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Abstract

Within the fuzzy literature, the issue of ranking fuzzy intervals has been addressed by
many authors, who proposed various solutions to the problem. Most of these solutions
intend to find a total order on a given collection of fuzzy intervals. However, if one
sees fuzzy intervals as descriptions of uncertain quantities, an alternative to rank them
is to use ranking rules issued from the imprecise probabilistic literature. In this pa-
per, we investigate ranking rules based on different statistical features (mean, median)
and orderings, and relate the obtained (partial) orders to some classical proposals. In
particular, we propose a generic expression of stochastic orderings, and then use it to
systematically investigate extensions of the most usual stochastic orderings to fuzzy
intervals. We also show some relations between those extensions, and explore their
relation with existing fuzzy ranking proposals.

Keywords: ranking, preferences, partial orders, fuzzy numbers, possibility, deci-
sion making

1. Introduction

Ranking values or alternatives is an important problem in decision making that
has attracted attention in all kinds of fields and domains (multi-criteria decision mak-
ing [27], machine learning [26], . . . ), especially when such values or alternatives are
characterised by ill-known quantities that are pervaded with uncertainty. A particu-
lar domain that has been investigated by many researchers is the one where ill-known
quantities to rank are described by fuzzy sets.

The problem of fuzzy ranking, i.e., of deciding whether a fuzzy quantity (i.e., a
quantity described by a fuzzy set) is larger than another, has indeed generated a rich
literature over the years. Many authors have proposed many different ways of compar-
ing fuzzy numbers, with different requirements and intuition supporting the proposals.
However, a striking feature is that the majority of the methods to compare and rank

Email addresses: couso@uniovi.es,sdestercke@gmail.com (Sébastien Destercke1 and Inés
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fuzzy quantities result in a single number and/or in a complete ordering (the early pos-
sibilistic method by Dubois and Prade [22] is a noticeable exception). Some of the
rankings described in this paper also result in a single number between 0 and 1 (the
lower probability of the event X > Y , for instance), and other ones result in a total
ordering (the preference criterion based on the lower expectations, E(X) ≥ E(Y ), for
instance).

However, when fuzzy quantities are used to describe some imprecisely or vaguely
known quantity (as is often the case when having to rank those quantities), another
sensible approach would be to include incomparability in the picture, possibly lead-
ing to accept partial rather than precise rankings between fuzzy sets or to summarize
fuzzy comparisons as intervals (or more complicated structures) rather than just a sin-
gle value. This is also coherent with a view seeing fuzzy sets as extended intervals,
possibility distributions, random sets or as imprecise probabilistic models in general.

Note that we do not claim by any means that considering incomparability when
comparing fuzzy sets is always a desirable feature, yet we think that it may be useful
in a number of situations: when the attitude of the decision maker is unknown, or
when it is undesirable to add it to the analysis; when uncertain accuracy (e.g., due to
uncertainty in the data features) leads one to extract an ensemble of best classifiers or
regression models; or simply in situations in which being cautious about what can be
said and about possible inferences is desirable.

While some recent works have explored different extensions of classical proba-
bilistic comparison methods to sets of probabilities (see, for instance [10, 19, 31]), only
some of them ( [10, 16, 32]) have marginally considered the case of fuzzy sets/possibility
distributions in general and of fuzzy intervals in particular. Studying the applications
of the different extensions to the fuzzy interval case and relating them to previously
proposed ranking in the fuzzy literature is the main topic of this paper. There are at
least two reasons to focus on the specific case of fuzzy intervals: they are by far the
most commonly encountered type of fuzzy sets in applications, and the simplicity of
their mathematical structure allow for an exposition focusing on interpretation rather
than on mathematical subtleties.

In this paper, we see fuzzy intervals as imprecise probabilistic models, and we
interpret fuzzy ranking or comparison as a 2-step procedure:

1. given two fuzzy intervals modelling our knowledge about two quantities X ,Y ∈
R, we first build a joint model over the product space R2, assuming some (in)dependence;

2. the fuzzy comparison is then built as the evaluation of the lower/upper expecta-
tion of some function defined over R2.

Section 2 introduces how fuzzy sets are interpreted in this study, together with how
joint information about the variables can be built in this setting. Section 3 recalls the
different means to compare intervals, and how to generalize them to stochastic order-
ings in a very general way [10]. Section 4 then applies these tools to extend the classical
stochastic orderings that are statistical preference, statistical dominance and expecta-
tion comparisons, to fuzzy intervals. Section 5 then reviews some of the most classical
fuzzy ranking methods under the light of imprecise probabilistic approaches. Section 6
then illustrates the proposed notions on some examples similar to those proposed by
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Bortolan and Degani’s [5]. Note that a number of ideas pursued in this paper already
appeared in section 5.2.2. and 5.2.3. of Dubois [21], although in a preliminary form
and with less details than in the present study, hence a number of our results can be
seen as an elaboration of these ideas. We also complement Dubois preliminary pro-
posals by providing a general expression for orderings (Section 3.2), by studying other
notions of comparisons (i.e., weak ordering, maximin and maximax), by studying the
relations between the different (partial) rankings, and by precisely linking our different
proposals to previously proposed fuzzy ranking methods.

Shortly speaking, the main contributions of this paper are two fold:

1. We study the problem of fuzzy ranking from an imprecise probabilistic perspec-
tive, therefore introducing new ways to rank fuzzy intervals (some of them in-
cluding incomparability statements). In the case where fuzzy intervals describe
uncertain quantities, this allows us to build well-funded rankings extending clas-
sical statistical and interval comparisons, that usually come with clear interpre-
tations and assumptions.

2. We relate some classical fuzzy rankings to the newly introduced rankings. This
allows us to shed new lights on those rankings, and provides them with new
interpretations (possibly justifying their use in new settings).

2. Fuzzy sets as imprecise probabilities and random sets

We consider the problem of comparing two fuzzy sets expressed by their equivalent
possibility distributions (or membership functions) πX and πY . We consider that these
fuzzy sets model our uncertainty about values, that is we adopt the epistemic view [11].
There are at least two possible interpretations about these values. According to the first
interpretation, we assume that they represent imprecise information about a pair of
fixed but unknown values, for example πX ,πY may describe the weight and height of
an individual, which may be ill-known due to the use of a poor balance scale, but are
nevertheless fixed. According to the second interpretation, we assume that X ,Y are
random quantities, and that their respective probability distributions are dominated by
the possibility measures derived from πX and πY . For example, πX and πY may describe
our limited knowledge about the distribution of a population. Formally:

PX (A)≤ sup
x∈A

πX (x),PY (B)≤ sup
y∈B

πY (y), ∀A,B ∈ βR,

where βR denotes the usual Borel σ−field on the real line. Results and rankings pre-
sented within this paper better fit with the second interpretation, but some of them could
fit with the first one.

In this paper, to reduce mathematical complexity to the benefits of intuition, we
will assume that fuzzy sets π are fuzzy intervals (note that it is the case in most works
on fuzzy rankings, see [42, 21] and references within). Recall that the distribution
πX : R→ [0,1] of a fuzzy interval is such that for all a,b,c ∈ R such that a ≤ b ≤ c,
we have πX (b) ≥ min(πX (a),πX (c)). We will also restrict the study to normalized
distributions for which there is a value x ∈ R such that πX (x) = 1 (otherwise the set of
probabilities dominated by πX becomes empty).
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2.1. Marginal fuzzy sets
Let us first recall some necessary notions about possibility distributions. Given a

possibility distribution π : R→ [0,1] describing a fuzzy interval, recall that we can
define:

• Possibility (Π) and necessity (N) measures over any set A⊆ R, defined as

Π(A) = sup
x∈A

π(x); N(A) = 1−Π(Ac) = inf
x∈Ac

(1−π(x)) (1)

where Ac is the complement of A.

