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Abstract—In this paper we tackle the issue of clustering
trajectories of geolocalized observations. Using clustering technics
based on the choice of a distance between the observations, we
first provide a comprehensive review of the different distances
used in the literature to compare trajectories. Then based on
the limitations of these methods, we introduce a new distance :
Symmetrized Segment-Path Distance (SSPD). We finally compare
this new distance to the others according to their corresponding
clustering results obtained using both hierarchical clustering and
affinity propagation methods.

Index Terms—Trajectory clustering

INTRODUCTION

ATRAJECTORY is a set of positional information for a
moving object, ordered by time. This kind of multidi-

mensional data is prevalent in many fields and applications,
for example, to understand migration patterns by studying tra-
jectories of animals, predict meteorology with hurricane data,
improve athletes performance, etc. Our study is concentrated
on vehicle trajectories within a road network. The growing
use of GPS receivers and WIFI embedded mobile devices
equipped with hardware for storing data enables us to collect
a very large amount of data, that has to be analyzed in order
to extract any relevant information. The complexity of the
extracted data makes it a difficult challenge. In this context,
the goal of this work is to construct, in a data driven way,
a collection of trajectories that will model the behaviors of
car drivers. These models will be learned from a data set of
time-stamped locations of cars. We focus in this work at the
clustering of trajectories of vehicles. The natural application
of this work is the forecast of the destination of drivers
according to the shape of their trajectories. To achieve this
goal, the first step is to cluster trajectories having similar paths.
This clustering is based on comparison between trajectory
objects. This requires a new definition of distance between
these objects which are studied.

A large amount of work has been done to give new
definitions of trajectory distance. Tiakas et al.(2009[1]) , Rossi
et al. (2012[2]), Han et al.(2012[3]) or Hwang et al.(2005[4])
propose road network based distances. They assume that the
trajectories studied are perfectly mapped on the road network.
However, this task is strongly dependent on the precision of
the GPS device. When the time interval between two GPS
locations is significant, several paths on the graph are possible
between locations, especially when the network is dense.

Moreover it requires the knowledge of the road network.
Here, we focus on completely data driven methods without
any a priori information. Several methods have been used
to cluster data set of trajectories. Clustering methods using
the Euclidean distance lead to bad results mainly due to the
fact that trajectories have different lengths. Hence, several
methods based on warping distance have been defined , Berndt
(1994[5]), Vlachos et al. (2002[6]), Chen et al. (2004[7]), and
Chen et al. (2005 [8]). These methods reorganize the time
index of trajectories to obtain a perfect match between them.
Another point of view is to focus on the geometry of the
trajectories, in particular on their shape. Shape distances like
Hausdorff and Fréchet distances can be adapted to trajectories
but fail to compare them as a whole. Lin et al. (2005[9])
proposed a method based exclusively on the shape of the
trajectory but at high computational cost.

In section II of this paper several distances are studied and
compared. A new distance will be presented in section III: the
Symetrized Segment-Path Distance (SSPD). SSPD is a shape-
based distance that does not take into account the time index
of the trajectory. It compares trajectories as a whole, and is
less affected by incidental variation between trajectories. It
also takes into account the total length, the variation and the
physical distance between two trajectories. To evaluate our
distances, and compare them to others, clustering results of
some trajectory sets are analyzed in section V.

I. MODEL FOR TRAJECTORY CLUSTERING

A. Trajectory

A continuous trajectory is a function which gives the
location of a moving object as a continuous function of time.
In our case we will only consider discrete trajectories defined
here after.

Definition 1. A trajectory T is defined as
T : ((p1, t1), . . . , (pn, tn)),
where pk ∈ R2, tk ∈ R ∀k ∈ [1 . . . n], ∀n ∈ N and n is the
length of the trajectory T .

The exact locations between time ti and ti+1 are unknown.
When these locations are required, a piece wise linear repre-
sentation is used between each successive location pi and pi+1

resulting in a line segment si between these two points. This
new representation is called a piece wise linear trajectory. In
this representation, no assumption is made about time indexing
of segment si.
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TABLE I: Notation

T The set of trajectories
T i The ith trajectory of set T
T i
pl The piece wise linear representation of T i

ni Length of trajectory T i

ni
pl Length of the T i

pl

pik The kth location of T i

pi The set of continuous points that compose T i
pl

sik The line segment between pij and pik+1

tik The time index of location pik
‖pkpl‖2 The Euclidean distance between pk and pl

Definition 2. A piece wise linear trajectory is defined as Tpl
: ((s1), . . . , (sn−1)) , where sk ∈ R2 and npl is the length of
the trajectory.

