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Abstract

We propose a new probabilistic pattern formation algorithm for oblivious mobile robots that operates in
the ASYNC model. Unlike previous work, our algorithm makes no assumptions about the local coordinate
systems of robots (the robots do not share a common “North” nor a common “Right”), yet it preserves the
ability from any initial configuration that contains at least 5 robots to form any general pattern (and not just
patterns that satisfy symmetricity predicates). Our proposal also gets rid of the previous assumption (in the
same model) that robots do not pause while moving (so, our robots really are fully asynchronous), and the
amount of randomness is kept low — a single random bit per robot per Look-Compute-Move cycle is used.
Our protocol consists in the combination of two phases, a probabilistic leader election phase, and a deter-
ministic pattern formation one. As the deterministic phase does not use chirality, it may be of independent
interest in the deterministic context. A noteworthy feature of our algorithm is the ability to form patterns
with multiplicity points (except the gathering case due to impossibility results), a new feature in the context
of pattern formation that we believe is an important asset of our approach.

1 Introduction

We consider a set of mobile robots that move freely in a continuous 2-dimensional Euclidian space. Each
robot repeats a Look-Compute-Move (LCM) cycle [10]. First, it Looks at its surroundings to obtain a snapshot
containing the locations of all robots as points in the plane, with respect to its ego-centered coordinate system.
Based on this visual information, the robot Computes a destination and then Moves towards the destination.
The robots are identical, anonymous and oblivious i.e., the computed destination in each cycle depends only on
the snapshot obtained in the current cycle (and not on the past history of execution). The snapshots obtained by
the robots are not consistently oriented in any manner.

The literature defines three different models of execution: in the fully synchronous (FSYNC) model, robots
execute LCM cycles in a lock-step manner, in the semi-synchronous (SSYNC) model, each LCM cycle is
supposed atomic, and in the most general asynchronous (ASYNC) model, each phase of each LCM cycle may
take an arbitrary amount of time. This last model enables the possibility that a robot observes another robot
while the latter is moving (and moving robots appear in the snapshot exactly the same way static robots do),
and that move actions are based on obsolete observations.

In this particularly weak model it is interesting to characterize which additional assumptions are necessary
and sufficient for the robots to cooperatively perform a given task. In this paper, we consider the pattern
formation problem in the most general ASYNC model. The robots start in an arbitrary initial configuration
where no two robots occupy the same position, and are given the pattern to be formed as a set of coordinates in
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their own local coordinate system. An algorithm solves the pattern formation problem if within finite time the
robots form the input pattern and remain stationary thereafter.

Related Works. The pattern formation problem has been extensively studied in the deterministic setting [2, 1,
7,8,4,11,12,5, 6, 10]. The seminal paper on mobile robots [10] presents a deterministic solution to construct
general patterns in the SSYNC model, with the added assumption that robots have access to an infinite non-
volatile memory (that is, robots are not oblivious). The construction was later refined for the ASYNC model
by Bouzid et al. [2], still using a finite number of infinite precision variables.

The search for an oblivious solution to the general pattern formation proved difficult [6]. For oblivious
deterministic robots to be able to construct any general pattern, it is required that they agree on a common
“North” (that is, a common direction and orientation) but also on a common “Right” (that is, a common chiral-
ity), so that robots get to all agree on a common coordinate system. If only a “North” (and implicitly if only a
“Right”) is available, then some patterns involving an even number of robots cannot be formed. Relaxing the
common coordinate system condition let to a characterization of the patterns that can be formed by determinis-
tic oblivious robots [7, 8, 12]. The best deterministic algorithm so far in the ASYNC model without a common
coordinate system [8] proves the following: If p denotes the geometric symmetricity of a robot configuration
(i.e., the maximum integer p such that the rotation by 27/p is invariant for the configuration), and I and P denote
the initial and target configurations, respectively, then P can be formed if and only if p(7) divides p(F). All
aforementioned deterministic solutions assume that both the input configurations and the target configuration
do not have multiplicity points (that is, locations hosting more than one robot), and that robots share a common
chirality. Overall, oblivious deterministic algorithms either need a common coordinate system or cannot form
any general pattern.

To circumvent those impossibility results, the probabilistic path was taken by Yamauchi and Yamashita [13].