• A (weak) alpha cut πα for each α ∈]0,1] such that

πα = {x ∈ R|π(x)≥ α} (2)

and we will denote πα = inf{x|x ∈ πα}, πα = sup{x|x ∈ πα} the upper and
lower bounds of these α-cuts, respectively. A strong alpha cut π>

α for each α ∈
[0,1[ such that

π
>
α = {x ∈ R|π(x)> α}. (3)

• A set of probabilities P(Π) bounded by Π such that

P(Π) = {P ∈PβR |P(A)≤Π(A) ∀A ∈ βR} (4)

with PβR the set of all probabilities on the usual Borel σ−field of the real line.

Alternatively, a possibility distribution π can also be described by an equivalent
random set Γπ that maps the unit interval (provided with the uniform distribution U[0,1])
to the alpha-cuts, i.e. Γπ : [0,1]→ IR with IR the intervals on R and Γπ(α) = πα . We
then have

Π(A) = PU[0,1]
({α|Γπ(α)∩A 6= /0}). (5)

This equation is simply a rewriting of Equation 1 in terms of random sets, and the two
models describe the same set P(Π) of dominated probabilities.

Other tools that will be used in this study are the notions of p-boxes [23] and of
lower/upper expectations (also commonly called lower and upper previsions [41]). A
p-box [F ,F ] is a pair of cumulative distributions such that F(x) ≤ F(x) for all x ∈ R.
The p-box [Fπ ,Fπ ] associated to a fuzzy set π is the pair of cumulative distributions
such that

Fπ(x) = N((−∞,x]) and Fπ(x) = Π((−∞,x]), ∀x ∈ R. (6)

A fuzzy interval and its associated p-box are pictured in Figure 1.
Similarly, to a fuzzy interval described by distribution πX , we can associate lower

and upper expectation bounds EπX
(id) and EπX (id) reached within the set P(Π). Such

bounds are simply expressed as

EπX
(id) =

∫
R

xdFπ(x) =
∫ 1

0
πα dα and EπX (id) =

∫
R

xdFπ(x) =
∫ 1

0
πα dα. (7)
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Figure 1: A fuzzy interval and its associated p-box

(In the last expressions, id : R→ R represents the identity function, id(x) = x, ∀x ∈
R). Also note that, given a function f on R, the lower and upper expectations of this
function within P(Π) read

EπX
( f ) =

∫ 1

0
inf

x∈πα

f (x)dα and EπX ( f ) =
∫ 1

0
sup
x∈πα

f (x)dα. (8)

The lower and upper expectation bounds are nothing else but the lower and upper
extremes of the “mean value” of the fuzzy interval X defined by Dubois and Prade [20].

According to [13], a distribution π represents the family of probability measures
satisfying the following inequalities w.r.t. the strong alpha cuts:

P(π>
α )≥ 1−α, ∀α ∈ (0,1].

Such a family is in fact the family of probability measures that are bounded between the
necessity measure N and the possibility measure Π, {P : P(A) ≥ N(A), ∀A ∈ βR} =
{P : P(A)≤Π(A), ∀A ∈ βR}.

2.2. Joint models from marginal fuzzy sets

In the imprecise probabilistic literature, there are multiple ways to define (in)dependence
(e.g., see [9, 14]). In this paper, we will not deal with all of them, and will concentrate
mainly on notions easily expressible through α-cuts (such as Zadeh’s extension [47])
and random sets associated to fuzzy intervals.

In this work, we will assume mainly three kinds of dependence relations between
two distributions πX and πY , as these dependencies will allow us to connect our results
to standard fuzzy ranking methods. A convenient way to describe such dependency is
by a joint random function ΓXY : [0,1]2→ IR2 mapping each point (α,β ) of [0,1]2 to
the Cartesian product πX ,α × πY,β and a specific joint probability measure P defined
over the initial space [0,1]2.

• monotonic dependence (M), that assumes a totally positive correlation between
alpha-cuts, in this case the initial P is the uniform distribution on the line α = β

of [0,1]2. This is nothing else but the application of Zadeh’s extension [47]
principle. The result is then a joint distribution πXY such that πXY,α = πX ,α ×
πY,α . This is the only dependence assumption whose joint random sets are nested
and therefore the only joint model to be again a fuzzy set/possibility distribution.
This is why it is usually the one considered in fuzzy set theory;
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• random set independence (I) where P = U[0,1]⊗U[0,1] is the stochastic product
of the two original uniform distributions;

• anti-monotonic dependence (AM) where totally negative correlation between
alpha-cuts is assumed. In this case the initial probability measure P is the uni-
form distribution on the line α = 1− β of [0,1]2. This dependence relation
can be represented by means of a random set that maps each value α to the
Cartesian product πX ,α × πY,1−α , where the uniform distribution is defined on
[0,1]. This is also equivalent to assume monotonic dependence between πX and
1−πY . It should be noted that, similarly to what happens with the lower Frechet
Bounds [4], this notion of dependence cannot be applied in a pair-wise way to
three different variables, yet the consideration of such dependencies makes sense
in some settings (e.g., see [17] for its use in statistical preferences).

In Section 4, we will see that the choice of a specific (in)dependence notion actually
only matters when we consider the extension of the notion of statistical preference to
possibility distributions.

3. Interval comparisons and stochastic orderings

In this section, we first recall classical ways to compare intervals (Subsection 3.1),
as well as the generic framework proposed by Couso and Dubois [10] (Subsection 3.2)
to extend stochastic orderings to probability sets. This is the occasion to explore some
particular properties satisfied by this framework in our particular case, and to introduce
specific notations used in the sequel.

3.1. Interval comparisons

When two values X = [x,x] and Y = [y,y] are described by intervals, the classical
comparison between numbers can be extended into several ways, either by choosing
specific points within the intervals as representatives, or by admitting that some inter-
vals may be incomparable due to imprecision.

Rules of the first family include:

• Weak ordering: X ≤wo Y if x≤ y

• Maximin [38, 40]: X ≤Mm Y if x≤ y

• Maximax [35]: X ≤MM Y if x≤ y

• Hurwicz [29]: X ≤H(γ) Y if γx+(1− γ)x≤ γy+(1− γ)y where γ ∈ [0,1].

If X and Y are interpreted as possible rewards (corresponding to the accuracy of a
classifier, to the benefits of some choice/policy, . . . ), then maximin is usually associated
to a pessimistic attitude (focusing on the lowest possible reward) and maximax to an
optimistic attitude. The parameter γ can then be interpreted as an index of pessimism,
since maximin is retrieved when γ = 1, and maximax when γ = 0. Given any two
intervals X and Y , the above criteria will always result in a comparison: either X ≤ Y ,
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x x
y y

X ≤wo Y

a. Weak ordering

y y
x x

X ≤Mm Y

b. Maximin

x x
y y

X ≤MM Y

c. Maximax

y y
γ (1− γ)

x x
γ (1− γ)

X ≤H(γ) Y

d. Hurwicz ordering

x x
y y

X ≤ID Y

e. Interval dominance

y y
x x

X ≤Lo Y

f. Lattice ordering

Figure 2: Interval comparisons illustrations

Y ≤ X , or both (in case of indifference). That is, given a set X1, . . . ,XN of intervals, the
above rankings will always provide a complete (pre-)order.

On the contrary, the two following extensions usually produce partial orders be-
tween intervals:

• Interval dominance [24]: X ≤ID Y if x≤ y

• lattice ordering: X ≤Lo Y if x≤ y and x≤ y

Interval dominance says that two intervals are incomparable as soon as they overlap
(it produces so-called interval orders), while the lattice ordering is the canonical order
induced by the lattice of intervals (i.e. X ≤Lo Y iff sup(X ,Y ) = Y , or equivalently iff
inf(X ,Y ) = X). Note that when X ,Y are intervals, the following implications between
the above orderings hold:

X ≤ID Y ⇒ X ≤Lo Y ⇒


X ≤Mm Y
X ≤MM Y

X ≤H(γ) Y for any γ ∈ [0,1]

⇒ X ≤wo Y. (9)

In the next sections, we will apply these interval comparisons to the extensions of
well-known stochastic orderings (namely, statistical preference, first stochastic domi-
nance and expectation dominance) to the context of joint possibility distributions. For
each combination interval comparison + stochastic ordering, we will obtain a partic-
ular ranking (possibly different for different independence assumptions about X and
Y ). Before that, we introduce a generic way to express stochastic preferences, directly
inspired by some previous work of one of the authors [10].