The length of the trajectory npl is the sum of the lengths of
all segments that compose it : npl =

∑
i∈[1...n−1] ‖pipi+1‖2.

The notation used in this paper are summarized in Table I.

B. Distance

There are many ways to define how close two objects are far
one from another. Beyond the notion of mathematical distance,
many functions can be used to qualify this dissimilarity. The
terminology used in literature to define them is not completely
standardized. Therefore we will use the definition established
in Deza et al. (2009[10]) as a reference.

Definition 3. Let T be a set of trajectories. A function d :
T ×T 7→ R is called a dissimilarity on T if for all T 1, T 2 ∈
T :

• d(T 1, T 2) ≥ 0
• d(T 1, T 2) = d(T 2, T 1)
• d(T 1, T 1) = 0

If all of these conditions are satisfied and d(T 1, T 2) =
0 =⇒ T 1 = T 2 d is considered to be a symmetric. If
the triangle inequality is also satisfied, d is called a metric.
These notations are summarized in Table II.

X indicates the required properties for each distances, while
∗ indicates properties that are automatically satisfied (by the
presence of the other required properties for the metric).

C. Desired properties of clustering and distances

Our aim is to be able to predict the most probable next
location of a moving object given few location data points.
This prediction should be based on groups of past trajectories
that have been gathered together sharing a similar behavior.
Hence we aim at finding a clustering method that should
regroup trajectories
• with similar shape and length
• which are physically close to each other
• which are similar as a whole with more than just similar

sub-parts
• all of these properties should be considered without

regard to their time indexing
Moreover we want to design a very general procedure able

to treat all trajectories data, without a prior knowledge on

the particular geographical location where they are collected.
To obtain such clustering, the issue of this work is to find a
distance that respects such properties and succeed in extracting
these features. Actually, the desired distance should have the
following properties,
• it compares distances as a whole
• the compared trajectories can be of different lengths,
• the time indexing can be very different from one trajec-

tory to another
• the trajectories can have similar shapes but can be phys-

ically far from each other and vice versa
• extra parameters should not be required.

II. DISTANCE ON TRAJECTORIES: A REVIEW

Three main kind of distances have been introduced in
the literature. The first uses the underlying road network,
Network-Constrained Distance. Theses distances will not be
detailed in this paper. They assume that the road network
is known and that trajectory data are perfectly map on it.
Distances that do not use the underlying road network can also
be classified into two categories: those who only compare the
shape of the trajectory, Shape-Based Distance and those who
take into account the temporal dimension; Warping based
Distance.

Performance of clustering algorithms using these distances
will be compared section I, as well as their computation cost
and their metric properties.

A. Warping based Distance

Euclidean distance, Manhattan distance or other Lp-norm
distances are the most obvious and the most often used
distances. They compare discrete objects of the same length.
They can be used to look for common sub-trajectories of
a given length but they can not be used to compare entire
trajectories. Moreover, these distances will compare locations
with common indexes one by one. At a given index i, location
p1i of trajectory T 1 will be compared only to location p2i
of trajectory T 2. However, these locations can be strongly
different according to the speeds of the trajectories. Hence,
it makes no sense to compare them without taking this into
account. This problem is also common in time series analysis
and not only in trajectory analysis.

Warping distance aims to solve this problem. For this pur-
pose, they enable to match locations from different trajectories
with different indexes. Then, they find an optimal alignment
between two trajectories, according to a given cost δ between
matched location. Several warping based distance have been
defined. DTW (Berndt et al., (1994 [5])) and later LCSS
(Vlachos et al., 2002[6]), EDR (Chen et al., 2005[8]) and
ERP (Chen et al., 2005[7]). These distances are defined the
same way, but they use different cost functions.

In order to define a warping distance, two compared time
series trajectories, T i, T j , are arranged to form a ni×nj grid
G. The grid cell, gk,l, corresponds to the pair (pik,pjl ).

Definition 4. A warping path, W = w1, . . . , w|W |, crosses the
grid G such that
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TABLE II: Metric Definition

Property
Metric Name

dis
sim

ila
rit

y

sym
metr

ic

metr
ic

Non-Negativity D(T 1, T 2) ≥ 0 X X ∗
Symmetry D(T 1, T 2) = D(T 2, T 1) X X X
Reflexivity D(T 1, T 1) = 0 X ∗ ∗
Triangle Inequality D(T 1, T 3) ≤ D(T 1, T 2) +D(T 2, T 3) X
Identity of indiscernible D(T 1, T 2) = 0 =⇒ T 1 = T 2 X X

• w1 = g1,1,
• w|W | = gni,nj ,
• if wk = gki,kj , then wk+1 is equal to gki+1,kj , gki,kj+1

or gki+1,kj+1.

