$S$-constrained random matrices - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2006

$S$-constrained random matrices

Résumé

Let $S$ be a set of $d$-dimensional row vectors with entries in a $q$-ary alphabet. A matrix $M$ with entries in the same $q$-ary alphabet is $S$-constrained if every set of $d$ columns of $M$ contains as a submatrix a copy of the vectors in $S$, up to permutation. For a given set $S$ of $d$-dimensional vectors, we compute the asymptotic probability for a random matrix $M$ to be $S$-constrained, as the numbers of rows and columns both tend to infinity. If $n$ is the number of columns and $m=m_n$ the number of rows, then the threshold is at $m_n= \alpha_d \log (n)$, where $\alpha_d$ only depends on the dimension $d$ of vectors and not on the particular set $S$. Applications to superimposed codes, shattering classes of functions, and Sidon families of sets are proposed. For $d=2$, an explicit construction of a $S$-constrained matrix is given.
Fichier principal
Vignette du fichier
dmAG0127.pdf (223.21 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01184682 , version 1 (17-08-2015)

Identifiants

Citer

Sylvain Gravier, Bernard Ycart. $S$-constrained random matrices. Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities, Sep 2006, Nancy, France. pp.357-364, ⟨10.46298/dmtcs.3480⟩. ⟨hal-01184682⟩
105 Consultations
629 Téléchargements

Altmetric

Partager

More