3.2. Generic expression of stochastic orderings

Every stochastic ordering in the literature we know of establishes a specific prefer-
ence relation between pairs (X ,Y ) of random variables based on their joint probability
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distribution PXY . A well known result in probability theory states that, for any proba-
bility measure defined on the Borel σ−field βR, there exists some random variable X
defined on the unit interval [0,1], provided with the uniform distribution, that induces
it. Thus, without loss of generality, we may assume that the random vector (X ,Y ) is
defined over the unit square [0,1]2 and that the marginal distributions of P do coincide
with the uniform distribution, U[0,1].

Several of these stochastic orderings [10] from the literature can be expressed in
terms of the expectation of a function g(X ,Y ) where g : R2 → R can be decomposed
as the difference g(x,y) = f (x,y)− f (y,x) where f is increasing in the first component
and decreasing in the second one. To facilitate notations, we will denote f sw(x,y) :=
f (y,x) (sw standing for swap). According to this general formulation, X will be said
to be preferred to Y whenever the expectation of g(X ,Y ) is non negative. Specific
expressions of f (and therefore of g) then allow one to retrieve classical stochastic
orderings.

When considering precise probabilities, the expectation of g(X ,Y ) being positive
is equivalent to the expectation of f (X ,Y ) being greater than the expectation f sw(X ,Y )
(this follows from the linearity of precise expectation). However, when considering sets
of joint probabilities induced by marginal possibility distributions and a joint model
(see Section 2.2), this equivalence is no longer valid, as lower and upper expectations
are non-linear operators. Also, the expectations of g(X ,Y ), f (X ,Y ) and f sw(X ,Y )
become intervals instead of numbers.

There are therefore two main ways to extend relations of Section 3.1 by integrating
this view of stochastic preferences, given some joint structure ΓXY taken from Sec-
tion 2.2. The first is to consider the interval [EΓXY

(g),EΓXY (g)] given by

EΓXY
(g) =

∫
[0,1]×[0,1] infx∈πX ,α ,y∈πY,β g(x,y)dP(α,β ) and

EΓXY (g) =
∫
[0,1]×[0,1] supx∈πX ,α ,y∈πY,β

g(x,y)dP(α,β ),
(10)

where P is the joint probability on the α,β -cuts, and to compare this interval to the
singleton {0} using one of the relations of Section 3.1.

The second way to blend stochastic ordering expressions and interval comparisons
is to compute the intervals [EΓXY

( f ),EΓXY ( f )] and [EΓXY
( f sw),EΓXY ( f sw)] and to com-

pare them using one relation. Values EΓXY
( f ),EΓXY ( f ) can be computed by

EΓXY
( f ) =

∫
[0,1]×[0,1] infx∈πX ,α ,y∈πY,β f (x,y)dP(α,β ) and

EΓXY ( f ) =
∫
[0,1]×[0,1] supx∈πX ,α ,y∈πY,β

f (x,y)dP(α,β ).
(11)

Values EΓXY
( f sw),EΓXY ( f sw) can be derived likewise. According to the following

result, there are some noticeable relations between the intervals of expectations of
g(X ,Y ), f (X ,Y ) and f sw(X ,Y ).

Proposition 1. Let f : R2→ R be increasing in the first component and decreasing in
the second one. Let g : R2→R be defined from f as g(x,y) = f (x,y)− f sw(x,y). Let P
be a probability measure defined on β[0,1]2 , whose respective marginals coincide with
the uniform distribution on the unit interval. The following equalities hold:

• EΓXY
(g) = EΓXY

( f )−EΓXY ( f sw),
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• EΓXY (g) = EΓXY ( f )−EΓXY
( f sw),

and therefore we have that

• EΓXY
(g)≥ 0 if and only if EΓXY

( f )≥ EΓXY ( f sw),

• EΓXY (g)≥ 0 if and only if EΓXY ( f )≥ EΓXY
( f sw).

Proof. Let us check the first equality (the second can be derived in an analogous way).
We have that

EΓXY
(g) =

∫
[0,1]2

inf
x∈πX ,α ,y∈πY,β

g(x,y)dP(α,β ),

according to Equation 10. Furthermore, according to the properties of g, for each α-
cut, such an infimum can be calculated as follows:

inf
x∈πX ,α ,y∈πY,β

g(x,y) = g(πX ,α ,πY,β ) = f (πX ,α ,πY,β )− f (πY,β ,πX ,α).

Therefore, according to the properties of the Lebesgue integral, we can write that:

EΓXY
(g) =

∫
[0,1]2 f (πX ,α ,πY,β )dP(α,β )−

∫
[0,1]2 f (πY,β ,πX ,α)dP(α,β )

= EΓXY
( f )−EΓXY ( f sw).

(12)

These results imply very strong relations between the two extensions, as shown in
the next corollary.

Corollary 2. Following the nomenclature used in Proposition 1, we have:

• [EΓXY
( f ),EΓXY ( f )]≥ID [EΓXY

( f sw),EΓXY ( f sw)] if and only if the following con-
dition holds:

EΓXY
(g)≥ 0.

• [EΓXY
( f ),EΓXY ( f )]≥wo [EΓXY

( f sw),EΓXY ( f sw)] if and only if the following con-
dition holds:

EΓXY (g)≥ 0.

• [EΓXY
( f ),EΓXY ( f )]≥H(γ) [EΓXY

( f sw),EΓXY ( f sw)] if and only if the following con-
dition holds:

[EΓXY
(g),EΓXY (g)]≥H(γ) {0}.

Note that we can link Corollary 2 results to the other interval comparisons explored
in Section 3.1 through the following equivalences:

EΓXY
(g)≥ 0⇔ [EΓXY

(g),EΓXY (g)]≥ω {0} for ω ∈ {Mm, ID,Lo} (13)

EΓXY (g)≥ 0⇔ [EΓXY
(g),EΓXY (g)]≥ω {0} for ω ∈ {wo,MM} (14)
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According to this, any comparison using interval [EΓXY
(g),EΓXY (g)] is equivalent to

another comparison using function f . Thus, in the following, we will only concentrate
on the second extension using intervals of f functions. Note that the converse is not
true, as any comparison

[EΓXY
( f ),EΓXY ( f )]≥k [EΓXY

( f sw),EΓXY ( f sw)]

with k ∈ {Mm,MM,Lo} cannot be expressed by a comparison using g expectation
bounds.

Let us establish some notations that will make the expression of further results more
concise.