The order of the locations in a trajectory are maintained
but they can be repeated, deleted or replaced by an arbitrary
value, a gap, along the warping path. The distance is then
computed by minimizing or maximizing the sum of a given
cost δ between all pair of locations that make a warping path
W , among all existing warping path.

Definition 5. A warping distance is defined as

D(T i, T j) = minW

[∑|W |
k=1 δ(wk)

]
,

or = maxW

[∑|W |
k=1 δ(wk)

]
,

(1)

where δ(wk) = δ(gki,kj ) = δ(piki , p
j
kj
), is the cost function

and W is a warping path.

They are generally computed by dynamic programming.
Table III displays the cost functions as well as the dynamic
formulation of these distances.

On contrary to the three other distances, LCSS is a
similarity. The exact similarity used in Vlachos et al., 2002[6]
is S(T i, T j) = LCSS(T i,T j)

min{ni,nj} , which is between 0 and 1. We
will then use the distance

DLCSS(T i, T j) = 1− S(T i, T j),

to compare distances to each other.
The metric types of these distance functions, and

computational cost for the four methods are summarized in
table IV.

1) Comparisons:

• All of these distances handle local time shifting.
• The cost function δ uses the Euclidean distance. Some

of this distances have been defined using a L1-norm, but
Euclidean distance is more adapted for real values.

• LCSS and EDR’s cost function count the number of
occurence where the Euclidean distance between matched
location does not match a spatial threshold, εd. The
former counts similar locations, the latter the difference.
This threshold makes the distance robust to noise. How-
ever, it has a strong influence on the final results. If the
threshold is large, all the distances will be considered
similar and if low, only those having very close locations
will be considered similar.

• In comparison, ERP and DTW put a weight to these
differences by computing the real distance between the
locations. In this sense they can be viewed as more
accurate.

• ERP is the only distance which is a metric regardless
of the Lp norm used, yet it works better for normalized
sequences, especially for defining the gap value g. It does
not apply for vehicle trajectories.

• In addition, these distances may include a time threshold,
εt. Thus, two locations will not be compared if the differ-
ence between their time indexing is too large. However, it
is very hard to estimate the value of this threshold when
comparing trajectories due to the presence of noise.

2) Pros and Cons: The main advantage of these distances is
that they enable comparison of sequences of different lengths.

The two main limitations of warping based distance are the
following

• Warping methods are based on one-to-one comparison
between sequences. Hence, it often requires the choice
of a particular series that will be used as a reference,
onto which all other sequences will be matched. The
indexed of two sequences that are compared should be
well balanced in order to capture best the variability.
For instance to detect if there were accelerations and
decelerations during the measurement of the time series.
Hence the choice of the reference sequence is very
important.

• The performance of usual methods based on warping
techniques is hampered by the large amount of noise
inherent to road traffic data, which is not the case when
studying time series.

Instead of correcting the time index, the solution is to use
distances that have the effect of time removed.

B. Shape-Based Distance

These distances try to catch geometric features of the
trajectories, in particular, their shape. Among Shape-Based
Distances, the Hausdorff distance (Hausdorff, 1914 [11]),
and the Fréchet distance (Fréchet, 1906[12]) are likely the
most well known.

1) Hausdorff: The Hausdorff distance is a metric. It mea-
sures the distance between two sets of metric spaces. Infor-
mally, for every point of set 1, the infimum distance from this
point to any other point in set 2 is computed. The supremum
of all these distances defines the Hausdorff distance.
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TABLE III: Re-Indexing based distance definition
Cost function Distance

δNAME(p1, p2) = NAME(T i, T j) =

D
T

W
‖p1p2‖2 =



0 if ni = nj = 0
∞ if ni = 0 or nj = 0

δDTW (pi1, p
j
1)+

min

{ DTW (rest(T i), rest(T j)),
DTW (rest(T i), T j)),
DTW (T i, rest(T j)

}
otherwise

N
A

M
E L

C
SS

 1 if ‖p1p2‖2 < εd
0 if p1 or p2 is a gap
0 otherwise

=


0 if ni = 0 or nj = 0

LCSS(rest(T i), rest(T j)) + δLCSS(p
i
1, p

j
1) if δLCSS(p

i
1, p

j
1) = 1

max

{
LCSS(rest(T i), T j)) + δLCSS(p

i
1, gap),

LCSS(T i, rest(T j)) + δLCSS(gap, p
j
1)

