Spanning trees of finite Sierpiński graphs
Résumé
We show that the number of spanning trees in the finite Sierpiński graph of level $n$ is given by $\sqrt[4]{\frac{3}{20}} (\frac{5}{3})^{-n/2} (\sqrt[4]{540})^{3^n}$. The proof proceeds in two steps: First, we show that the number of spanning trees and two further quantities satisfy a $3$-dimensional polynomial recursion using the self-similar structure. Secondly, it turns out, that the dynamical behavior of the recursion is given by a $2$-dimensional polynomial map, whose iterates can be computed explicitly.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|
Loading...