• The lower and upper expectations of a function f (x,y) under monotonic depen-
dence will be respectively denoted by E f ,M and E f ,M:

E f ,M =
∫ 1

0
inf

(x,y)∈πX ,α×πY,α
f (x,y)dα =

∫ 1

0
f (πX ,α ,πY,α)dα. (15)

E f ,M =
∫ 1

0
sup

(x,y)∈πX ,α×πY,α

f (x,y)dα =
∫ 1

0
f (πX ,α ,πY,α)dα. (16)

• The lower and upper expectations of f (x,y) under random set independence will
be respectively denoted by E f ,I and E f ,I :

E f ,I =
∫ 1

0

∫ 1

0
inf

(x,y)∈πX ,α×πY,β

f (x,y)dαdβ =
∫ 1

0

∫ 1

0
f (πX ,α ,πY,β )dαdβ . (17)

E f ,I =
∫ 1

0

∫ 1

0
sup

(x,y)∈πX ,α×πY,β

f (x,y)dαdβ =
∫ 1

0

∫ 1

0
f (πX ,α ,πY,β )dαdβ . (18)

• The lower and upper expectations of f (x,y) under anti-monotonic dependence
will be respectively denoted by E f ,AM and E f ,AM:

E f ,AM =
∫ 1

0
inf

(x,y)∈πX ,α×πY,1−α

f (x,y)dα =
∫ 1

0
f (πX ,α ,πY,1−α)dα. (19)

E f ,AM =
∫ 1

0
sup

(x,y)∈πX ,α×πY,1−α

f (x,y)dα =
∫ 1

0
f (πX ,α ,πY,1−α)dα. (20)

According to the above nomenclature, and under any particular dependence as-
sumption dep ∈ {M, I,AM}, we will say that X is f -preferred to Y with respect to a
particular ordering ord ∈ {wo,Mm,MM,H(λ ), ID,Lo} if:

[E f ,dep,E f ,dep]≥ord [E f sw,dep,E f sw,dep]. (21)
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We will denote it X ≥ f ,dep,ord Y . Of course, the implications provided by Equation (9)
still hold for these comparisons. Before applying the above results to the case of fuzzy
intervals, let us study a specific case of f that we will encounter in the sequel. We define
a function f (x,y) as x-measurable if f (x,y) = f (x,y′) for all y,y′ ∈ R. In this case, we
will write f1(x) := f (x,y), as the value of f is uniquely identified by x. Analogously, f
is said to be y-measurable whenever f (x,y) = f (x′,y), for all x,x′ ∈ R. Then, we will
write, f2(y) = f (x,y).

Lemma 3. Let f (x,y) be an x-measurable function. Then f sw is y-measurable and

EΓXY
( f ) = EπX

( f1)

EΓXY
( f sw) = EπY

( f sw
2 )

EΓXY ( f ) = Eπx( f1)

EΓXY
( f sw) = EπY ( f sw

2 )

Proof. We will only show the first equality, as the others can be derived with analogous
reasoning. First note that the value EπX

( f ) is well defined when f (x,y) is x-measurable.
We have that

EΓXY
( f ) =

∫
[0,1]2

inf
x∈πX ,α
y∈πY,α

f (x,y)dP(α,β ) =
∫
[0,1]2

inf
x∈πX ,α

f1(x)dP(α,β )

=
∫
[0,1]

inf
x∈πX ,α

f1(x)dP(α) = EπX
( f )

with the last equality due to the fact that P is the uniform distribution on [0,1].

In particular, Lemma 3 indicates that when f is x-measurable, the values of intervals
[E f ,dep,E f ,dep] and [E f sw,dep,E f sw,dep] do not depend on the chosen dependence, hence
neither does the relation≥ f ,dep,ord derived from them. Also, computing [EΓXY

( f ),EΓXY ( f )]
becomes straightforward by using Equations (8), as shown in the next corollary of
Proposition 1.

Corollary 4. Let f (x,y) be an x-measurable function. Then

• EΓXY
( f ) = EπX

( f1)−EπY ( f sw
2 )

• EΓXY ( f ) = EπX ( f1)−EπY
( f sw

2 ).

4. Fuzzy ranking as an imprecise probabilistic problem

In this section, we explore how the tools of the previous sections can be applied to
fuzzy intervals and the problem of fuzzy rankings. We explore the three classical ways
to stochastically compare random variables, namely statistical preference (Sections 4.1
and 4.2), stochastic dominance (Section 4.3) and expectation-based preference (Sec-
tion 4.4).
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4.1. Statistical preference extension
A random variable X is said to be statistically preferred [36] to another random

variable Y when it satisfies the inequality P(X > Y ) ≥ P(Y > X). Equivalently, and
according to [10], we can say that X is statistically preferred to Y if E[g>(X ,Y )] ≥ 0,
where g> : R2→ R is defined as follows:

g>(x,y) = sign(x− y) =

 1 if x > y
0 if x = y
−1 if x < y.

(22)

and g> can be expressed as g> = f>− f sw
> , where f> is defined by

f>(x,y) =
{

1 if x > y
0 else. (23)

Every criterion considered in this subsection will particularize the general Equation
(21) for f = f>, according to some particular dependence assumption dep∈{M, I,AM}
and some specific ordering between intervals, ord ∈ {wo,Mm,MM,H(λ ), ID,Lo}. We
will only detail some of them as illustrations, as the other relations and orderings can
be obtained by simply applying the definitions of Section 3.2 for any choice of dep,ord.

To avoid making long lists of similar equations, we will only provide some de-
tails for the monotonic dependence case, formulas for other dependence assumptions
easily following by replacing the integrals within the formulas. Under the monotonic
dependence, we can extend interval ordering in the following way:

X ≥ f>,M,ID Y if and only if
∫ 1

0
inf

x∈πX ,α
y∈πY,α

f>(x,y)dα ≥
∫ 1

0
sup

x∈πX ,α
y∈πY,α

f sw
> (x,y)dα (24)

or equivalently if ∫ 1

0
1(πX ,α>πY,α ) dα ≥

∫ 1

0
1(πY,α>πX ,α )

dα (25)

where 1(A) is the indicator function of some event A, i.e., 1(A) = 1 if A is true, 0
otherwise. The above formula comes down to apply interval dominance to each α-
cut, and is equivalent to comparing the lower probability PM(X > Y ) and the upper
probability PM(Y > X), under monotonic dependence, of the respective events X > Y
and Y > X . Proposition 1 tells us that Equation (24) can be alternatively written in
terms of g> as follows:

X ≥ f>,M,ID Y if and only if
∫ 1

0
inf

x∈πX ,α
y∈πY,α

g>(x,y)dα ≥ 0. (26)

This equation fits with the generalization of statistical preference considered in [12].
Replacing the infimum by the supremum in formula (26), we would get the upper

expectation of 1(X>Y ) −1(Y>X) , giving the criterion∫ 1

0
sup

x∈πX ,α
y∈πY,α

g>(x,y)dα ≥ 0 if and only if X ≥ f>,M,wo Y, (27)

12



where the equivalence with≥ f>,M,wofollows from Proposition 1. Equivalently, we have
X ≥ f>,M,wo Y iff ∫ 1

0
sup

x∈πX ,α
y∈πY,α

f>(x,y)dα ≥
∫ 1

0
inf

x∈πX ,α
y∈πY,α

f sw
> (x,y)dα (28)

or iff ∫ 1

0
1(πX ,α>πY,α )

dα ≥
∫ 1

0
1(πY,α>πX ,α ) dα. (29)

This is a very weak criterion to compare fuzzy sets. Actually the left hand side in
Equation (29) corresponds to the upper probability of the event X > Y , while the right
hand side corresponds to the lower probability of Y > X , under monotonic dependence.

The previous remark indicates that [E f>,M,E f>,M] = [PM(X > Y ),PM(X > Y )] and
[E f sw

> ,M,E f sw
> ,M] = [PM(Y > X),PM(Y > X)], therefore all other criteria comes down to

compare these lower/upper probabilities in specific ways. For instance, Maximin and
Maximax criteria read

X ≥ f>,M,Mm Y if and only if PM(X > Y )≥ PM(Y > X), (30)

X ≥ f>,M,MM Y if and only if PM(X > Y )≥ PM(Y > X). (31)

The extension of the lattice ordering then corresponds to

X ≥ f>,M,Lo Y if and only if X ≥ f>,M,Mm Y and X ≥ f>,M,MM . (32)

Finally, the Hurwicz criterion with parameter γ can be extended by

X ≥ f>,M,H(γ) Y

if and only if (33)

γPM(X > Y )+(1− γ)PM(X > Y )≥ γPM(Y > X)+(1− γ)PM(Y > X).

Similar equations can be obtained by replacing the dependence M by either AM or I,
and by considering the corresponding formula among Equations (15)-(20).

