume, thanks to
the Sard’ lemma 3.1.1, that ϕ and ϕ|X̃0

have no critical point on the compact set

X̃0 ∩ ∂∆.
Begin by cover the compact set ∂∆ by an excellent finite family (Ha)a∈A of
n−Hartogs figures for ∆ adapted to the cycle X̃0. Choose then open sets
∆1 ⊂⊂ ∆ ⊂⊂ ∆′′ ⊂⊂ ∆′, such that the following properties hold, where we use
the notations introduced above for the finite family of the adjusted scales (Ẽa)a∈A
associated to (Ha)a∈A:
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i) ∆̄′′ \∆1 ⊂ ∪a∈AW
′′(Ẽa).

ii) ∪a∈A W̄ (Ẽa) ⊂ ∆′.

iii) ∪a∈A W̄ (Ea) ⊂ ∆.

iv) K := ∪a∈A j−1
a (Ūa × (B̄a \B

′′
a)) ⊂ ∆1

It is easy to fulfill these conditions for ∆1 and ∆′′ near enough to ∆, as, by
assumption, the subsets W̄ (Ea) and j−1

a (Ūa × B̄a \ B
′′
a) are compact in ∆, and

as the union of the open sets W ′′(Ẽa) contains ∂∆.
Note that the condition iv) allows to choose le compact neighbourhood K of K
inside ∆1.
Choose now a convenient finite family (Eb)b∈B of adjusted n−scales on ∆, adapted
to X̃0 in order that the open set ∪b∈B W ′′(Eb) contains ∆̄1.
Put Ẽb = Eb for b ∈ B, and define C := A ∪ B. The family of adjusted scales
(Ec)c∈C in ∆ is then convenient for X̃0 ∩∆1, up to choose the patching domains
big enough. Fix some complete patching data R associated to the family (Ec)c∈C .
The family (Ẽc)c∈C of adjusted scales in ∆′ is convenient for X̃0 ∩∆′′ if we choose
the patching domains big enough. Consider now some complete patching data for
this family of the form R∪R′′, that is to say containing the patching scales already
in R. Define the following banach analytic sets:

1. S0 is the classifying space of the family (Ẽc)c∈C, the degrees being these of
X̃0 in the various scales adapted to the cycle X̃0, with the patching conditions
defined by R. Note that R is not complete in general.

2. S+ is the classifying space of the family (Ẽc)c∈C with the patching conditions
defined by R∪R′′.

3. S− is the classifying space of the family (Ec)c∈C , with the (complete) patching
conditions defined by R.

Then we get a holomorphic extension map

α : S− → S0

deduced from the extension maps in the n−Hartogs figures (Ha)a∈A.
By definition S+ is a closed banach analytic subset of S0 as it is defined in S0

by the patching conditions given by R′′. Then put Ξ := α−1(S+). So we have a
holomorphic map α : Ξ → S+. We want to show the following claim:

claim. There exists a holomorphic map β : S+ → Ξ satisfying the two properties:

1. We have α ◦β = Id and β ◦α = Id in a neighbourhood of the point defined
by X̃0 respectively in S+ and Ξ.
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2. The holomorphic map β is the composition of a holomorphic map induced
by a linear (continuous) compact map and a holomorphic map.

As the open set ∪c∈CW
′′(Ẽc) contains ∆′′, there is, on S+, a tautological family

of n−cycles which is f−analytic on ∆′′. Then the “almost universal” property of
S− gives a holomorphic map β̃ : S+ → S− which factorizes via the closed banach
analytic subset Ξ ⊂ S−. Let us show that the holomorphic map β : S+ → Ξ
deduced from this factorization satisfies the two properties of the claim.
First we have α ◦β = Id and β ◦α = Id respectively in S+ and Ξ, by definition
of Ξ and β.
To see the second property, consider τ > 0 small enough and let us show that the
holomorphic map induced by the linear compact (by Vitali’ theorem) restriction
rτ : S+ → Sτ

+ factorizes β, where Sτ
+ is the classifying space corresponding to the

τ−shrinkage (Ẽ
τ

c )c∈C of the family (Ẽc)c∈C with the patching data R∪R′′. Indeed,
for τ small enough, the tautological family of Sτ

+ is still f−analytic on ∆ and the

“almost universal” property of S− gives again a holomorphic map β̃τ : Sτ
+ → S−.

