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Optical flow with structure information for epithelial image mosaicing

Sharib Ali1,2, Khuram Faraz1,2, Christian Daul1,2 and Walter Blondel1,2

Abstract— Mosaicing of biological tissue surfaces is chal-
lenging due to the weak image textures. This contribution
presents a mosaicing algorithm based on a robust and accurate
variational optical flow scheme. A Riesz pyramid based multi-
scale approach aims at overcoming the “flattening-out” problem
at coarser levels. Moreover, the structure information present in
images of epithelial surfaces is incorporated into the data-term
to improve the algorithm robustness. The algorithm accuracy
is first assessed with simulated sequences and then used for
mosaicing standard clinical endoscopic data.

I. INTRODUCTION

Video-sequences of biological tissue surfaces are acquired
in vivo in various medical fields where visual inspection
is needed such as dermatology [1], urology [2], [3] and
gastroscopy [4]. However, the small field of view (FOV)
of these video-images does not facilitate lesion diagnosis,
patient follow-up and data archiving. Such limitations can be
overcome by building large FOV mosaics. One crucial step in
image mosaicing is the determination of the correspondence
between homologous pixels of image pairs. This correspon-
dence allows for computing the geometrical transformations
between image pairs required to place all frames in a global
mosaic coordinate system. The method to be used to establish
the correspondence between homologous pixels depend on
the image content and quality.

Images of tissue surfaces acquired with optical sensors are
affected by non-constant contrast due to varying imaging
conditions (e.g. illumination changes between images or
blur) and changing scene characteristics (e.g. high inter- and
intra-patient texture variability). Although “feature based”
approaches can be appropriate when the textures are con-
strasted (for instance the method in [5] used in fluorescence
cystoscopy), they are unable to establish unambiguous corre-
spondences in complicated scenes with weakly pronounced
textures. “Pixel based” methods are more suitable to deal
with large texture variability and non-uniform illumination
conditions. Such methods have been successfully used in
bladder image mosaicing. A mutual information based sim-
ilarity measure was maximized using a stochastic gradient
in [6] and the sum of squared differences was minimized
using a graph-cut based optimization in [2] for robust image
mosaicing of cystoscopic images. However, these methods
are very slow and not convenient for preoperative diagnosis.
Recently for cystoscopic images, the best compromise be-
tween registration robustness, accuracy and speed has been
achieved using optical flow (OF) techniques [3], [7].
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The choice of an OF scheme for a given application
depends on the iconic information and noise present in the
scene and other physical conditions like illumination varia-
tions, surface reflectance etc. Thus, in epithelium images, lo-
cal OF methods give inaccurate flow vectors in image regions
with low texture [8], [7], while global variational approaches
with an l2 data fidelity term and quadratic regularizer [9] lead
to outliers and oversmoothed flow fields. Independently of a
scene type, these problems were addressed by using l1 data-
terms and regularizer allowing for piecewise-smooth flow
field [10], [11]. Classically, brightness constancy assumption
(BCA) is used in the data-term by numerous algorithms. This
is an inappropriate assumption for most of the epithelium
video-images affected by a large variability in illumination,
often due to viewpoint changes. Moreover, when epithelium
is acquired with endoscopes, additional vignetting effect
also affects the images. To allow some small variations in
grey value, a gradient constancy assumption (GCA) was
used in [10] as a complementary information in the data
term. However, this assumption cannot handle large in-plane
rotations which usually occur in epithelial video-sequences
like in cystoscopy or dermatology. It was shown in [3],
[12] that adding structure constancy assumption (SCA) leads
to very robust data term for epithelial image mosaicing.
Although epithelial regions generally do not possess salient
features, some less prominent structures can be exploited
using structure enhancement techniques.

Variational OF methods use coarse-to-fine energy mini-
mization approaches to handle large displacements. However,
using original images in a multi-resolution approach leads
to the “flattening-out” problem in image regions at coarser
levels. This results in poor initialization of the OF field
from coarser to finer levels. Wavelet based methods can
deal with this problem and are directly integrable in a
variational energy formulation due to their inbuilt coarse-
to-fine property. Such approach is used in [13] to overcome
both the flattening-out problem and the response supression
due to point-noise. Wavelet coefficients are used to compute
the OF instead of using directly the grey-level pixel values.
However, the major limitation is that local OF approaches
give inaccurate flow field for low texture images.