The robots are oblivious, operate in the most general ASYNC model, and can form any general pattern from
any general initial configuration (with at least n > 5 robots), without assuming a common coordinate system.
However, their approach [13] makes use of three hypotheses that are not proved to be necessary: (i) all robots
share a common chirality, (ii) a robot may not make an arbitrary long pause while moving (more precisely, it
cannot be observed twice at the same position by the same robot in two different Look-Compute-Move cycles
while it is moving), and (iii) infinitely many random bits are required (a robot requests a point chosen uniformly
at random in a continuous segment) anytime access to a random source is performed. While the latter two are
of more theoretical interest, the first one is intriguing, as a common chirality was also used extensively in the
deterministic case. The following natural open question raises: is a common chirality a necessary requirement
for mobile robot general pattern formation ? As the answer is yes in the deterministic [6] case, we concentrate
on the probabilistic case.
Our contribution. In this paper, we propose a new probabilistic pattern formation algorithm for oblivious
mobile robots that operate in the ASYNC model. Unlike previous work, our algorithm makes no assumptions
about the local coordinate systems of robots (they do not share a common “North” nor a common “Right”), yet
it preserves the ability from any initial configuration that contains at least 5 robots to form any general pattern
(and not just patterns such that p(7) divides p(F)). Besides relieving the chirality assumption, our proposal
also gets rid of the previous assumption [13] that robots do not pause while moving (so, they really are fully
asynchronous), and the amount of randomness is kept low — a single random bit per robot is used per use of
the random source — (vs. infinitely many previously [13]). Our protocol consists in the combination of several
phases, including a deterministic pattern formation one. As the deterministic phase does not use chirality, it
may be of independent interest in the deterministic context.

A noteworthy property of our algorithm is that it permits to form patterns with multiplicity points (without
assuming robots are endowed with multiplicity detection), a new feature in the context of pattern formation that
we believe is an important asset of our approach. Of course, the case of gathering (a special pattern defined by
a unique point of multiplicity n) remains impossible to solve in our settings [9].



2 Model

Robots operate in a 2-dimensional Euclidian space. Each robot has its own local coordinate system. For
simplicity, we assume the existence (unknown from the robots) of a global coordinate system. Whenever it
is clear from the context, we manipulate points in this global coordinate system, but each robot only sees the
points in its local system. Two set of points A and B are similar, denoted A ~ B, if B can be obtained from A
by translation, scaling, rotation, or symmetry. A configuration P is a set of positions of robots at a given time.
Each robot that looks at this configuration may see different (but similar) set of points.

Each time a robot is activated it starts a Look/Compute/Move cycle. After the look phase, a robot obtains a
configuration P representing the positions of the robots in its local coordinate system. After an arbitrary delay,
the robot computes a path to a destination. Then, it moves toward the destination following the previously
computed path. The duration of the move phase, and the delay between two phases, are chosen by an adversary
and can be arbitrary long. The adversary decides when robots are activated assuming a fair scheduling i.e., in
any configuration, all robots are activated within finite time. The adversary also controls the robots movement
along their target path and can stop a robot before reaching its destination, but not before traveling at least a
distance ¢ > 0 (6 being unknown to the robots).

An execution of an algorithm is an infinite sequence P(0),P(1),... of configurations. An algorithm v
forms a pattern F if, for any execution P(0), P(1),..., there exists a time 7 such that P(¢) ~ F and P(¢') = P(r)
for all 7 > r. In the sequel, the set of points F denotes the pattern to form. The coordinates of the points in F are
given to the robots in an arbitrary coordinate system so that each robot may receive different, but equivalent,
pattern F. If the pattern contains points of multiplicity, the robots receives a multiset, that is, a set where each
element is associated with its multiplicity. Even if the robots are not endowed with multiplicity detection, they
know from the pattern what are the points of multiplicity to form. In particular, then can deduce from the
pattern, the number n of robots, even if they do not see n robots.

3 Algorithm Overview

Our algorithm is divided into four phases. Since robots are oblivious and the scheduling is asynchronous, we
cannot explicitly concatenate several phases to be executed in a specific order. However, one can simulate the
effect of concatenation of two (or more) phases by inferring from the current configuration which phase to
execute. Implementing this technique is feasible if phases are associated with disjoint sets of configurations
where they are executed. Also, in order to simplify the proof of correctness, robots should not switch phases
when placed in a configuration containing moving robots i.e., a phase has to ensure that if the configuration
resulting from a movement is associated with another phase, then all the robots are static (that is, none of them
is moving). When this property holds, the first time a phase is executed, we can suppose that the configuration
is static.