And we have β = β̃τ ◦ rτ proving our assertion. In fact, the map β̃τ takes its
values in Ξ because the τ−shrinkage does not change the patching data deduced
from R∪R′′ for τ small enough.
We conclude that the banach analytic set Ξ has finite dimension thanks to the
finiteness lemma of [B.75] (see also [B-M 2] ch.V). Moreover, it is isomorphic to S+

which is also of finite dimension.
The universal property is then obvious. �

Remarks.

1. The reduced complex space (of finite dimension) Ξ built in the previous the-
orem parametrizes a f−analytic family of n−cycles in the open set ∆′′ which
is an open neighbourhood of ∆̄. So, when we have a f-analytic family (Xs)s∈S
of n−cycles in ∆ parametrized by a banach analytic set S and such that its
value at some s0 ∈ S is equal to X̃0 ∩∆ we can extend each cycle Xs, s ∈ S ′,
to a n−cycle X̃s in ∆′′ in order that the family (X̃s)s∈S′ is f−analytic in ∆′′,
with the condition that each irreducible component of X̃s meets ∆ and with
the equality X̃s ∩∆ = Xs for each s ∈ S ′.

2. We shall see later on that Ξ is also (isomorphic to) an open neighbourhood
of the point X̃0 ∩∆ of Cf

n(∆).
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4 Finiteness of the space of n−cycles of a reduced

strongly n−concave space (n ≥ 2).

4.1 The global extension theorem.

First we have to complete our terminology.

Definition 4.1.1 We shall say that a reduced complex space Z is strongly q−concave,
where q is a positive integer, if there exists a real valued C 2 exhaustion function
on Z, ϕ : Z →]0, 2], which is strongly (q − 1)−convex outside the compact set
K := ϕ−1([1, 2]).

For instance, any reduced compact complex space is strongly q−concave for any
q ≥ 1.
When Z is strongly q−concave irreducible and non compact of dimension at least
q+1, the function ϕ acheives its maximum at a point in which it cannot be strongly
(q − 1)−convex. So we shall have ϕ(Z) =]0, u] with u ≥ 1.
In the sequel we shall consider mainly the closed q−cycles of Z in the case where Z
is strongly q−concave and non compact, with dimZ ≥ q + 1.

Theorem 4.1.2 Let n ≥ 2 be an integer. Let Z be a reduced complex space which
is strongly n−concave. Let α ∈]0, 1[ and let X be a finite type n−cycle in the open
set Zα := {z ∈ Z / ϕ(z) > α}. Then there exists a unique n−cycle X̃ in Cf

n(Z)
such that X̃ ∩ Zα = X.

Proof. First we shall prove uniqueness. If a non empty n−cycle X̃ in Z satisfies
X̃ ∩ Zα = ∅ with α < 1, the maximum of ϕ on the set |X̃| is obtained at a point
where ϕ is strongly (n − 1)−convex. This is a contradiction. So the uniqueness of
the cycle X̃ is proved.
To show that this cycle exists, consider first the case where X is compact in Zα.
Then X̃ := X is a solution. So it enough to consider the case where X is irreducible
and non compact. Thanks to the theorem (8.3) of [S-T], for each z ∈ ∂Zα there
exists an open set Uz and an unique closed analytic set Xz in Zα ∪ Uz of pure
dimension n such that Xz ∩ Zα = X . Choose a finite set of points z1, . . . , zN and
open sets U ′

i ⊂⊂ Ui := Uzi such that the union of the U ′
i covers the compact set

∂Zα. Let Ω := Zα ∪
(

∪N
i=1 U

′
i

)

and put

X1 := (X ∪
(

∪N
i=1 Xzi

)

) ∩ Ω.