In this paper, we present a wavelet based multi-resolution
approach for accurate and robust OF computation in a
variational framework. We make use of structures existing
in epithelial tissue images to model a novel data-term in this
scheme. Section 2 of this contribution details the proposed
algorithm. In section 3, we provide both quantitative and
qualitative results on images of different organ surfaces.
Finally, we conclude the paper in section 4.



II. OF ALGORITHM FOR EPITHELIAL TISSUE IMAGES

A. Variational approach

Let Ii and Ii+1 be the target and the source images of
a video-sequence. The energy to be minimized for OF
estimation consists of a data-term and a smoothness term
[9]. Let x = {x,y} ∈ R2 be the pixel coordinates in space Ω

of images {Ii(x), Ii+1(x+u)} with u = {u,v} : Ω→R2 being
the OF field with vector components u and v along the x−
and y− image axes respectively. Then, the minimization of
energy E(u) can be represented as the weighted sum of a
data term and a regularization term as:

E(u) = Edata(u)+λEreg(u), (1)

where Edata is the data-term established between images Ii(x)
and Ii+1(x+u), Ereg stands for the regularizer making the
estimation of OF field u piecewise smooth and λ is the trade-
off between both terms of E(u).

B. Riesz pyramid and structure estimates

A coarse-to-fine strategy has been used to handle large dis-
placements. However, for accurate OF initialization at coarse
levels, it is important to preserve structure information by
attenuating the flattening-out effects. To do so, a combination
of two approaches preserving image structure at coarse levels
are presented in this section.

1) Wavelet based coarse-to-fine approach: Mallat’s mul-
tiresolution analysis of L2(R2) [14] has been used for de-
composition of images into wavelet sub-spaces. The choice
of appropriate wavelet is crucial for structure preservation
and attenuation of high frequency noise. Less pronounced
edges and structures are usually not preserved by separa-
ble orthogonal wavelet decomposition, mainly because the
corresponding filters are not rotation invariant. However,
Riesz basis filters have an arbitrary steering property with
appropriate linear combination of its set of directional filters
[15]. We use a 2nd−order Riesz transform to decompose the
image pairs (Ii(x), Ii+1(x+u)) into j scales.

For a wavelet subspace Vj, the decomposition of images
{Ii, Ii+1} ∈R2 at scale j can be represented as the projection
of the images onto Vj with the Riesz basis filters RN :

RI j
i (x) = pro j.V j Ii = ∑

k∈Z2

〈RN
ϕ j,k, Ii(x)∗G j〉Rϕ̂ j,k

RI j
i+1(x+u) =pro j.V j Ii+1=∑

k∈Z2

〈RN
ϕ j,k, Ii+1(x+u)∗G j〉Rϕ̂ j,k,

(2)

where G j is the Difference of Gaussians (DoG) kernel at
scale j and shift k. A linear combination of an adaptive
directional image is thus obtained using such filter-banks for
a given scale j. A DoG kernel has been used in order to
minimize the loss of details in the coarser resolutions while
attenuating the high frequency noise. The Riesz basis RNϕ j,k
is given by:

RN
ϕ j,k = 2− jRN

ϕ0,k(2− jx− k), (3)

with shift k = (kx,ky) along x− and y− axes. RN ϕ̂ j,k is the
dual basis of RNϕ j,k.

2) Structure estimate on Riesz wavelet scales: The direc-
tional Riesz basis filters at each scale j enhances the edges of
structures, like blood vessels, lesions or pores of epithelium.
As a result, it is possible to extract both the orientation and
shape information of these structures even in low resolution
image pairs. For estimating image structures, the Hessian
matrix H2I j

i+1(x+u) of image RI j
i+1(x+u j) is computed at

each pixel x as in Eq. (4).