4.2. An alternative extension of statistical preference

If X and Y are two random variables that satisfy the condition P(X = Y ) = 0 (e.g.,
when their joint distribution is continuous), then X is statistically preferred to Y when
P(X ≥ Y ) ≥ 0.5, or in other words, when the expectation of 1(X≥Y ) w.r.t. P is greater
than or equal to 0.5. We can propose alternative generalizations of statistical preference
under the above assumption about X and Y .

Such extensions will consist in comparing, for each pair (α,β ), the intervals of
values [πX ,α ,πX ,α ] and [πY,β ,πY,β ] by means of different interval orderings, and then
calculating the expectation, with respect to P, of such comparisons, under the different
(in)dependence assumptions of Subsection 2.2. Such an expectation results in a number
between 0 and 1. In order to make a decision, it is reasonable to compare it with 0.5.

13



This approach will consist in reformulating interval orderings under the different
(in)dependence assumptions of Subsection 2.2 by using the indicator function

f≥(x,y) =
{

1 if x≥ y
0 else. (34)

For each particular ordering ord ∈ {wo,Mm,MM,H(λ ), ID} and each possible de-
pendence assumption dep, we will get the following expectation:

(X ,Y )dep,≥ord =
∫
[0,1]2

f≥(xord
α ,yord

β
)dPdep(α,β ), (35)

where Pdep is the probability measure on [0,1]2 having uniform marginals correspond-
ing to dep ∈ {A,AM, I} and the pair (xord

α ,yord
β

) is calculated as follows, according to
each particular interval ordering:

• Weak ordering: xwo
α = πX ,α , ywo

β
= πY,β .

• Maximin: xMm
α = πX ,α , yMm

β
= πY,β .

• Maximax: xMM
α = πX ,α , yMM

β
= πY,β .

• Hurwicz: xH(λ )
α = λπX ,α +(1−λ )πX ,α , yH(λ )

β
= λπY,β +(1−λ )πY,β .

• Interval dominance: xID
α = πX ,α , yID

β
= πY,β .

In the case of the lattice order, the expectation of our evaluations will be:

(X ,Y )dep,≥Lo =
∫
[0,1]2

min( f≥(πX ,α ,πY,β ), f≥(πX ,α ,πY,β ))dPdep(α,β ) (36)

=
∫
[0,1]2

min( f≥(xMm
α ,yMm

β
), f≥(xMM

α ,yMM
β

)dPdep(α,β ).

Let us pay attention to some particular cases of Equation (35). Its formulation for
interval ordering coincides with the preference criterion considered in [34], provided
in a machine learning procedure based on low quality data. In particular, under the
monotonic dependence, we can extend interval ordering in the following way:

(X ,Y )M,≥ID =
∫ 1

0
inf

x∈πX ,α
y∈πY,α

f≥(x,y)dα =
∫ 1

0
1(πX ,α≥πY,α ) dα. (37)

The above formula comes down to apply interval dominance to each α-cut, and is
equivalent to computing the lower probability PM(X ≥ Y ), under monotonic depen-
dence, of the event X ≥Y . It is also interesting to note that (X ,Y )M,≥ID = 1 if and only
if πX ,0 ≥ πY,0, that is if the support of πX interval dominates the support of πY .

The same extension can be built using an independence notion, in this case, interval
dominance is extended into

(X ,Y )I,≥ID =
∫ 1

0

∫ 1

0
inf

x∈πX ,α
y∈πY,β

f≥(x,y)dαdβ =
∫ 1

0

∫ 1

0
1(πX ,α≥πY,β )

dαdβ . (38)
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1
πY πX

1
πY ′ πX ′

Figure 3: Two different cases where dependence assumption affects statistical preference extensions.

Equation (38) looks almost the same as (37), and still corresponds to the lower prob-
ability of X ≥ Y , but under another dependence assumption. Note that, in general, we
will have (X ,Y )I,≥ID 6= (X ,Y )M,≥ID , without one being always lower or higher than the
other, as shown in Example 5 below. Again, we have that (X ,Y )I,≥ID = 1 if and only if
πX ,0 ≥ πY,0.

Example 5. Consider the fuzzy sets pictured in Figure 3, for the two situations, we get
the following values:

• (X ,Y )M,≥ID = 0.5 and (X ,Y )I,≥ID = 0.75

• (X ′,Y ′)M,≥ID = 0.5 and (X ′,Y ′)I,≥ID = 0.25

Again, we will not get into details about the rest of the possible generalizations of
P(X ≥ Y ) under different dependence assumptions, and different orderings between
intervals, as they all can be written as particular cases of Equation (35). All of them
provide gradual ways to compare two fuzzy sets, as they result in numbers ranging
between 0 and 1. Noticing that for any α,β ∈ [0,1] we have the following implications

πX ,α > πY,β ⇒
(πX ,α > πY,β )

∧
(πX ,α > πY,β )

⇒


πX ,α > πY,β
πX ,α > πY,β

γπX ,α +(1− γ)πX ,α >
γπY,β +(1− γ)πY,β

for any γ


⇓

πX ,α > πY,β
(39)

between the relation of α-cut bounds, it follows that we have the following inequalities

(X ,Y )k,≥ID < (X ,Y )k,≥Lo <


(X ,Y )k,≥Mm

(X ,Y )k,≥MM

(X ,Y )k,≥H(γ)

< (X ,Y )k,≥wo (40)

for any k ∈ {M, ID,AM}. These relations extend to gradual evaluations the relations
existing between the interval comparisons introduced in Section 3.1.

Also, we have that (X ,Y )k,≥ID = P(X ≥ Y ) and (X ,Y )k,≥wo = P(X ≥ Y ), meaning
that

X ≥ f>,ID,dep Y ⇒ (X ,Y )dep,≥ID ≥ 0.5,

X ≥ f>,wo,dep Y ⇒ (X ,Y )dep,≥wo ≥ 0.5,

as P(X ≥ Y )≥ P(X > Y ) and P(X ≥ Y )≥ P(X > Y ).
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Yet, apart from the cases of interval dominance and weak ordering, there are no
such clear and straightforward connections between the extensions of statistical pref-
erence proposed in Section 4.1 and those of Section 4.2. Indeed, consider for instance
two distributions πX , πY such that πX ,1 ∩πY,1 6= /0 and πY (c) = πX (c+ δ ) with δ > 0
(πX is on the ”right” of πY ). In such a case, we have

(X ,Y )M,≥MM =
∫ 1

0
1(πX ,α≥πY,α ) dα = 1 and (Y,X)M,≥MM = 0,

clearly suggesting that X is preferable to Y according to maximax criterion of Sec-
tion 4.2. Yet, we have [PM(X > Y ),PM(X > Y )] = [0,1] and [PM(X < Y ),PM(X <
Y )] = [0,1] (simply consider that P(ΠX ) and P(ΠY ) contains all Dirac measures
located in πX ,1 and πY,1, respectively), clearly showing that

X = f>,M,MM Y

according to the criterion of Section 4.1, therefore reaching two quite different con-
clusions. The same example can be applied to the Maximin, Lattice ordering and
Hurcwicz extensions.

As a final remark on this extension, note that the relation (X ,Y )dep,≥ord = 1−
(Y,X)dep,≥ord will not hold in general, unlike in the probabilistic setting (both values
may be below 0.5, for instance). Yet, for ord ∈ {ID,wo,Mm,MM, lo}, we do have
that (X ,Y )dep,≥ord ≥ 0.5 implies (X ,Y )dep,≥ord ≤ 0.5, therefore preventing contradictory
conclusions. To see that this is the case, simply note that for ord∈{ID,wo,Mm,MM, lo},
if πX ,α >ord πY,β then πX ,α 6≤ord πY,β , which may not be the case for the weak ordering,
that is too permissive.

