Computing generating functions of ordered partitions with the transfer-matrix method - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2006

Computing generating functions of ordered partitions with the transfer-matrix method

Anisse Kasraoui
  • Fonction : Auteur
  • PersonId : 848450
Jiang Zeng

Résumé

An ordered partition of $[n]:=\{1,2,\ldots, n\}$ is a sequence of disjoint and nonempty subsets, called blocks, whose union is $[n]$. The aim of this paper is to compute some generating functions of ordered partitions by the transfer-matrix method. In particular, we prove several conjectures of Steingrímsson, which assert that the generating function of some statistics of ordered partitions give rise to a natural $q$-analogue of $k!S(n,k)$, where $S(n,k)$ is the Stirling number of the second kind.
Fichier principal
Vignette du fichier
dmAG0112.pdf (247.68 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01184713 , version 1 (17-08-2015)

Identifiants

Citer

Masao Ishikawa, Anisse Kasraoui, Jiang Zeng. Computing generating functions of ordered partitions with the transfer-matrix method. Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities, 2006, Nancy, France. pp.193-202, ⟨10.46298/dmtcs.3508⟩. ⟨hal-01184713⟩
125 Consultations
770 Téléchargements

Altmetric

Partager

More