}
otherwise

E
D

R

 0 if ‖p1p2‖2 < εd
1 if p1 or p2 is a gap
1 otherwise

=



ni if nj = 0
nj if ni = 0

EDR(rest(T i), rest(T j)) if δEDR(pi1, p
j
1) = 0

min

{ EDR(rest(T i), rest(T j)) + δEDR(pi1, p
j
1),

EDR(rest(T i), T j)) + δEDR(pi1, gap),

EDR(T i, rest(T j) + δEDR(gap, pj1)

}
otherwise

E
R

P

 ‖p1p2‖2 if p1, p2 are not gaps
‖p1g‖2 if p2 is a gap
‖gp2‖2 if p1 is a gap

=



∑ni

k=1 ‖pikg‖2 if nj = 0∑nj

l=1 ‖p
j
l g‖2 if ni = 0

min

{ ERP (rest(T i), rest(T j)) + δERP (pi1, p
j
1),

ERP (rest(T i), T j)) + δERP (pi1, gap),

ERP (T i, rest(T j) + δERP (gap, pj1)

}
otherwise

TABLE IV: Re-Indexing based distance properties

Name Metric Types Computation
Cost

DTW symmetric O(n2)
LCSS distance O(n2)
EDR symmetric O(n2)
ERP metric O(n2)

Definition 6. The Hausdorff distance between two sets of
metric spaces is defined as

Haus(X,Y ) = max{sup
x∈X

inf
y∈Y
‖xy‖2, sup

y∈Y
inf
x∈X
‖xy‖2}.

This distance is complicated and resource intensive to
calculate when applied to most existing sets. But in the case of
polygonal curves like trajectories, some simplification can be
made due to the monotonic properties of a segment. Distance
from a point p to a segment s is defined as follows.

Definition 7. Point− to− Segment distance.

Dps(p
1
i1 , s

2
i2) =

{
‖p1i1p

1proj
i1

‖2 if p1proji1
∈ s2i2 ,

min(‖p1i1p
2
i2‖2, ‖p

1
i1p

2
i2+1‖2) otherwise.

Where p1proji1
is the orthogonal projection of p1i1 on the

segment s2i2 .

Hence, the Hausdorff distance between two line segments
is

DHaussdorf (s
1
i1
, s2i2) = max{ supp∈s1i1 Dps(p, s

2
i2
),

supp∈s2i2
Dps(p, s

1
i1
)}

= max{ Dps(p
1
i1
, s2i2), Dps(p

1
i1+1, s

2
i2
),

Dps(p
2
i2
, s1i1), Dps(p

2
i2+1, s

1
i1
)}.

Indeed, a segment is monotonic. As seen in Fig. 1, the
supremum of the Point− to− Segments distance from any
points of a segment s1i1 to a segment s2i2 occurs at one of the
end points of the segment s1i1 . The Hausdorff distance between
two trajectories can then be computed with the following
formula.

Fig. 1: Supremum of Point − to − Segment distance from
point of segment s11 to segment s21

Definition 8. Hausdorff distance between two discrete trajec-
tories.
DHaussdorf (T

1, T 2) = max
{

max i1∈[1...n1]

j2∈[1...n2−1]

{Dps(p
1
i1, s

2
j2},

maxj1∈[1...n1−1]

i2∈[1...n2]

{Dps(p
2
i2, s

1
j1}

}
.

The Hausdorff distance can then be computed in a O(n2)
computational time.
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2) Frechet and discrete Fréchet : The Frechet distance
measures similarity between curves. It is often known as the
”walking-dog distance”. Imagine a dog and its owner walking
on two separate paths without backtracking from one endpoint
to one other. The Fréchet distance is the minimum length
of leash required to connect a dog and its owner. While the
Hausdorff distance takes distance between arbitrary point, the
Fréchet metric takes the flow of the two curves into account.

Definition 9. The Frechet distance between two curves is
defined as

DFrechet(A,B) = inf
α,β∈X

max
t∈[0,1]

{
‖A
(
α(t), B

(
β(t)

)
‖2
}
.

As well as the Hausdorff distance, the Frechet distance is
a metric. It is also resource intensive. Alt et al. (1995[13])
developed an algorithm measuring the exact Fréchet distance
for polygonal curves based on the free space definition.

Definition 10. A free space Fε(T 1, T 2) between two trajecto-
ries is the set of all pairs of points whose distance is at most
ε.