4.3. Stochastic dominance

When quantities X and Y are modelled by cumulative distributions FX and FY , re-
spectively, a classical way to compare them is through first-order stochastic dominance,
that is to say that X � Y if and only if FX (c) ≤ FY (c) for all c ∈ R or, equivalently, if
P(X > c)≥ P(Y > c), for all c ∈R. That is, X stochastically dominates Y if X is more
probable to have a value higher than c than Y is, for every c ∈ R.

When the cumulative distributions of X and Y are bounded by a lower and an upper
one, respectively [FX ,FX ] and [FY ,FY ], the notion of stochastic dominance � can
again be extended in multiple ways [19, 32]. Such extensions are the result of applying
Equation (21) to the family of mappings { fc}c∈R, where fc : R2 → R is defined as
follows, for each c ∈ R:

fc(x,y) = 1(x>c) , ∀(x,y) ∈ R2.

Since fc is x-measurable, it means according to Lemma 3 that ranking notions derived
from it do not rely on a particular dependence notion, meaning that if it holds for some
choice of dep, it holds for any other. Now, if Equation (21) holds for all c ∈R for some
particular choice of ord, we denote the resulting relation by

X ≥ f∀c,dep,ord Y.
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Extending stochastic dominance to convex sets of probabilities comes down to check
stochastic dominance on specific pairs of cumulative functions [32], and we can asso-
ciate them to ideas used in interval ordering:

• Weak ordering: [FX ,FX ]�wo [FY ,FY ] if FX ≤ FY

• Maximin: [FX ,FX ]�Mm [FY ,FY ] if FX ≤ FY

• Maximax: [FX ,FX ]�MM [FY ,FY ] if FX ≤ FY

• Hurwicz: [FX ,FX ]�H(γ) [FY ,FY ] if γFX +(1− γ)FX ≤ γFY +(1− γ)FY

• Interval dominance: [FX ,FX ]�ID [FY ,FY ] if FX ≤ FY

• Lattice order: [FX ,FX ]�Lo [FY ,FY ] if FX ≤ FY and FX ≤ FY

If a p-box is {0,1} valued, that is corresponds to Dirac measures between a lower and
an upper bounds, those extensions coincide with the interval comparisons bearing the
same name (already in [32]). Additionally, implications (9) directly extend to the above
extensions of first-order stochastic dominance. It is also easy to see that we have

[FX ,FX ]�k [FY ,FY ]⇔ X ≥ f∀c,dep,k Y

for k∈{wo,Mm,MM,H(γ), ID,Lo} and with any dependence, since fc is an x-measurable
function (see Lemma 3).

These comparisons are all-or-nothing comparisons. However, if we consider the
p-boxes [FπX

,FπX ] and [FπY
,FπY ], we can relate these comparisons with extensions of

interval comparisons proposed in Section 3.1. First note that we have F−1
π (α) = π1−α

and F−1
π (α) = πα where F−1 denotes the generalized inverse distribution function. We

then have the following relations:

• X ≥ f∀c,dep,wo Y if and only if (X ,Y )AM,≥wo = 1.

• X ≥ f∀c,dep,Mm Y if and only if (X ,Y )M,≥Mm = 1.

• X ≥ f∀c,dep,MM Y if and only if (X ,Y )M,≥MM = 1.

• X ≥ f∀c,dep,H(γ) Y if and only if (X ,Y )AM,≥H(γ)
= 1.

• X ≥ f∀c,dep,ID Y if and only if (X ,Y )AM,≥ID = 1.

• X ≥ f∀c,dep,Lo Y if (X ,Y )M,≥Lo = 1.

This indicates that some of the evaluations explored in Section 4.2 can be seen as grad-
ual versions of stochastic dominance extensions (with them being equal to 1 if and
only if the corresponding stochastic dominance holds). This also clarifies the assump-
tions that can be associated to the various extensions of stochastic dominance when
applied to fuzzy intervals. In particular, it may be surprising at first to see that, while
stochastic dominance notions do not depend on particular dependence notions, their
relations with extensions of statistical preferences (Section 4.2) are linked to specific
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dependence assumptions (i.e., extensions of weak ordering, Hurwicz and interval dom-
inance relate to anti-monotonic dependence, while the others relate to the monotonic
dependence). Indeed, while the all-or-nothing relations do not depend on the depen-
dence assumption, their gradual counterparts studied in Section 4.2 do, due to the fact
that F−1

π (α) = π1−α (therefore reversing the order of α-cuts) and F−1
π (α) = πα .

4.4. Expectation-based criteria
So far, we have been mainly interested in qualitative comparisons, mainly checking

whether or not some values were higher than others (using the indicator functions f≥
in various ways, or comparing cumulative distributions through function f∀c). One ad-
vantage of such formulations is that they only require values x and y to be comparable,
i.e. they can be extended directly without much difficulty to arbitrary fuzzy sets defined
on totally (pre-)ordered spaces. However, they are unable to measure ”how far” fuzzy
sets are from each other.

Another classical way to compare two (precise) random variables X and Y is to
compare their expected values, stating that X is higher than (preferred to) Y if E(X)≥
E(Y ). Expectations in our case can be modelled by choosing the function fx : R2→ R
defined as fx(x,y) = x, ∀(x,y) ∈ R2. We can then consider the following orderings:

• Weak ordering: X ≥ fx,dep,wo Y if E(X)≥ E(Y ),

• Maximin: X ≥ fx,dep,Mm Y if E(X)≥ E(Y ),

• Maximax: X ≥ fx,dep,MM Y if E(X)≥ E(Y ),

• Hurwicz: X ≥ fx,dep,H(γ) Y if γE(X)+(1− γ)E(X)≥ γE(Y )+(1− γ)E(Y ),

• Interval dominance: X ≥ fx,dep,ID Y if E(X)≥ E(Y ),

• Lattice order: X ≥ fx,dep,Lo Y if E(X)≥ E(Y ) and E(X)≥ E(Y ),

that are valid whatever the dependence assumption dep, since fx is x-measurable (see
Lemma 3). Again, implications (9) directly extend to these relations.

When dealing with imprecise probabilities (in our case, modelled by possibility dis-
tributions), the maximality criterion [41, 39] consists in computing the lower expecta-
tion E(X−Y ), and to say that X is higher than (preferred to) Y if E(X−Y )≥ 0. Usually,
we have that E(X−Y )> E(X)+E(−Y ) = E(X)+E(Y ), hence X ≥ fx,dep,ID Y implies
E(X−Y )≥ 0, and not the other way around. However Corollary 4 indicates that in our
framework they coincide. This result completes another one provided in [16], where
the author states that both criteria do coincide under some independence assumptions
including the so-called epistemic irrelevance, epistemic independence, strong indepen-
dence or Kuznetsov independence. We do not assume any particular (in)dependence
condition, but on the other side, we implicitly assume that the joint lower probabil-
ity is an ∞−monotone capacity (the lower probability, in the sense of Dempster [18]
associated to the random set ΓXY ). We can derive a similar result for the upper expec-
tation E(X−Y ) from Corollary 4, showing that the difference E(X)−E(Y ) is positive
when and only when X ≥ fx,dep,wo Y . Again, we can see that weak-ordering is really
permissive, and will usually lead to a lot of indifference statements.
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When modelling uncertainty on X and Y by fuzzy intervals, lower/upper expecta-
tions take very the simple forms of Equations (7), and E(X),E(X) are simply the mean
values of FπX and FπX

, respectively. Connecting this fact with the orderings proposed
in Section 4.3, we get that

X ≥ f∀c,dep,k Y ⇒ X ≥ fx,dep,k Y

for any k ∈ {wo,Mm,MM,H(γ), ID,Lo}, meaning that when comparing fuzzy inter-
vals, statistical comparisons are actually stronger requirements than expectation based
comparisons. Additionally, this result indicates a strong consistency with the precise
setting, in which X stochastically dominating Y implies that E(u(X)) ≥ E(u(Y )) for
any increasing function u [28]. Indeed, if X ≥ f∀c,dep,k Y , then u(X) ≥ fx,dep,k u(Y )
for any k ∈ {wo,Mm,MM,H(γ), ID,Lo}, since the upper and lower expectations of
u(X),u(Y ) would be computed using the cumulative distributions FπX , FπX

, FπY and
FπY

.