Our algorithm can form an arbitrary pattern. In particular, the pattern F' can contain points of multiplicity
(but cannot be a single point). If this is the case, the robots create a new pattern F from F where they remove
the multiplicity, and add around each point p of multiplicity m, m — 1 points really close to p, and located at
the same distance to the center of the smallest circle enclosing F. The algorithm then proceed as usual with F
instead of F. The initial pattern F is formed by the termination phase, when £ is almost formed. So from now,
we suppose that the pattern does not contains points of multiplicity and we refer to the details of the termination
phase to see how an arbitrary pattern is formed.

In the following we define the phases of our algorithm and the set of associated configurations, starting
from the more precise one (the phase we intuitively execute at the end to complete the pattern formation).
Unless otherwise stated, the center of a configuration refers to the center of the smallest enclosing circle of this
configuration.

Termination. The termination phase occurs when all robots, except the closest to the center, forms the target



pattern (from which we remove one of the point closest to the center). The phase consists in moving the last
robot towards its destination. While moving, the robot remains the closest to the center, so that the resulting
configuration is associated to the same phase.

Almost Pattern Formation. Among the remaining configurations, we associate the guided ones to this phase.
A configuration is guided when a unique robot is sufficiently close to the center and induces by its position a
global sense of direction and orientation to every robot. In particular, when executing this phase, robots are
totally ordered and have a unique destination assigned. The phase consists first in moving all the robots (except
the one that is closest to the center), one by one, so that they are at the same distance to the center as their
destination in the pattern. Secondly, the robots moves toward their destination, keeping their distance to the
center and the ordering unchanged. The configuration has to remain guided until each robot, except the closest
to the center, reaches its destination. A configuration obtained after executing this phase is either associated to
the same phase, or to the termination phase.

Formation of a Guided Configuration 1 (FBC1). Among the remaining configurations, we associate the ones
that contain a centered equiangular or biangular (CEB) set to this phase. A CEB-set is a subset of robots that
exists when the configuration is symmetric or is almost symmetric. Moreover it is constructed independently
from the coordinate system (so it is unique when it exists), and is invariant when the robots in this set move
toward (or away from) the center of the configuration (see Section 4.4 for a formal definition). When the
configuration contains a CEB-set, our algorithm consists in moving the robots in this set to obtain a guided
configuration. The invariance property of the CEB-set is important to ensure that resulting configurations are
still associated with this phase.

In more details, when this phase is executed, the robots in the CEB-set O moves either toward or away from

the center with probability 1/2. We show that, with probability 1, a unique robot is elected after a finite number
of activations. Then, the elected robot performs a special move to force the other robots in Q to terminate their
movement. Once each robot is static, the elected robot moves toward the center to create a guided configuration.
During the execution of this phase, it is possible that the configuration is associated with the termination phase.
If this happens, our algorithm makes sure that all robots are static.
Formation of a Guided Configuration 2 (FBC2). We associate all remaining configurations to this phase.
When executing this phase, the configuration does not have a CEB-set. This implies that the configuration is
not symmetric, so the robots are totally ordered. Therefore, the smallest robot moves toward the center to create
a guided configuration (it remains the smallest robot while doing so). Before the movement, the robot checks
if there exists a point in its path that creates a configuration containing a CEB-set. If it is the case, the robot
chooses this point as its destination so that, when the configuration contains a CEB-set (and the robots switch
to the FBC1 phase), all the robots are static.

Almost Pattern Formation P~F
3 )
Lemma 4 Lemma 2 Lemma 1
FBC2 FBCl1 Lemma 4~~~ Termination

Figure 1: Relations between the phases of the algorithm.

We define the relation ~ between phases, where A ~ B if executing the phase A can lead to a configuration
associated with phase B. The proof of our main theorem follows from Lemma 1, Lemma 2, and Lemma 4 (see
Figure 1) detailed in the next Section.

Theorem 1. Our algorithm forms any pattern F that is not a point, starting from any configuration of at least
5 robots that does not contain a point of multiplicity.



4 Algorithm Details

In this section we describe in more detail the phases of our algorithm. We start by listing the necessary notations
used in the remaining of the section.

4.1 Notations

Let P be a set of points, then C(P) denotes the smallest enclosing circle of P. Otherwise mentioned, ¢(P)
denotes the center of C(P). The circle of a robot r € P is the circle centered at ¢(P) containing r. We say a
robot moves on its circle if its trajectory is contained in its circle. A radial movement is a linear movement
whose origin and destination are on the same half-line of origin ¢(P). We say a robot moves radially if it
performs a radial movement.

