Limit distribution of the size of the giant component in a web random graph - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2006

Limit distribution of the size of the giant component in a web random graph

Résumé

Consider random graph with $N+ 1$ vertices as follows. The degrees of vertices $1,2,\ldots, N$ are the independent identically distributed random variables $\xi_1, \xi_2, \ldots , \xi_N$ with distribution $\mathbf{P}\{\xi_1 \geq k\}=k^{− \tau},$ $k= 1,2,\ldots,$ $\tau \in (1,2)$,(1) and the vertex $N+1$ has degree $0$, if the sum $\zeta_N=\xi_1+ \ldots +\xi_N$ is even, else degree is $1$. From (1) we get that $p_k=\mathbf{P}\{\xi_1=k\}=k^{−\tau}−(k+ 1)^{−\tau}$, $k= 1,2,\ldots$ Let $G(k_1, \ldots , k_N)$ be a set of graphs with $\xi_1=k_1,\ldots, \xi_N=k_N$. If $g$ is a realization of random graph then $\mathbf{P}\{g \in G(k_1, \ldots , k_N)\}=p_{k_1} \cdot \ldots \cdot p_{k_N}$. The probability distribution on the set of graph is defined such that for a vector $(k_1, \ldots, k_N)$ all graphs, lying in $G(k_1, \ldots , k_N)$, are equiprobable. Studies of the past few years show that such graphs are good random graph models for Internet and other networks topology description (see, for example, H. Reittu and I. Norros (2004)). To build the graph, we have $N$ numbered vertices and incident to vertex $i \xi_i$ stubs, $i= 1, \ldots , N$. All stubs need to be connected to another stub to construct the graph. The stubs are numbered in an arbitrary order from $1$ to $\zeta_N$. Let $\eta_{(N)}$ be the maximum degree of the vertices.
Fichier principal
Vignette du fichier
dmAG0141.pdf (102.27 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01184692 , version 1 (17-08-2015)

Identifiants

Citer

Yuri Pavlov. Limit distribution of the size of the giant component in a web random graph. Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities, 2006, Nancy, France. pp.435-436, ⟨10.46298/dmtcs.3489⟩. ⟨hal-01184692⟩

Collections

TDS-MACS
61 Consultations
580 Téléchargements

Altmetric

Partager

More