H2I j
i+1(x+u) =


∂ 2RI j

i+1(x+u j)

∂x2

∂ 2RI j
i+1(x+u j)

∂x∂y
∂ 2RI j

i+1(x+u j)

∂x∂y
∂ 2RI j

i+1(x+u j)

∂y2

 . (4)

The eigenvalues λ1 and λ2 of H2I j
i+1(x+u) are then used for

a structure estimate Sj
i+1(x+u) [3]:

Sj
i+1(x+u) = e(−Rb

2/2β 2
1 )
(

1− e(−Rs
2/2β 2

2 )
)
, (5)

where Rb = λ1/λ2 | λ2 ≥ λ1 is the blob measure of an
object structure in the image, Rs =

√
λ 2

1 +λ 2
2 represents

the presence of object structures and {β1,β2} are sensitivity
control parameters empirically set to 0.5 each. Rb relates to
the eccentricity of the ellipse approximating an object shape
(the eccentricity is large for structures like vessels or skin
pores). Rs is ideally zero when no structure is present.

C. Energy function modeling

Classically, only brightness constancy assumption (BCA)
is used in the data term for energy minimization of E(u)
in Eq. (1). But, BCA alone on Riesz wavelet scale-space
is not sufficient for minimizing E(u) since Reisz filters do
not preserve the original grey-level values. For this reason,
BCA is complemented with a gradient constancy assumption
(GCA, [10]) which is useful when there is directional change
in intensity. Structure constancy assumption (SCA, [3]) has
been integrated as an another data term. This is motivated
by the fact that SCA relates to the structure enhancement by
Riesz filters. Such image structures increase the robustness
of OF estimation. Integrating BCA, GCA and SCA leads to
a well posed data term at scale j of a Riesz pyramid:

Edata(u j) =
∫

Ω

ψ(| RI j
i+1(x+u j)−RI j

i (x) |
2 +

γ1 | ∇RI j
i+1(x+u j)−∇RI j

i (x) |
2 +

γ2 | S j
i+1(x+u j)−S j

i (x) |
2)dx

, (6)

where γ1 and γ2 are the weighting parameters for the GCA
and the SCA and S j

i and S j
i+1 are structure estimates of

images RI j
i and RI j

i+1 respectively at scale j.
To deal with the aperture problem in OF estimate and

outliers in the data term, regularizer has to be used in
the minimization of E(u). A classical regularizer in Eq.
(7) preserves the motion discontinuities along the object
boundaries. This leads to a piecewise smooth flow field.

Ereg(u j) = φ(| ∇u j |2 + | ∇v j |2). (7)



Dataset θ sx,sy fx, fy h1,h2

√
t2
x + t2

y

Data-I ± 100 0.90-1.10 0.90-1.10 ± 10−5 70
Data-II ± 50 0.95-1.05 0.95-1.05 ± 10−5 50

TABLE I: Htrue
i,i+1 homography parameter intervals used for com-

puting the displacements between consecutive images. θ , {sx,sy},
{ fx, fy}, {tx, ty} and {h1,h2} are the in-plane rotation, shear, scale,
translation and perspective parameters respectively.

D. Optimization

ψ(.) and φ(.) are the robust functions represented as
the data term and the regularizer in Eq. (6) and Eq. (7)
respectively. We restrict these functions to be l1-norm en-
forcing piecewise smooth flow field. So, ψ(x) and φ(x)
can be expressed as

√
x2 + ε2 with very small ε . Such

objective function is highly non-convex, however a coarse-
to-fine refining scheme with image warping strategy can
avoid inaccuracies in flow field. We have used the numerical
methods similar to Brox et al. [10].

E. Image mosaicing

Consecutive image pairs (Ii and Ii+1) of a given video-
image sequence are registered by computing their local
homographies Hest

i,i+1 between them. These homographies are
estimated with the correspondence between the homologous
pixels given by the flow field vectors as in [7]. All these
images are then stitched in a global coordinate frame by
concatenating their local homographies as in Eq. (8).

Hest
0,i =

k=i−1

∏
k=0

Hest
i−k−1,i−k. (8)

Hest
0,i is the global homography placing the pixels of images

Ii in the mosaic coordinate system given by I0 (first image
of the sequence).