Fε(T
1, T 2) := {(p1, p2) ∈ (T 1, T 2)}|‖p1, p2‖2 ≤ ε}.

The Fréchet distance between two trajectories T 1 and T 2

is the minimum value of ε for which a curve exists within the
corresponding Fε from (p10, p

2
0) to (p1n1 , p2n2) with the property

of being monotone in both trajectories. Computing the Fréchet
distance means finding this minimum value of ε. By exploiting
the monotonic property of the segments and the definition of
the free space, this task can be accomplished more efficiently.

Indeed, the Frechet distance between segments is equal to
the Hausdorff distance between segments, i.e.

DFrechet(s
1
i1
, s2i2) = max{ Dps(p

1
i1
, s2i2),

Dps(p
1
i1+1, s

2
i2
),

Dps(p
2
i2
, s1i1),

Dps(p
2
i2+1, s

1
i1
)}

= εi1,i2 .

To compute the Frechet distance between trajectories T 1

and T 2 , we only look among the set E of Frechet dis-
tances between all pairs of segments of T 1 and T 2. E =
{εi1,i2 for (i1, i2) ∈ ([1 . . . n1 − 1] × [1 . . . n2 − 1])}. This
simplification enables us to compute the Frechet distance
between trajectories T 1 and T 2 in O(n2log(n2)). We highlight
that this computational cost is higher than all the other distance
studied.

Eiter et al. (1994[14]) describes an approximation of this
distance for polygonal curves called the discrete Fréchet
distance. This distance is close to the definition of the warping
based distance.

Definition 11. The discrete Fréchet distance is defined as

DFrechet−Discr((T
1, T 2) = min

W
{ max
k∈[1...|W |]

‖wk‖2}.

with W , the warping path defined in definition 5. The
discrete Fréchet distance can be computed in O(n2) time.

This distance is bounded as follows.

Theorem 1. For any trajectories T i and T j [14]

DFrechet(T
i, T j) ≤ DFrechet−Discr((T

i, T j) ≤ DFrechet(T
i, T j)+ε

Where, ε = max{ max
k∈[1...ni−1]

{‖pikpik+1‖2}, max
l∈[1...nj−1]

{‖pjl p
j
l+1‖2}}.

3) One Way Distance: Lin et al. 2005[9] defines the One-
Way-Distance, OWD, from a trajectory T i to another trajectory
T j . It is defined as the integral of the distance from points of
T ipl to trajectory T jpl divided by the length of T ipl
Definition 12. The OWD distance is defined as

DOWD(T
i, T j) =

1

nipl

∫
pi∈T i

pl

Dpoint(p
iT j)dpi,

where Dpoint(p, T ) is the distance from the point p to the
trajectory T so that

Dpoint(p, T ) = min
q∈Tpl

‖pq‖2.

The OWD distance is not symmetric, but
DSOWD(T

i, T j) = (DOWD(T
i, T j) + DOWD(T

j , T i))/2
is. This distance is a symmetric because it does not satisfy
the triangle inequality.

Lin et al.[9], have defined two algorithms to compute the
OWD in case of piecewise linear trajectories.
• The first consists in finding the parametrized OWD

function DOWD(s
i
k, T

j) from a segment sik of T ipl to
all segments sj of T jpl and for all segments of T ipl

DOWD(T
i, T j) =

1

nipl

ni−1∑
k=1

DOWD(s
i
k, T

j).‖pikpik+1‖,

with a O(n2log(n)) complexity.
• The second one uses a grid representation of the trajec-

tory. The space is discrete as we see in Fig. 2. Trajectory
are defined as the succession of grids they crossed

Definition 13. A grid representation trajectory is defined
as

Tgrid := (g0, . . . , gngrid
),

where gn are cells of the discrete space.

Fig. 2: Grid representation of a segment

This representation simplifies the computation and re-
duces the complexity to O(nm) where m is the number
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TABLE V: Shape based distance properties

Name Metric Types Computation
Cost

Hausdorff metric O(n2)
Frechet metric O(n2log(n2))

discrete Fréchet symmetric O(n2)
OWD symmetric O(n2log(n))

OWDgrid symmetric O(mn)

of local min points. Local min points of a grid cell g are
the grids with distances to g shorter than those of their
neighbors’ grid cell.

Table V displays the metric types and the computational
cost of these distances.