The pattern to form, F, is given to each robot as a set of points in their local coordinate system. However,
at each activation, robots can translate and scale their local coordinate system so that C(P) = C(F). Hence,
we suppose in the remainder of the paper that C(P) = C(F), and that the radius of C(P) is the common unit
distance (unless otherwise mentioned). This is possible because in our case, the configuration where all robots
share the same location (that is, are gathered) is not reachable. For two points a and b, |a|, = |a — b| denotes
the distance between a and b. In a n-robot configuration P, as we are often interested in the distance between a
point and the center c(P), we simply write |a| instead of |al.(p).

The interior, resp. the exterior, of a disc or a circle C, denoted interior(C), resp. exterior(C), does not
include the circumference. A set of points A (or simply a point) holds C(P) if C(P \ B) # C(P), for a subset
B c A. The angle formed by three points u, v and w is denoted by ang(u,v,w) € [0,2r), and the orientation
depends on the context. If the orientation is not given, it is either clockwise or counterclockwise, but it does
not vary for a given robot during a cycle.

Partial Ordering and Symmetricity. Given a set of points (typically a configuration) P, we order the points
based on their coordinates in the coordinate systems defined by the points that are the closest to, but not at, the
center ¢(P). Formally, let M = {r € P s.t. |r| = min,cp. (o(py} |'|}. For each robot r,, in M and each orientation
oin { G, O } we define the polar coordinate system Z? : P - R* x [0, 2x), r = (|r|,ang(rm,c(P),r)) oriented
by 0. We denote by Z; (P) the increasing sequence of coordinates in Z; of the points in P. In particular, if r|
and r, are two points such that |r{| < |r2], then the coordinates in Z} (P) of ry are smaller than the coordinates
of r.

We define Z,i, as the set of coordinate systems that minimize the sequence of coordinates, using the lexi-
cographical order. We use this set of coordinate systems to define the relation <, where r < r if and only if the
coordinates of r are smaller than the coordinates of #’ in every coordinate systems Z € Z;,. From this relation
we deduce the partial ordering of P.

We define the symmetricity of a configuration P as the number of minimal points in its partial ordering. In
particular, if the robots are endowed with chirality (or if the configuration does not have an axis of symmetry),
this definition matches the definition of symmetricity of previous work [1, 8]. In particular, if a configuration
P is such that p(P) = k > 1, then P can be partitioned in n/k regular k-gons centered at c¢(P) (where a 2-gon is
a line with center its middle). However, this is not true in the general case when robots do not have a common
sense of chirality. Also, it is important to notice that if ¢(P) € P then p(P) = 1, even if the configuration is
symmetric or is invariant by rotation.

Ordered and Guided Configuration. An ordered configuration is a configuration where the partial order of
robots is a fotal order. In particular, this implies that there is a unique coordinate system Z in Z;, and all the
robots agree on Z as a global coordinate system.

When the configuration is ordered, let fi, f>,..., f, be any total ordering of points in F satisfying the partial
ordering of F (an arbitrary ordering can be chosen if more than one satisfies the condition). Even if the pattern
is given to robots using an arbitrary coordinate system, each robot can scale it so that C(F) = C(P), mirrors it



so that the orientation chosen for the ordering of the points in F coincides with the orientation of the ordering
of the robots, and rotate it so that the points f> and r, are on the same half-line of origin ¢(P). Without loss of
generality, we can suppose that F is given to the robots with those property, in the global coordinate system Z.

One can observe that the choice of the ordering of points in F is not important, since the resulting coor-
dinates of points in F in the global coordinate system Z are identical for two different orderings (indeed, the
resulting sets are equivalent, and are equals after applying the aforementioned transformations). So, from now
on, when the configuration is ordered, robots see the points in F in the same way in the global coordinate
system, and have a common ordering of points in F.

A guided configuration is an ordered configuration that satisfies: (i) |ri| = |r2|/2; (ii) |r2| < |fo; (i)
2ang(r1,¢(P),r2) <ming.p |75 ang(f2,c(F), f) (see Figure 3a).

A static configuration that only satisfies |r;| < min(|r2],|f2])/2 can be easily converted to a static guided
configuration. To do so, r, moves toward the center until |r;| < |f2| and if the third condition is not satisfied,
r1 moves to the center and then moves away from it to form an appropriate angle with r», and such that
|r1] = min(|r,|, |f2])/2. Once r; and r, reach their destinations, the configuration is static and guided. Therefore,
from now on, a static configuration such that |r;| < min(|r2/, |f2|)/2 is considered to be guided.

4.2 Termination

The termination phase consists in the following steps. First, the robots check (a) if a point of multiplicity exists
in the configuration (by comparing the number of visible robots with the number of points in the pattern) or (b)
if the configuration is guided (so that each robot sees F in the same coordinate system), if each point in F is
occupied by a robot, and if the other robots are close to a point of F.