III. RESULTS AND DISCUSSION

A. Dataset

High resolution images of 1) a human skin surface and 2) an
excised pig bladder inner surface (texture similar to human
bladder) were first acquired. A dataset with 50 images each
(data-I for skin and data-II for pig bladder) were extracted. A
subimage I0 was first chosen to define a reference coordinate
system in the high resolution images. Then, the images I1 to
I49 were extracted with known global transformation Htrue

0,i ,
computed using simulated local transformations Htrue

i,i+1 super-
imposing exactly image Ii+1 on Ii. General characteristics of
these homographies are shown in Table I.

Method ε local
i,i+1 (in pixel) ε

global
0,49

(in pixel)
t

(in s)min max mean
HAOF [10] 0.50 6.87 2.59 45 9
Graph-cut method [2] 0.18 4.72 0.84 36 20
RFlow method [3] 0.15 2.23 0.70 30 4
Proposed method 0.04 1.32 0.37 9.1 5

TABLE II: Method comparison on data-I (human skin epithelium).

Method ε local
i,i+1 (in pixel) ε

global
0,49

(in pixel)
t

(in s)min max mean
HAOF [10] 0.66 4.87 3.77 17 13
Graph-cut method [2] 0.32 6.8 3.01 11 48
RFlow method [3] 0.02 1.56 0.33 7.5 3
Proposed method 0.03 1.06 0.21 4.4 5

TABLE III: Method comparison on data-II (pig bladder).

B. Quantitative evaluation for epithelium tissue registration

Two criteria (see Eq. (9)) were used for comparing the
proposed method with some recent methods in bladder
epithelium mosaicing. The local error ε local

i,i+1 gives the reg-
istration accuracy when superimposing pixels p of images
Ii and Ii+1, whereas ε

global
0,49 is the global (mosaicing) error

when placing image I49 in the coordinate system of I0.

ε
local
i,i+1 =

1
N ∑

p∈Ii∩Ii+1

‖ Htrue
i,i+1 p−Hest

i,i+1 p ‖2

ε
global
0,49 =

1
N ∑

p∈I0∩I49

‖ Htrue
0,49 p−Hest

0,49 p ‖2 .

(9)

Table II and Table III give the results for the human skin
epithelium (data-I) and the pig bladder epithelium (data-II)
respectively. In comparison to all the reference methods,
the proposed method has the least of the maximum local
registration error for both datasets. The HAOF method ([10])
and the graph-cut based method (GC, [2]) recorded large
maximal local registration errors of 6.87 and 6.8 pixels
for skin and bladder epithelium respectively. Moreover, the
proposed method has the lowest average local registration
error for both the datasets. For the skin epithelium sequence,
the error of all the reference methods is atleast twice larger
than that of the proposed method. For the bladder data,
only RFLOW has an accuracy (average εi,i+1 = 0.33 pixels)
comparable to that of the proposed method (average εi,i+1 =
0.21 pixels). The proposed method has also the least global
registration error with 9.1 pixels for skin data and 4.4 pixels
for pig bladder epithelium. This led to coherent mosaics
given in Figs. 1 and 2. The proposed method has also
comparable average computational time (t̄ in Tables II and
III) with the convex RFLOW model but with much higher
registration accuracy.

Fig. 1: Human skin data-I mosaic with the proposed method. 900×
1400 pixels mosaic was obtained with I0 being the first image.



Fig. 2: Mosaic of data-II (pig bladder) with estimated Hest
i,i+1 using

the proposed method. A mosaic of 900×1500 pixels was obtained.

C. Qualitative evaluation on clinical data

Complementary qualitative validation of robustness of the
proposed method against variability of epithelial textures has
also been done on cystoscopic patient data and gastroscopic
patient data acquired during standard procedures at the
Institut de Cancérologie de Lorraine of Nancy and at the
Ambroise Paré hospital of Paris respectively after the concent
from their ethical committees. Fig. 3 shows a coherent
mosaic (i.e. without texture discontinuities) of a human
inner-bladder epithelium. Fig. 4 gives mosaic of a stomach
part (pyloric antrum region) acquired with a gastroscope.

IV. CONCLUSION

In this paper, structures of epithelial surfaces have been ex-
ploited for robust and accurate OF estimation for establishing
pixel correspondence between image pairs and leading to
coherent mosaicing of these surfaces. Further work will be to
perform extended tests of the proposed approach on epithelial
images acquired under other imaging protocols like confocal
microscopy and fluorescence imaging.
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