4) Pros and Cons:
• Frechet and Hausdorff distances are both metrics,

meaning they satisfy triangular inequality. With
clustering algorithms like dbscan or K-medoid this is
a necessary property for the distance used if we want
the clustering algorithm to be efficient. They have been
widely used in many domains where shape comparison
is needed. But they can fail to compare trajectories as
a whole. Indeed both Fréchet and Hausdorff distance
return a maximum distance between two objects at
given points of the two objects. As we can see in
Fig. 3, despite the fact that the trajectories T 1 and
T 2 are well separated at the maximum value of x,
they are clearly more similar to each other than to
T 3. But with Hausdorff calculated distance, there are
no strong differences between DHaussdorf (T

1, T 2),
DHaussdorf (T

1, T 3) and DHaussdorf (T
2, T 3). With

Frechet, DFrechet(T
1, T 2) is even bigger than

DFrechet(T
1, T 3) and DFrechet(T

2, T 3).

Fig. 3: Frechet And Hausdorff Computation between three
trajectories

• The Discrete Fréchet distance requires considerably less
computing time compared to the Frechet distance. But
Discrete Frechet is not a metric. Moreover, due to its
similarity with the warping distance it inherits the same
inconveniences.

• The distance present in Lin et al. (2005[9]) is by far
the one that best meets our requirements. It compares
trajectories as a whole, taking into account their shapes
and their physical distances, the required features for
our distance. However, its complexity makes it com-
putationally slow. The algorithm for grid representation
is faster. Its computational time is O(mn). Yet it does
not take into account the computation time required for

matching the trajectory to the grid. Moreover, the size
of the grid chosen strongly influences the final result
and makes it imprecise. Moreover, the distance gives the
same ”weight” to all points defining the trajectory: points
directly issued from the GPS location, and points which
compose the piece wise linear representation. The greater
the length of the segment s is, the stronger its influences
on the trajectory is. The more separated the endpoints of a
segment s is, the less confident the interpolation between
them is.

In the following section, a new distance will be established
inspired from both the OWD and the Hausdorff distances.

III. A NEW DISTANCE : SYMMETRIZED SEGMENT-PATH
DISTANCE (SSPD)

The shape based distances are by far the distances that
best fit the desired properties defined in section I-C. However
none of them matches it perfectly. Hence, a new distance
that fits these requirements is provided in this section. The
Symmetrized Segment-Path Distance. This distance is a shape
based distance.It takes into account the whole trajectories, and
is less affected by noise.

The distance Dpt from a point p to a trajectory T is the
minimum of distances between this point and all segments s
that compose T . The Segment-Path distance from trajectory
T 1 to trajectory T 2 is the mean of all distances from points
composing T 1 to the trajectory T 2

Definition 14. SPD distance is defined as

DSPD(T
1, T 2) =

1

n1

n1∑
i1=1

Dpt(p
1
i1 , T

2).

where, Dpt(p
1
i1
, T 2) = mini2∈[0,...,n2−1]Dps(p

1
i1
, s2i2).

Proposition 1. If T 1 is a sub trajectory of T 2
pl,

DSPD(T
1, T 2) = 0.

Proof. If T 1 is a sub trajectory of T 2
pl, all points of T 1

lie within segments s2 that compose T 2
pl. By definition

Dps(p
1
i1
, s2i2) = 0 ∀p1i1 ∈ T 1, s2i1 ∈ T 2

pl. It follows that
Dpt(p

1
i−1, T

2) = 0 ∀p1i1 ∈ T 1 and finally DSPD(T
1, T 2) =

0

This distance is not symmetric. If T 1 is a very small sub-
trajectory of T 2, DSPD(T

1, T 2) = 0, DSPD(T
2, T 1) can

be very large. By taking the mean of these distances, the
”Symmetrized Segment-Path Distance”, SSPD, is defined
and is symmetric.

Definition 15. Symmetrized Segment-Path Distance distance

DSSPD(T
1, T 2) =

DSPD(T
1, T 2) +DSPD(T

2, T 1)

2
.

In definitions 14 and 15, distances SPD and SSPD are
computed by taking the mean of the Point-to-Trajectory dis-
tance and the SPD distance. If the maximum is used instead
of the mean, one recovers the Hausdorff function between
two trajectories. Computing only one distance between two
locations makes it very sensitive to noise. Yet our method



7

Fig. 4: Distance from point p21 to trajectory T 1

Fig. 5: SPD Distance from trajectory T 1 to trajectory T 2

computes the mean of such quantities which makes it less
sensitive to this noise. For example, for the trajectories in Fig.
3, the SSPD distance between T 1 and T 2 is lower than the

distance between T 1 and T 3 or T 2 and T 3 (D(T 1, T 2) =
0.58, D(T 1, T 3) = 1.5, D(T 2, T 3) = 2.03).

