Samples of geometric random variables with multiplicity constraints
Résumé
We investigate the probability that a sample $\Gamma=(\Gamma_1,\Gamma_2,\ldots,\Gamma_n)$ of independent, identically distributed random variables with a geometric distribution has no elements occurring exactly $j$ times, where $j$ belongs to a specified finite $\textit{'forbidden set'}$ $A$ of multiplicities. Specific choices of the set $A$ enable one to determine the asymptotic probabilities that such a sample has no variable occuring with multiplicity $b$, or which has all multiplicities greater than $b$, for any fixed integer $b \geq 1$.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|
Loading...