If it is not the case, then the pattern to form is modified to obtain a pattern F* without point of multiplicity and
the other phases of the algorithm are executed with F instead of F.

If it is the case, then every robot r knows its destination f, € F (its the closest point of F). If there is a robot
r +ry with r # f, and f, # ¢(F), then r moves toward f,, while remaining in its circle. When no such robot
exists then there is two case:

Case 1: r| is the only robot not located on its destination in F. Then r; moves toward its destination (if multiple
destinations are possible, then it chooses the closest one) and the other robots do not move. While it is moving,
the global coordinate system is modified but ; remains the only closest robots to the center. When r; reaches
its destination (which can be a location that is already occupied by another robot), the pattern F' is formed.
Case 2: There are several robots with destination ¢(F). Then, they all move toward ¢(F) when activated.
During those moves, the global coordinate system may not be visible to the robots anymore, but all the robots
can detect that F \ {c(F)} is formed and that the robots closest to ¢(F') are moving toward c(F).

Now we detail how F is constructed from F. The goal is that, when F is formed by the robots, every point
of F is occupied by a robot and the other robots are close to a point of F (so that they know their destination
in F even without the ordering of robot). Let F be the initial pattern that can contain points of multiplicity.
Let F be the set of points constructed from F by removing the multiplicity and adding, for each point p €
F ~{c(F)} of multiplicity m > 1, m — 1 points py,..., pu—1 such that |p;| = |p| and ang(p,c(F), p;) = %,
with @(F) = min ({ang(f,c(F),f") | f, f" € F} ~ {0}). If ¢(F) has multiplicity m in F then, we also add m— 1
points evenly distributed on the circle of radius e = ‘l‘ MINfep (o(F)} | /| such that one point is on the half line of
origin ¢(F) passing through one of the greatest point in F. In this construction, the orientation of the angles is
either deduced from the pattern, or arbitrary if F has an axis of symmetry. The construction may not be unique
(e.g. if the F has an axis of symmetry) but the possible resulting sets are all similar, and F is any of those. For
all the phases except Termination, F is used instead of F whenever F contains points of multiplicity.

Lemma 1. The Termination phase terminates on a configuration P ~ F.



4.3 Almost Pattern Formation

In this phase we assume that the configuration is guided. We have a total order over robots ri,...,r,, and
each robot sees the pattern in the same way in a global coordinate system Z. In Z, the points of F are also
totally ordered fi,..., f, so that each robot r; knows its final destination f;. The goal of this phase is that each
robot, except ry, reaches its destination. In the sequel P’ = P~ {r;} and F' = F ~ {fi}. One can observe that
C(P') = C(P), and we can assume that C(F") = C(F) (if this is not the case, we can modify the ordering of
points in F so that f; does not hold C(F)).

This phase consist in two sub-phases. The first one consists in moving each robot to its correct circle
and the second one in moving each robot to its destination, while remaining in its circle. While doing this,
the ordering of robot stays the same so that the destination of each robot remain unchanged. We give here a
detailed overview, and refer to the appendix for a complete description.

Reach the Correct Circle. Let Cy, C», ..., Cy, be the m circles centered at c¢(P) with decreasing radius, each
containing at least one point in F’. This subphase consists in moving robots so that each circle contains the
correct number of robots. For each circle C;, 1 < i < m, we remove a robot if there are too many robots on C;
and we add a robot if there are too few robots on C;. We do so by either moving a robot that is on the circle
toward the inside of C; or the contrary. We move the robots one by one while keeping the ordering of robot and
by keeping C(P) unchanged.

Reach the Destination. Let i € [1,m], C; now contains m; robots and the m; destinations for those robots. The
robots and the destinations are ordered so that each robot is aware of its corresponding destination. They can all
move toward their destination, while remaining on C; and preserving the robots ordering (i.e., without reaching
another robot position). When a robot r is active and another robot is on the way, r chooses on the circle half
the distance to this robot. There cannot be a deadlock since there is no cycle in the waiting relation. Indeed,
robots on C; are ordered by angle so that they behave like they are on a finite segment. If i = 1, during their
movement, robots also ensure that C(P) remains unchanged. To do so, if a robot r € C; is active and detects
that its movement can modify C(P), then it moves as much as possible without changing C(P).

Lemma 2. After the Almost Pattern Formation phase, each robot in P’ reaches its destination in F', and the
Termination phase is executed.