Proposition 2. SSDP is a symmetric.

Proof. SSDP is a sum of Euclidean distances. By definition
SSDP is greater or equal to 0. By definition 15, SSDP is
symmetric. Finally theorem 1 says that, if DSDP (T

1, T 2) = 0,
T 1 is a sub trajectory of T 2. Therefore if DSSDP (T

1, T 2) =
0, both DSDP (T

1, T 2) = 0 and DSDP (T
1, T 2) = 0, and

T 1 = T 2. SSDP is then a symmetric.

SSDP is quite similar to OWD but its definition resolves
most of the problems of OWD regarding the desired properties
defined in I-C

• The points coming from the interpolation of two observed
locations of a trajectory are less trustworthy that the
real observations. Hence, it is natural to strengthen the
importance of the observed points.

• SSPD distance does not require any additional parameters
such as a threshold or a grid to be computed.

• Its computation cost is O(n2). It only depends on the
number of locations.

IV. CLUSTERING

To evaluate these different distances, we will study different
clustering obtained with the same algorithm but with distances
computed using all previous distances. The different selected
clustering methods and the quality of cluster criterion are
exposed in this section.

A. Methods

The choice of the clustering method is restricted by the
characteristics of the trajectory object. Indeed, trajectories have
different lengths which prevents an easy definition of a mean
trajectory object. The k-means method cannot be used on our
trajectory set, nor spectral clustering methods. k-medoid can
be used but an efficient algorithm, like partitioning around
medoids, or dbscan method, require a valid metrics. Indeed,
these algorithms are based on nearest neighbor and require
the distance used to satisfy the triangular inequality. Most of
the studied distances, SSPD, LCSS, DTW, are not metrics. In
this way, dbscan or partitioning around medoids algorithms
will not be used. Moreover, dbscan depends on two extra
parameters that are hard to estimate in this case.

To perform the clustering of the trajectories, we will focus
on two methodologies : hierarchical cluster analysis (HCA)
and affinity propagation (AP). As a matter of fact, HCA
and AP can use distance/similarity which does not satisfy
the triangle inequality. We point out that the choice of the
clustering method is restricted to the trajectory object we deal
with. Actually, trajectories have different lengths. HCA and AP
are both methods which only require the distance/similarity
matrix, and thus can cluster objects of different lengths. Both
these methods will be used to evaluate our distance.
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B. Quality criterion of cluster result

A clustering algorithm aims at gathering objects into ho-
mogeneous groups that are far one from another. Hence, the
optimal number of cluster is usually selecting by looking at
the between and within variance of the obtained clusters. In
this particular case, they can not be computed here because
of the impossibility to compute the mean of the trajectory
object. Yet, we approximate this mean by considering an
exemplar of a set of a trajectory T of length nT , defined

as T exT = min T i

i∈[0...nT ]

{ nT∑
j=1
j 6=i

D(T i, T j)
}
.

Let C1, . . . , CK be a set of clusters of T . Hence, the between
and within variance are replace by the Between-Like and the
variance-like.

Definition 16. Between-Like and Within-Like

BC =
K∑
k=1

D(T exT , T exCk ),

WC =

K∑
k=1

1

|Ck|
∑
T i∈Ck

D(T exCk , T
i).

The Within-Like criterion shows the spread of elements
belonging to the same cluster while the Between-Like criterion
shows the spread between clusters. As for the variance, for a
given number of clusters, we want the Within-Like criterion
to be as small as possible, and the Between-Like criterion to
be as big as possible.

V. EXPERIMENTAL EVALUATION

In this section, we evaluate and compare 6 distances LCSS,
DTW, Hausdorff, Frechet, Frechet Approximation, and the
SSDP. All this distance have been implemented in both
python and cython and are available in the traj-dist package
(https://github.com/bguillouet/traj-dist).

We also use python for the implementation of the chosen
clustering algorithms, the sklearn library for affinity propaga-
tion and scipy library for hierarchical clustering analysis. For
the latter, weighted, average, ward and single linkage criteria
have been compared.

A. The Data

The data we used are GPS data from 536 San-Francisco
taxis over a 24-day period. These data are public and can be
found in [15]. We extracted a subset of this set as shown Fig.
6.

This subset is a blend of 2802 trajectories. They all have the
same pickup location, the Caltrain station, and all have their
drop-off location in downtown San-Francisco.