Let us show that X1 is a closed analytic subset in Ω.
Consider z ∈ Ω. If z is in Zα we have X1 = X in a neighbourhood of z and the
assertion is clear. If not, either z is not in any ∂U ′

i and X1 is the union of the Xzi in
a neighbourhood of z and the assertion is clear, or z is in ∂U ′

j1
, . . . , ∂U ′

jk
for j1, . . . , jk

in [1, N ]. As the set Xjh is closed and analytic in Zα ∪ Ujh, then X1 is again the
union of the Xzi near z in Ω, and the assertion is proved.
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So in this situation there exists a real positive β < α such that Zβ ⊂ Ω. Let X2

be the irreducible component of X1 ∩ Zβ which contains X ; then X2 is a closed
irreducible analytic subset of Zβ such that X2 ∩ Zα = X .
Now let

γ := inf{β ≤ α / ∃Xβ irreducible n− cycle of Zβ such that Xβ ∩ Zα = X}.

Then what we obtained above shows that we have γ < α, and, applying the same
arguments to the cycle Xγ defined on Zγ via the cover of Zγ by the Zβ, β > γ in
which we already built an irreductible n−cycle Xβ extending X , we conclude that
γ = 0 and that there exists an (unique) irreducible n−cycle X̃ in Z extending X .�

4.2 Some consequences.

We shall give first some easy consequences of the fact that the reduced complex
space Z is strongly n−concave.

Proposition 4.2.1 Let n ≥ 2 be an integer and let Z be a reduced strongly n−concave
complex space. Then the natural map j : Cf

n(Z) → Cloc
n (Z) is a homeomorphism.

Moreover, for each α ∈]0, 1[ the restriction map

resα : Cf
n(Z) → Cf

n(Zα)

is well defined and is also a homeomorphism.

Proof. Let us prove first that any n−cycle X in Z has finitely many irreducible
components. As this implies the same result for each Zα for α ∈]0, 1[, this will
implies the fact that the restriction map resα is well defined, and then bijective as
a consequence of the theorem 4.1.2.
Consider a closed irreducible analytic subset Γ of dimension n in Z. As the re-
striction ϕ|Γ of the exhaustion ϕ to Γ must reach its maximum (as ϕ is continuous
and proper), this maximum cannot be obtained at a point in which ϕ is strongly
(n− 1)−convex. So we have Γ∩ϕ−1[1, 2]) 6= ∅. As the family of irreducible compo-
nents of a n−cycle is locally finite, only finitely many irreducible components of X
can meet the compact set K := ϕ−1([1, 2]). But we have seen that any irreducible
component of X must meets K. So X is a finite type cycle.
To show the continuity of resα it is then enough to prove that j is a homeomorphism
which is an easy consequence of the lemma below. �

Lemma 4.2.2 Let Z be a reduced complex space and let (Xν)ν≥0 be a sequence
of n−cycles in Z converging in Cloc

n (Z) to a cycle Y . Assume that there exists a
relatively compact open set Ω in Z such that any irreducible component of each Xν

and of Y meets Ω. Then all these cycles are of finite type and the sequence converges
to Y in Cf

n(Z).
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Proof. First if Y = ∅, for ν ≫ 1 the cycle Xν will be disjoint from the compact set
K := Ω̄, and this implies that Xν is the empty cycle. So the conclusion holds in this
case. If Y is not empty, let U be a relatively compact open set in Z meeting each ir-
reducible component of Y . We have to show, by definition of the topology of Cf

n(Z),
that for ν ≫ 1 each irreducible component of Xν meets U . If it is not the case, up
to pass to a subsequence, we may assume that for each ν there exists an irreducible
component Γν of Xν disjoint from U . As, again up to pass to a subsequence, we
may assume that the sequence (Γν) converges in Cloc

n (Z) to a cycle Γ, we shall have
|Γ| ⊂ |Y | and |Γ|∩U = ∅. To conclude, it is enough to show that Γ is not the empty
cycle, as any irreducible component of Γ is also an irreducible component of Y and
then meets U by hypothesis. As each Γν is not empty, it has to meet K = Ω̄. This
implies that Γ also meetsK and so is not empty. This contradicts our assumption. �

End of the proof of the proposition 4.2.1. We have proved that j, and
then also each jα : Cf

n(Zα) → Cloc
n (Zα) for α ∈]0, 1[, is a holomorphic homeomor-

phism. To conlude the proof we have to show the continuity of res−1
α , and this

reduces to prove that if the sequence (Xν) of Cloc
n (Z) is such that the sequence

(Xν ∩ Zα) converges in Cloc
n (Zα), then it converges in Cloc

n (Z). Let Yα ∈ Cloc
n (Zα) be

the limit of this sequence in Cloc
n (Zα) and let Y ∈ Cloc

n (Z) be the cycle extending
it. Let A be the set of β ∈]0, α] such that the sequence (Xν ∩ Zβ) converges in
Cloc
n (Zβ) to Y ∩Zβ. Then α is in A so A is not empty. Put γ := inf A. The theorem

3.5.1 implies that γ = 0 and we obtain also the convergence in any Cloc
n (Zβ), for any

β > 0; this gives the convergence in Cloc
n (Z), as, by definition, a n−scale on Z is also

a n−scale on Zβ for β > 0 small enough. �

4.3 An analytic extension criterion.

Le aim of this paragraph is to prove the following analytic extension result.

Theorem 4.3.1 Let Z be a complex space and n an integer. Consider a f-continuous
family (Xs)s∈S of n−cycles of finite type in Z parametrized by a reduced complex
space S. Fix a point s0 in S and assume that the open set Z ′ in Z meets all irre-
ducible components of Xs0 and such that the family of cycles (Xs∩Z ′)s∈S is analytic
at s0. Then there exists an open neighbourhood S0 of s0 in S such that the family
(Xs)s∈S0

is f-analytic.

The hypotheses translated in term of classifying maps means that we have a con-
tinuous map ϕ : S → Cf

n(Z) such that the composed map r ◦ ϕ is holomorphic at
s0, where r : Cf

n(Z) → Cloc
n (Z ′) is the restriction map.

Then the theorem says that there exists an open neighbourhood S0 of s0 in S such
that the map ϕ is holomorphic on S0. Note that, as r is holomorphic8, the hypoth-

8in the sense that for any holomorphic map ψ : T → Cf
n(Z) of a reduced complex space T the

composed map r ◦ ψ is holomorphic.
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esis that ϕ is holomorphic at s0 is a necessary condition.

This result is not true in general if we take for S a non smooth banach analytic set
which is not of finite dimension (locally). The reader may find a counter-exemple
with an isolated singularity in [B-M 2] ch.V.
The key point for the proof of the previous theorem is the following analytic exten-
sion result.

Proposition 4.3.2 Let S a reduced complex space and let ∅ 6= U1 ⊂ U2 be two
polydiscs in C

n. Let f : S×U2 → C a continuous function, holomorphic on {s}×U2

for each s ∈ S. Assume moreover that the restriction of f to S×U1 is holomorphic.
Then f is holomorphic on S × U2.

Proof of the proposition 4.3.2. First consider the case S smooth. As the
question is local on S it is enough to consider the case where S is an open set in
C

m. Fix an open relatively compact polydisc P in S. The function f defines a map
F : U2 → C 0(P̄ ,C), where we write down C 0(P̄ ,C) the Banach space of continuous
functions on P̄ , via the formula F (t)[s] = f(s, t) for t ∈ U2 and s ∈ P̄ . First we
shall show that the map F is holomorphic.
Let U ⊂⊂ U2 be a polydisc. For any fix s ∈ S we have

∂f

∂ti
(s, t) =

1

(2iπ)n
.