Proof. First we show that there is no deadlock. Suppose we have on a circle C, m robots | < ry < ... < ry
and m destinations d; < dp < ... < d,,. r; has destination d; and moves toward it (staying on C) in the direct
orientation if r; < d; and in the indirect orientation otherwise. For the sake of contradiction, suppose that r; < d;
and r; cannot reach d;, even after an infinite number of activation. we observe that, to block r;, r;;1 must satisfy
r; < riz1 < dp and ri;p is not able to free the way for r;,;. This implies that r;; < ;43 < dj. Recursively, this
means that r,, < d;. But nothing blocks r,, to reach d,, when r,, < d,,, a contradiction.

Now suppose for the purpose of contradiction that C(P) is modified. This means that there exist two robots
rand r" on C; that form an angle greater than 7. Before C(P) is modified, they form an angle of at most 7,
so that one robot’s movement on C; in the direct orientation, and the other’s movement on C; in the indirect
orientation. This is possible only if there is no point in F on C; between r and 1/, which is a contradiction with
the fact that C(P) = C(F). m]

4.4 Formation of a Guided Configuration 1

If the current configuration P is not guided, and contains a CEB-set O, we execute this phase to obtain a guided
configuration. To do so, one robot has to be elected to guide the configuration. Once a unique robot is elected,
other robots may still be moving. One way to be sure that the other robots are static is to give them new
destinations. To do so, the elected robot moves on its circle with a small angle. After this move, the other
robots can still detect the elected robot and compute the angle. This angle can be used as a persistent memory.
For a given angle, each robot moves toward a deterministic destination. This ensure that at the end of the phase
all the robots are static. Another angle is used at the end of the phase to form a guided configuration.



The phase consists of two procedures: a robot election and using the elected robot to form a static guided
configuration.

First, we give the formal definition of the CEB-set and how to compute it. Then, we present the two
procedures that use the property of the CEB-set to form a static guided configuration.

CEB-set Definition. For a given point c, the string of angles S A. ,,(P) starting from a robot r with orientation
o is the sequence of angles formed by the robots in P with r, around Point ¢, and with Orientation o. If for
two robots r # r/, the strings of angles SA.,.,(P) and SA. 7 ,(P) are equal, we say the configuration is regular
(this is tantamount to say the string of angles is periodic). Regular sets have been introduced by Bouzid et
al. [1] for solving the gathering problem. Its main property is that there exists at most one point ¢ such that
SAcro(P) =SAc,(P), and this point is invariant by robots movement toward to, or away from ¢ (as it is also
the Weber point). Particular regular configurations are equiangular configurations (the period of the string of
angles is 1) and biangular configurations (the period of the string of angles is 2). The point c is called the center
of regularity of the configuration.

We say that a configuration is sym-regular, if two strings of angles, centered at the center c¢(P) of C(P),
with opposite orientations, are equal, i.e., if there exists r,7’ € P (possibly r = ') such that S Apyrc (P) =
SAC(P),r’,O (P)

We define the centered equiangular of biangular set (CEB) set CEB(P) of a configuration P as follow:

e If P is not regular nor sym-regular: then P does not have a CEB-set i.e., CEB(P) = @.

o If the whole configuration P is equiangular or biangular: then CEB(P) = P and, in this case, the center of the
configuration c(P) is the center of regularity.

e Otherwise: the CEB-set Q is constructed as follow. Initially, O = @. Let S be the set of smallest robots
(according to the partial ordering of robots) such that Q U S does not hold C(P). If Q U S is equiangular or
biangular then add the robots of S in Q and start again, otherwise stop and CEB(P) = Q. Informally, the CEB
set is the biggest subset of P containing smallest robots that is equiangular or biangular with center ¢(P) and
that does not hold C(P). Since n > 5, if all robots are on S EC(P), there exist some robots that can be moved
without changing S EC(P), so that Q + @.

Algorithm constructCEBSet:
Q=0 Ignore < g
while P \ (Ignoreu Q) + @ do
Let S be the set of smallest robots in P \ (Ignore u Q) according to the partial ordering of robot
if Q U S holds P then Ignore < Ignoreu S
else if Q U S is equiangular or biangular then Q < QU §
else stop

Theorem 2. For a configuration P, if p(P) > 1, then CEB(P) + @.

If by moving one robot, a configuration has a CEB-set and the robot is among the closest robots to the
center of the CEB-set, we say that the configuration has a CEB-set with a shifted robot. The shifted robot is
the robot that we need to move to create the CEB-set. The configuration is seen as if the shifted robot is at its
right position (i.e., the position where it has to be for the configuration to contain a CEB-set). The difference
between the angles of this robot before and after the move (with origin ¢(P)) is called the shift angle.