B. Computation cost

In Table VI we can observe the computation time needed
to compute the matrix distance for 100 trajectories composed
of between 3 and 36 locations, most having around 10.

Fig. 6: Trajectories subset

TABLE VI: Computation Time in seconds

Distance Python Cython
Fréchet 131.76 36.32

Discrete Fréchet 3.67 2.24
Hausdorff 13.36 0.28

DTW 3.63 0.40
LCSS 2.79 0.60
SSPD 13.20 0.32

Fréchet distance is the distance that takes most computation
time. It is the only method that runs in O(n2log(n2)). With
python, DTW, LCSS and Discrete Fréchet distances are the
fastest methods, while Hausdorff and SSPD are the fastest
with cython because of its ability to declare static variables and
to use the C math library. DTW, LCSS and Discrete Fréchet
each have a backtracking step which is not improved with
the cython implementation. This explains the faster computing
time for Hausdorff and SSPD.

C. Analysis of the number of cluster selection

In Fig. 7 we can observe the evolution of the within- and the
between- like criterion described section IV for the distance
SSPD and for the selected methods AP and CAH. Both the
Between-Like and the Within-Like criterion are displayed
because the sum of these two criteria is not constant as
opposed to the sum of the between and within variance.
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Fig. 7: Evolution of the Within-Like and Between-Like criteria
depending on cluster.

The CAH single method gives poor results. All other meth-
ods have the same evolution of the studied criterion depending
on the cluster size. A plateau can be observed starting from
a clusters size between 15 and 20. Adding more cluster does
not decrease significantly the Within-Like Criterion. Twenty
is a good cluster size for the CAH method.

CAH Ward and AP give the best results. But the latter does
not find any clustering with less than 38 clusters which is a
too large cluster size.

The same conclusions can be made with the six studied
distances.

The CAH Ward method with cluster size of 20 and the AP
method with the preference parameter fixed to the minimum
of the computed matrix distance will be used to compare the
studied distances in more details.

D. Analysis of the distances

We can observe the evolution of the Within-Like and the
Between-Like criteria for the two selected clustering methods
as well as for all studied distances. The CAH WARD results
are display in Fig. 8, and the AP results in Fig. 9.

Fig. 8: Evolution of the Within-Like and Between-Like criteria
depending on cluster size for all distances using the CAH-
WARD method

Fig. 9: Evolution of the Within-Like and Between-Like criteria
depending on the cluster size for all distances using the AP
method

The minimum of cluster size found by the AP method differs
significantly according to the used distance. No more thant 21
clusters are found with the DTW distance, and 35 with SSPD
or 54 with Hausdorff.

The Warping-based distances, LCSS and DTW, give the
poorest results with LCSS being significantly worse than DTW.
The two shape-based distances Frechet and Hausdorff give
better results. The evolution of their criteria is very similar
to each other. The Discrete Fréchet distance is between these
two types of distances. These results confirm that shape-based
distances are better adapted than warping-based distances for
our objectives.

Finally, the new distance SSDP gives the best results. It has
the lowest value of Within-Like Criterion for all cluster sizes
and with both CAH WARD and AP clustering methods.

We can observe the visual results for this distance and both
clustering methods, in Fig. 10, and the isolated clusters, in
Fig. 11,

Fig. 10: Clustering results with SSPD distance

We can observe that trajectories are well classified according
to their path. In Fig. 11, clusters found with CAH WARD
seems to be consistent. The cluster size with AP method is 38.
This is a large number according to the whithin-Like criterion
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computed with CAH. In fact, the Within-Like criterion does
not decrease much between 20 and 35. However, we can see
that clusters found with AP are still consistent.

Fig. 11: The isolated clusters

A cluster computed with the CAH WARD method based on
a matrix distance computed with SSPD gives best result. The
Between-Like and Within-Like criteria show that this method
is good to regroup cluster around exemplar.

CONCLUSION

Clustering of non Euclidean objects deeply relies of the
choice of a proper distance. For trajectories analysis, we
presented different distances focusing on different features of
such objects. To cope with their different weakness we propose
a new distance, the Symmetrized Segment-Path Distance. This
distance is time insensitive, and compares the shape and the
physical distance between two trajectory objects. It enables to
obtain a good clustering using either hierarchical clustering
and affinity propagation methods. Hence the clusters obtained
are homogeneous with regard to shape and seem to properly
capture the behaviours of the drivers. We have thus obtained
a partition of the network based on the uses of the drivers
that can still be interpreted as vehicles trajectories. Using such
features to forecast the final destination of the drivers will be
tackled in a following work.
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