∫

∂∂U

f(s, τ).
dτ1 ∧ · · · ∧ dτn

(τ1 − t1) . . . (τi − ti)2 . . . (τn − tn)
∀t ∈ U ∀i ∈ [1, n].

where t := (t1, . . . , tn) are coordinates on C
n. This Cauchy formula shows that F is

C−différentiable and its differential at the point t ∈ U is given by

h 7→
n

∑

i=1

Fi(t).hi, h ∈ C
n,

where Fi is associated to the function

(s, t) 7→
∂f

∂ti
(s, t) i ∈ [1, n]

which is holomorphic for each fixed s ∈ S thanks to the Cauchy formula above.
Let H(P̄ ,C) the closed subspace of C 0(P̄ ,C) of functions which are holomorphic on
P . Our hypothesis implies that the restriction of F to the non empty open set U1

takes its values in this subspace. Let us show that this is also true on U2. Assume
that there exists t0 ∈ U2 such that F (t0) is not in H(P̄ ,C). Thanks to the Hahn-
Banach theorem we can find a continuous linear form λ on C 0(P̄ ,C), vanishing on
H(P̄ ,C), and such that λ(F (t0)) 6= 0. But the function t 7→ λ(F (t)) is holomorphic
on U2 and vanishes on U1; this contradicts λ(F (t0)) 6= 0. So F takes values in
H(P̄ ,C) and f is holomorphic on S × U2 when S is a complex manifold.
The case where S is a weakly normal complex space follows immediately.
When S is a general reduced complex space, the function f is meromorphic and
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continuous on S × U2 and holomorphic on S × U1. So the the closed analytic sub-
set Y ⊂ S × U2 along which f may not be holomorphic has no interior point in
each {s} × U2. The analytic extension criterion of [B-M 1] ch. IV, 3.1.7 allows to
conclude. �

Proof of the theorem 4.3.1. Let |G| ⊂ S×Z be the graph of the f−continuous
family (Xs)s∈S and let A the set of points in (σ, ζ) ∈ |G| admitting an open neigh-
bourhood Sσ ×Zζ in S ×Z such that the family of cycles (Xs ∩Zζ)s∈Sσ is analytic.
Remark that, thanks to our hypothesis, the open set A in |G| meets every irreducible
component of {s0} × |Xs0|.
Assume to begin that there exists a smooth point z0 of |Xs0| in the boundary of
A ∩ ({s0} × |Xs0|). Choose a n−scale E := (U,B, j) on Z which is adapted to Xs0

and satisfying :

degE(|Xs0|) = 1

j∗(Xs0) = k.(U × {0})

z0 ∈ j−1(U × B)

j(z0) := (t0, 0).

It is clear that such a n−scale exists as z0 is a smooth point in |Xs0|. Let S1 be a suf-
ficiently small open neighbourhood of s0 in S and let f : S1 ×U → Symk(B) be the
(continuous) classifying map for the family (Xs)s∈S1

in the scale E. As j−1(U×{0})
meets A, there exists a non empty polydisc U2 ⊂ U such that U2 ×{0} is contained
in A. Then we may apply the proposition 4.3.2 to each scalar component of f in
order to obtain that f is holomorphic on S1 × U . Moreover, as the same argument
applies to any linear projection of U × B to U near enough the vertical one; this
implies that f is an isotropic map, up to shrink slightly U . This contradicts the fact
that the point (s0, z0) is in the boundary of the open set A∩ ({s0}× |Xs0|) of |Xs0|.
If the boundary of A ∩ ({s0} × |Xs0|) is contained in the singular set of |Xs0|, we
may apply the analytic extension criterion of [B-M 1] ch. IV, 3.1.7, and we obtain
directly that A contains |Xs0|. So in any case the family of cycles (Xs)s∈S is ana-
lytic at s0. As the graph |G| is, by assumption, quasi-proper on S, it is enough to
use the next proposition (which is proved in [B.15-a] proposition 2.2.3) to conclude.�

Proposition 4.3.3 Let Z and S be reduced complex spaces and let (Xs)s∈S be a
f-continuous family of n−cycles in Z. Assume that this family is analytic in s0 ∈ S.
Then there exists an open neighbourhood S ′ of s0 in S such that the family (Xs)s∈S′

is a f-analytic family of n−cycles in Z.

4.4 Proof of the theorem 1.0.2 and its corollary

We shall begin by a lemma which will give the case where the n−cycle X0 is compact.
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Lemma 4.4.1 Let Z be a strongly n−concave reduced complex space. Then Cn(Z)
is open and closed in Cf

n(Z).