Theorem 3. Let n > 5, and P be an n-robot configuration that contains a CEB-set with a shifted robot. Let
O(P) be the smallest (non-null) angle, centered at c(P), between two robots in the configuration. If the shift
angle is at most O(P) /2, then the shifted robot is unique.

The proof of this result is not trivial, and can be found in the appendix. When computing the CEB-set of
a configuration, all the robots can see if the CEB-set has a shifted robot. The existence of a shifted robot is



crucial for our algorithm because the shift angle can be used as a persistent memory. In more details, if all the
other robots move radially, they do not change the shift angle, so that the shifted robot can modify the shift
angle to remember some information for the next activation. Moreover, all the other robots can see the shift
angle and deduce some information from it. In our algorithm the shift angle is used to order the robots to make
a specific move, and then, another shift angle is used to stop them.

Robot Election. Let QO bet the CEB-set. We say a robot 7, is elected if it is the shifted robot of Q or if
|re| < %minreQ\ {r.} Ir|. To elect a robot, each robot r in Q proceeds in the following way. If there is another
robot in Q that is strictly closer to the center, then r does not move. If r is not elected and is one of the closest
robot (unique or not), then r chooses randomly (each choice with probability 1/2) to go toward or away from
the center ¢(P). If r chooses to move toward the center, it moves a distance |r|/8. If r chooses to move away
to the center, it moves a (possible null) distance min (% (d-1|r]), %|r ), where d is the minimum distance to the
center among robots in P\ Q (and d = oo if P\ Q = @). This ensures that robots in Q remain in the CEB-set
in the resulting configuration. A robot is aware that it is elected if it is elected during its look phase. When a
robot is aware it is elected, and is not yet the shifted robot, it moves on its circle to create a shift angle of /8.
After the robot election, some robots may still be moving.

Lemma 3. The following properties hold: (i) eventually one robot is aware it is elected with probability one,
and (ii) once a robot is aware it is elected, another robot cannot be elected.

Also, our algorithm has to ensure that n — 1 robots cannot form part of the pattern. To do so, a procedure is
called making sure that, if a point in F is in the path of a robot, then this point is either chosen as its destination,
or avoided (the procedure is described in the appendix). So that, if the configuration is associated with the
Termination phase, all the robots are static.

Using the Shifted Robot to Form a Static Guided Configuration. If the elected robot is not shifted or if the
shift angle is in [0,6/8) (with 8 = 6(P)), it moves on its circle to create a shift /8. Also, if the shift angle is
in (6/8,0/4) and if the robots in the CEB-set Q are not on the same circle as the shifted robot, then the shifted
robot moves on its circle to create a shift /8. If another robot is activated during the movement of the shifted
robot (i.e., when the shift is not exactly 6/8), it chooses not to move. When the shift angle is exactly 6/8, the
elected robot waits for the other robots in Q to reach its circle. When this is the case, the shifted robot moves
on its circle to create a shift angle of §/4. Then it moves toward the center to create an guided configuration
i.e., the shifted robot | moves radially such that |ri| = min(|r2|, [f2])/2.

Lemma 4. After executing the FCB1 phase, the configuration is static and associated with either the Termina-
tion phase or the Almost Pattern Formation (in finite time with probability one).

5 Concluding Remarks

Similarly to previous work [13], the initial configuration should not contain multiplicity positions. In the
case where the initial configuration contains points of multiplicity, a convenient solution would be to reuse
known pattern formation algorithms (such as ours) and run a preliminary phase where multiplicity points are
eliminated. This task is known as the scattering task in the literature [3]. However, even the most recent
developments [3] only considers the SSYNC model. Of course, as our protocol also performs correctly in
SSYNC, it is possible to combine the two to obtain a protocol in SSYNC that manages multiplicities both in /
and in F. Indeed, combining protocols in SSYNC is facilitated because moves are always aware of the latest
configuration, so for all configurations that have multiplicities and do not belong to a legitimate path toward
the target pattern, the scattering phase is run, until robots either reach a configuration where there is no point
of multiplicity or a configuration that makes progress toward the target pattern. Extending this scheme to the
ASYNC model requires to solve the open problem of ASYNC scattering, and making sure the combinations of
protocols is feasible.
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A Pseudo-code

The algorithm consists of several phases (that are not exactly divided in the same way as in the paper), described
in pseudo-code in algorithm formPattern. Each procedure call has a phase condition. A phase is executed if and
only if its phase condition is not verified. If the condition is verified, the next phase is considered. Each time a
robot is activated, it must find the first phase with a condition that is not verified and follow the corresponding
instructions. Each phase is done not to break the previous phase conditions. The condition line 9 is checked
before because the movement line 10 breaks the condition of the other phases. Line 6 corresponds to the robot
election. The goal is to select a robot by performing random radial movement in the CEB-set. Lines 18 to 27
correspond to the deterministic pattern formation algorithm. For simplicity, our pseudo-code does not handle
the case of a pattern that contains points of multiplicity.