5. Reinterpreting some classical fuzzy ranking methods

Now that we have extensively studied the various ways in which stochastic or-
derings can be extended to fuzzy sets, we can look at the connections between such
orderings and classical rankings of the fuzzy literature. We show that some of those
fuzzy ranking indices actually coincide with some of the proposals made in the pre-
vious sections. However, it should be noted that most fuzzy ranking methods seek to
provide complete (pre-)order between fuzzy intervals, without admitting incompara-
bility. Usually, this is done either by summarizing the fuzzy interval to a single number
(e.g., its expected value, its centroid), and the ranking is then obtained by comparing
these numbers, or by thresholding some gradual measure (X ,Y ) ∈ [0,1] (X is then said
higher than Y if (X ,Y )≥ τ , where τ is some threshold, usually above 0.5).

Note that our purpose is not to perform an extensive review of existing fuzzy rank-
ings, as such reviews are already available [5, 42, 43]. We also decided to include only
those fuzzy rankings that had a clear link with the imprecise probabilistic approach:
other fuzzy ranking methods could perhaps be given a complex imprecise probabilistic
interpretation, however this goes beyond the scope of this paper. For instance, the ap-
proach of Yager et al. [45] that consists in using statistical preference induced by the
independent probability distributions pX (x) = πX (x)/∑x′ πX (x′) and pY (y) = πY (y)/∑y′ πY (y′),
yet we may have that pX 6∈P(ΠX ) and pY 6∈P(ΠY ), hence its links with the current
view are unclear (if any). A similar argument can be advanced for methods that are
based on areas under distributions πY ,πX and their combinations, such as the one of
Nakamura [33].

5.1. A controversial case revisited

Figure 4 shows a controversial case of three fuzzy intervals, initially proposed
in [5]. All authors agree that X3 should not be ranked higher than X2, who should
not be ranked higher than X1. However, some authors have argued that X1 > X2 > X3
was the most natural ranking [44, 8], while others have argued that X1, X2 and X3
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Figure 4: A controversial case

should be considered indistinguishable [3, 1], that is the ranking X1 ∼ X2 ∼ X3 should
be retained.

It is worth noticing that both rankings are coherent with particular orderings studied
in the previous sections. When considering monotonic dependence, orderings extend-
ing lattice ordering, Hurwicz criterion with γ 6= 0 or maximin approaches will result
in X1 > X2 > X3, while orderings extending maximax or weak ordering will result
in X1 ∼ X2 ∼ X3. Under anti-monotonic dependence and random set independence,
(Xi,X j)dep,ord will take different values in [0,1] (we leave the exact computations to the
reader), with the value being in {0,1} under monotonic dependence (dep = M).

The stronger requirements extending interval dominance will result in all fuzzy sets
X1,X2,X3 being incomparable.

5.2. Dubois and Prade ranking

Given two possibility distributions πX ,πY , Dubois and Prade [22] propose four
different numbers to characterize whether one distribution is higher than the other.
These numbers are defined as follows:

PD(X ,Y ) = sup
x≥y

inf(πX (x),πY (y)) , (41)

NSD(X ,Y ) = 1− sup
x≤y

inf(πX (x),πY (y)) , (42)

PSD(X ,Y ) = sup
x

inf
x≤y

inf(πX (x),1−πY (y)) , (43)

ND(X ,Y ) = inf
x

sup
x≥y

inf(1−πX (x),πY (y)) . (44)

Equation (41) is equivalent to the proposition made by Baas and Kwakernaak [3]
in another paper. These equations can be rewritten as follows:

PD(X ,Y ) = sup{α|πX ,α ≥ πY,α}, (45)

NSD(X ,Y ) = 1− sup{α|πX ,α ≤ πY,α}= 1−PD(Y,X), (46)

PSD(X ,Y ) = sup{α|πX ,α ≥ πY,1−α}, (47)
ND(X ,Y ) = sup{α|πX ,1−α ≥ πY,α}. (48)

The first relation is due to the fact that PD(X ,Y ) = 1 if πX ,1 ≥ πY,1, and to the fact that
πα , πα are respectively increasing and decreasing functions of α , hence if πX ,1 < πY,1,
the value of Equation (41) is reached at the intersection of the two functions πX ,α and
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πY,α . Similarly, PSD(X ,Y ) = 1 if πX ,1 ≥ πY,0, and if πX ,1 < πY,0, then Equation (47)
can be deduced from the fact that πα and π1−α are respectively decreasing and increas-
ing functions of α . Equations for NSD and ND can be obtained by duality.

There are some relation between Dubois and Prade ranking and our own relations:

Proposition 6. Given two distributions πX ,πY , the following equalities hold

• PD(X ,Y ) = (X ,Y )M,≥wo ,

• NSD(X ,Y ) = (X ,Y )M,≥ID ,

• PSD(X ,Y ) = (X ,Y )AM,≥MM ,

• ND(X ,Y ) = (X ,Y )AM,≥Mm .

Proof. The first equality is immediate once we notice that:

• if πX ,α ≥ πY,α for some α , then πX ,β ≥ πY,β for any β ≤ α and

• if πX ,α ≤ πY,α for some α , then πX ,β ≤ πY,β for any β ≥ α .

Meaning that (X ,Y )M,≥wo = sup{α|πX ,α ≥ πY,α}. The equality between NSD(X ,Y )
and (X ,Y )M,≥ID is obtained through duality of lower and upper probabilities, that is

NSD(X ,Y ) = 1−PD(Y,X) = 1− (Y,X)M,≥wo = 1−PM(Y ≥ X)

= PM(X ≥ Y ) = (X ,Y )M,≥ID .

The other equalities can be obtained by using reasoning similar to that of the first
equality and considering an anti-monotonic dependence.

These results shed a new light over the rankings proposed by Dubois and Prade: if
PD(X ,Y ) and NSD(X ,Y ) correspond to upper and lower probabilities of the event X ≥
Y under the dependence assumption used in Zadeh’s extension principle, PSD(X ,Y )
and ND(X ,Y ) correspond to more unusual assumptions, extending the maximin and
maximax approaches under an assumption of anti-monotonic dependence (this is due
to the presence of 1−πY in Equations (43)-(44)). As argued by Dubois and Prade, when
fuzzy sets reduce to crisp sets, we do find the four classical ways of ordering intervals.
Yet from an imprecise probabilistic point of view, both PSD(X ,Y ) and ND(X ,Y ) look
less natural to use.

5.3. Chanas et al. proposals

Chanas et al. [6, 7] propose different comparison measures inspired by random
set approaches. Basically, they propose eight probabilistic measures that consider ei-
ther one random variable A∼U[0,1] uniformly distributed on [0,1] or two independent
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random variables A,B∼U[0,1]. The measures are defined as follows

CZ1(X ,Y ) = P(πX ,A ≥ πY,A) = (X ,Y )M,≥ID (49)

CZ2(X ,Y ) = P(πX ,A ≥ πY,B) = (X ,Y )I,≥ID (50)

CZ3(X ,Y ) = P(πX ,A ≥ πY,A) = (X ,Y )M,≥Mm (51)

CZ4(X ,Y ) = P(πX ,A ≥ πY,B) = (X ,Y )I,≥Mm (52)

CZ5(X ,Y ) = P(πX ,A ≥ πY,A) = (X ,Y )M,≥MM (53)
CZ6(X ,Y ) = P(πX ,A ≥ πY,B) = (X ,Y )I,≥MM (54)
CZ7(X ,Y ) = P(πX ,A ≥ πY,A) = (X ,Y )M,≥wo (55)

CZ8(X ,Y ) = P(πX ,A ≥ πY,B) = (X ,Y )I,≥wo (56)

We have added the equalities with the relations explored in this paper, these in-
equalities simply resulting from the application of Equation 35. One thing we can
notice is that in Sections 5.2 and 5.3, there is no fuzzy ranking score or extension that
corresponds to relations extending the lattice order on intervals (while there are some
extending the interval dominance order). One possible explanation is that lattice order
relies on comparing pair of bounds, while the other approaches all focus on specific
bounds of the α-cuts.