Proof. When Z is compact the assertion is obvious. So we may assume that Z
is not compact and that ϕ(Z) =]0, 2]. If an irreducible component Γ of a n−cycle
X meets Zα := {z ∈ Z / ϕ(z) > α} with α < 1, this component is non compact in
Z : indeed, if Γ is compact the function ϕ reach its minimum on it at a point where
ϕ is strongly (n− 1)−convex and this gives a contradiction. So any compact cycle
in Z is contained in the compact set ϕ−1([1, 2]) and conversely any cycle contained
in this compact set is compact. So Cn(Z) is open in Cf

n(Z) because it is the subset
of cycles which do not meet the compact set ϕ−1([1/3, 2/3]). It is closed because its
complement is the (open) subset of cycles meeting the open set {z ∈ Z / ϕ(z) < 1}.�

So for such a Z, Cn(Z) is a union of connected components of Cf
n(Z).

We already know from [B.75] that it is a reduced complex space. The theorem 1.0.2
and its corollary are proved for these connected components.

The case where X0 is not compact. Fix X0 a non compact n−cycle in Cf
n(Z)

and choose an α ∈]0, 1[ which is not a critical value of ϕ and of the restriction of ϕ
to |X0|; this is possible thanks to the Sard’ lemma 3.1.1 and the fact that ϕ(|X0|)
contains ]0, 1[. Then the constructions done in the proof of the theorem 3.5.1 give
an open neighbourhood U of X0∩Zα in Cf

n(Zα) and the theorem 4.1.2 gives an open
neighbourhood V of X0 in Cf

n(Z) such that the restriction map

res : V → U

is holomorphic and bijective. Indeed, it is enough to define V by asking that all the
adjusted scales used to build U are adapted to a cycle in V with the same degrees
than X0 and adding the open condition not to meet the compact set K to have the
bijectivity.
We want to show now that the family of finite type n−cycles in Z parametrized by
U via the inverse of the map res is f-continuous. Remark that we have already a fix
compact set ∆̄1 meeting any irreducible component of any cycle in this family. So it is
enough to prove the continuity of this family in Cloc

n (Z). This is a consequence of the
proposition 4.2.1. We obtain then the f-analyticity of this family using the theorem
4.3.1 as U is a reduced complex space by the theorem 3.5.1. The holomorphic
classifying map for this family is the map res which is then an isomorphism. This
implies that Cf

n(Z) is a reduced complex space in a neighbourhood of each of its
points. �
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4.5 A compactness criterion for the connected components
of the reduced complex space Cfn(Z).

For a reduced complex space Z which is compact, the compactness of the connected
components of Cn(Z) is a consequence of the existence of a C 1 2n−differential form
on Z which is d−closed and such that its (n, n) part is positive definite in the
Lelong sense. Indeed, this gives that the volume (computed with this (n, n) part)
of the n−cycles is constant on connected components. The result follows then from
Bishop’s theorem [Bish.64].
In the case of a non compact strongly n−concave reduced complex space Z we have
the following analoguous result :

Proposition 4.5.1 Let Z be a reduced complex space which is strongly n−concave.
Assume that there exists on Z a C 1 2n−differential form ω which is d−closed with
compact support and such that its (n, n) part is positive definite in the Lelong sense
in a neighbourhood of K := ϕ−1([1, 2]), and which is everywhere non negative in the
Lelong sense. Then the connected components of Cf

n(Z) are compact.

Proof. For α < 1 near enough to 1 and for any continuous hermitian metric h
on Z there exists a constant C such that the following inequality holds:

volh(X ∩ Zα) ≤ C.

∫

X

ω for any cycle X ∈ Cf
n(Z).

As the function X 7→
∫

X
ω is locally constant on Cf

n(Z) because dω = 0 (see
[B-M 1] ch.IV), we have an uniform bound for the volume of X ∩ Zα for X in a
given connected component of Cf

n(Z). This implies that the closure of the image of
this connected component in Cf

n(Zα) is compact, thanks to Bishop’s theorem (see
[Bish.64] or [B-M 1] ch.IV). But the restriction map Cf

n(Z) → Cf
n(Zα) is a homeo-

morphism by the proposition 4.2.1, so the image of a connected component is closed
and then compact. �
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