The first ascent of size $d$ or more in compositions - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2006

The first ascent of size $d$ or more in compositions

Résumé

A composition of a positive integer $n$ is a finite sequence of positive integers $a_1, a_2, \ldots, a_k$ such that $a_1+a_2+ \cdots +a_k=n$. Let $d$ be a fixed nonnegative integer. We say that we have an ascent of size $d$ or more at position $i$, if $a_{i+1}\geq a_i+d$. We study the average position, initial height and end height of the first ascent of size $d$ or more in compositions of $n$ as $n \to \infty$.
Fichier principal
Vignette du fichier
dmAG0118.pdf (183.49 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01184714 , version 1 (17-08-2015)

Identifiants

Citer

Charlotte Brennan, Arnold Knopfmacher. The first ascent of size $d$ or more in compositions. Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities, 2006, Nancy, France. pp.261-270, ⟨10.46298/dmtcs.3509⟩. ⟨hal-01184714⟩

Collections

TDS-MACS
56 Consultations
569 Téléchargements

Altmetric

Partager

More