Complete k-ary trees and generalized meta-Fibonacci sequences - Archive ouverte HAL
Conference Papers Discrete Mathematics and Theoretical Computer Science Year : 2006

Complete k-ary trees and generalized meta-Fibonacci sequences

Abstract

We show that a family of generalized meta-Fibonacci sequences arise when counting the number of leaves at the largest level in certain infinite sequences of k-ary trees and restricted compositions of an integer. For this family of generalized meta-Fibonacci sequences and two families of related sequences we derive ordinary generating functions and recurrence relations.
Fichier principal
Vignette du fichier
dmAG0113.pdf (216.99 Ko) Télécharger le fichier
Origin Publisher files allowed on an open archive
Loading...

Dates and versions

hal-01184719 , version 1 (17-08-2015)

Identifiers

Cite

Chris Deugau, Frank Ruskey. Complete k-ary trees and generalized meta-Fibonacci sequences. Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities, 2006, Nancy, France. pp.203-214, ⟨10.46298/dmtcs.3514⟩. ⟨hal-01184719⟩

Collections

TDS-MACS
89 View
730 Download

Altmetric

Share

More