5.4. Campos and González approach

In their paper [15], Campos and González propose to summarize a fuzzy set πX by
the value Eβ (πX )

Eβ (πX ) =
∫ 1

0

βπX ,α +(1−β )πX ,α

2
dα (57)

Clearly, we have

Eβ (πX ) =
∫ 1

0

βπX ,α

2
dα +

∫ 1

0

(1−β )πX ,α

2
dα =

βE(X)+(1−β )E(X)

2

which comes down to use Hurwicz criterion on the expectation values with pessimism
value β . Note that this proposal has also been made by Liou and Wang [30], and that
the special case of β = 1/2 has been proposed by many authors [44, 25, 46, 2] with
different justifications.

To our knowledge, there are no existing proposal in the fuzzy literature correspond-
ing to the extension of interval dominance, weak ordering and lattice ordering of lower
and upper expectations.

Another popular way to summarize fuzzy intervals into numbers that can then be
compared is the use of a so-called centroid, however this centroid (usually defined
as the number C =

∫
xπX (x)dx/

∫
πX (x)dx) has not a clear relationship with an imprecise

probabilistic view of fuzzy sets. Indeed, the (vertex) centroid of the set of probabilities
P(ΠX ) is the so-called pignistic probability distribution [37], whose expected value is
E(X)+E(X)/2 (or, in other words, Equation (57) with β = 1/2).
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6. Illustrative examples

In this section, we provide the results of our ranking notions on examples similar
to the ones used by Bortolan and Degani [5], in addition to the one already discussed
in Section 5.1. In contrast with their study, we will not make a full analysis nor use all
of their examples, as our purpose is illustrative. Also, we will only consider situations
where fuzzy intervals are normalized (as said in Section 2) and where the cuts π0 of
the various fuzzy intervals are not disjoint (we have already discussed the fact that only
extensions involving expected values can integrate how “far” fuzzy intervals are from
each others).

Table 1 displays the details of the different proposed rankings for typical situations
between two fuzzy sets. For statistical preferences, we focus on the monotone case
in order to avoid displaying many pages of results. Clearly, all methods agree that in
situations (a) and (c), X is higher than Y , with the dominance in situation (c) being
stronger (as show ≥ fx,dep,ID and ≥ f∀c,dep,ID).

The situation between (b) and (d) is more ambiguous, yet we can pinpoint an im-
portant difference: while (b) remains somehow ambiguous if we assume a pessimistic
or an optimistic attitude, this is not the case of (d). This is patent if we look at min-
imax or maximax attitudes for all notions except for statistical preferences. It should
however be noted that this difference between (b) and (d) appears differently in the var-
ious notions: while stochastic dominance declares X and Y incomparable for (b), the
other notions (alternative statistical preference and expectation-based) consider them
indifferent.

From all the notions, statistical preference appears to be the more conclusive, how-
ever this decisiveness also depends on the dependence. For instance, for situation (b)
we do have [PAM,PAM](X > Y ) = [0,1] and [PAM,PAM](Y > X) = [0,1], concluding
indifference for statistical preference in this case.

7. Conclusions

In this paper, we have studied the problem of fuzzy ranking from an imprecise
probabilistic perspective (something that, to our knowledge, has not been done before
in such an extensive way). This has allowed us to introduce many possible rankings
extending statistical and interval comparison tools. As such tools usually come with
clear assumptions and interpretations, so do their extensions. Finally, we have related
those rankings to classical fuzzy literature, thereby shedding new lights on old ranking
techniques.

In our opinion, one of the main assets of interpreting fuzzy sets as imprecise prob-
abilities is that, in this view, rankings with incomparability statements are natural op-
tions. Although such a property may not always be desirable, we think it may be useful
to perform some tasks (i.e., deriving pareto front of uncertain classifiers, making cau-
tious inferences and holding up the choice of a particular complete ranking, . . . ).

This first study defines rankings for fuzzy intervals describing uncertain quantities,
and relates them to rankings proposed in the fuzzy literature when such relations are
simple to establish. This fits the goal of the paper, which is to build some first bridge
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(a)

0

1

1 2 3 4

πXπY

(b)

0

1

1 2 3 4

πXπY

(c)

0

1

1 2 3 4

πXπY

(d)

0

1

1 2 3 4

πX

πY

Statistical preference (Section 4.1)
[PM ,PM ](X > Y ) [0.5,1] [0.25,1] [0.75,1] [0,1]
[PM ,PM ](Y > X) [0,0.5] [0,0.75] [0,0.25] [0,1]
≥ f>,M,wo X ≥ Y X = Y X > Y X = Y
≥ f>,M,Mm X > Y X > Y X > Y X = Y
≥ f>,M,MM X > Y X > Y X > Y X = Y
≥ f>,M,H(0.25) X > Y X > Y X > Y X = Y
≥ f>,M,lo X > Y X > Y X > Y X = Y
≥ f>,M,ID X ≥ Y X >< Y X > Y X >< Y

Alternative statistical preference (Section 4.2)
(X ,Y ),(Y,X)M,wo 1,0.5 1,0.75 1,0.25 1,1
(X ,Y ),(Y,X)M,Mm 1,0 0.5,0.5 1,0 1,0
(X ,Y ),(Y,X)M,MM 1,0 0.5,0.5 1,0 0,1

(X ,Y ),(Y,X)M,H(0.25) 1,0 0.5,0.5 1,0 1,0
(X ,Y ),(Y,X)M,lo 1,0 0.5,0.5 1,0 0,0
(X ,Y ),(Y,X)M,ID 0.5,0 0.25,0 0.75,0 0,0

Stochastic dominance (Section 4.3)
≥ f∀c,dep,wo X = Y X = Y X > Y X = Y
≥ f∀c,dep,Mm X > Y X >< Y X > Y X > Y
≥ f∀c,dep,MM X > Y X >< Y X > Y X < Y
≥ f∀c,dep,H(0.25) X > Y X >< Y X > Y X > Y
≥ f∀c,dep,lo X > Y X >< Y X > Y X >< Y
≥ f∀c,dep,ID X ≥ Y X >< Y X > Y X >< Y

Expectation-based criteria (Section 4.3)
[E(X),E(X)] [2.5,4] [2,3] [3,4] [2.25,2.75]
[E(Y ),E(Y )] [1,2.5] [2,3] [1,2] [1.75,3.25]
≥ fx,dep,wo X ≥ Y X = Y X > Y X = Y
≥ fx,dep,Mm X > Y X = Y X > Y X > Y
≥ fx,dep,MM X > Y X = Y X > Y X < Y
≥ fx,dep,H(0.25) X > Y X = Y X > Y X > Y
≥ fx,dep,lo X > Y X = Y X > Y X >< Y
≥ fx,dep,ID X ≥ Y X >< Y X > Y X >< Y

Table 1: Behaviour of ranking for different situations
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between fuzzy rankings and imprecise probabilities. This also means that there are
many ways in which we want to extend this bridge:

• by fully cataloguing the different fuzzy rankings and their interrelations, to then
study which of them can be re-interpreted in an imprecise probabilistic setting
(possibly using some new ways to rank imprecise probabilistic models);

• by studying various ways to transform the incomplete rankings (extending in-
terval dominance and lattice ordering) into complete rankings, and how they
connect to fuzzy rankings not considered in this study;

• by applying the ideas presented in this paper to applications involving compar-
isons of fuzzy sets (e.g., selection of solutions in evolutionary algorithms, con-
struction of Pareto fronts, . . . ).
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