Algorithm formPattern: main algorithm that forms a pattern F

1 if m =|c(F)| > 1 then

2 if F\ {c(F)} is formed then

3 the m robots closest to the center move toward c(F')
4 Return

5 else

6

L F < F N {c(F)} u {m distinct points close to ¢(F)}

7 ClosestF « {smallest elements in F that does not hold C(F)}

8 ClosestP < {smallest elements in P}

9 if ClosestP = {r} and 3f € ClosestF s.t. P\ {r} ~ F — {f} then
10 ‘ r moves toward the closest f

11 else

12 | r < selectARobot()

13 if each point of F is occupied except maybe one of the smallest and the other robots are close to their destinations then

14 Each robot r # r| moves toward the closest point in F'
15 Return
16 else

17 L F < F where every points of multiplicity m is replaces by m points close to it and on the same circle.

18 P« P~ {rl}
19 F' < F~{fi} (with f; € ClosestF)
20 Let Cy, C, ..., Cyy be the m circles centered at c¢(P) with decreasing radius, each containing at least one point in F’. For each 1 <i < m, let
mi:\C,-ﬂF’bO
21 if |C; N F'| =2 then
22 L fixEnclosingCircle()
23 fori=1,2,...,mdo
24 cleanExterior(i)
locateEnoughRobots(i)
removeRobotsInExcess(i)

27 rotateRobotOnCircle()

B Missing Algorithm Details

B.1 Pattern Formation when |C(F)n F’| =2

We execute this special phase before executing the first sub-phase of phase 4.3, if |C(F)nF'| = 2. If |C(F)nF| =
2 and there are not exactly two robots in C(P) located at the two points in C(F) n F, then the following is
executed.

If there are only two robots on C(P), then the greatest robot in interior(C(P)) reaches C(P), while re-
maining smaller than robots in C(P) (see Action locateEnoughRobots(i)). Now, there are at least three robots
on C(P). The greatest robot r in C(P) moves toward the greatest robot in C(F'), the smallest ' moves toward
the other point in C(P) n F’, and the other robots choose evenly distributed destinations between r and r’.
Those movements are done while keeping C(P) and the ordering unchanged. The smallest robot is chosen
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Algorithm handlePartiallyFormedPattern: executed before the robot election to handle configuration
that can create a configuration that verifies in line 9 of the main algorithm

if {F, N F¢} is a partition of F such that F¢ ~ P\ Q and
|Q| - 1 robots in Q are located on an halfline [¢(P), f), with f € F, then
dy < radius of C(F,)
dy < min{d | D (d,) nexterior(D (d))nF, = &}
d <~ (d] + dz)/z
if 3r € O s.t. |r| > d then
if 3r € Q s.t. |r| > d; then

‘ for r € Q s.t. |r| > dy do

| r moves radially at distance |d;| from c(P)

else
forre Qs.t. |r| >d do
| r moves radially at distance |d| from ¢(P)

exit

Algorithm selectARobot: select a robot

Phase Condition: There exists a selected robot rg
Returned Value: rg

if P contains a CEB-set Q with shifted robot then
re < the shifted robot
& < the shift angle
S < A{rePl||r|>]rl}
if S + @ and & + 6/8 then

|  re moves on its circle to create a 6/8-shifted angle
elseif S # & and € = 6/8 then

for r e S do
| moves radially at distance |r| from ¢(P)

else if £ < 6/4 then

\ e moves on its circle to create a §/4-shifted angle

else
| re moves radially toward c(P) to become selected

else if P contains a CEB-set Q then
if P\ Q # & then
‘ d < min,ep. g ||

else
L d<« o
handlePartiallyFormedPattern()
for r € P do
if |r] < %minreQ\{,} || then
| rmoves on its circle to create a 6/8-shifted angle
elseif {r' #r s.t. |F/|<|r|} =@ then
¢ < 1 with probability 1/2, 0 otherwise
if ¢ then
|  rmoves a distance |r|/8 toward c(P)
else
L r moves a distance min (% d-|\r), %|r|) away from ¢(P)
else

r1 < unique robot with maximum view that does not hold C(P)
if 3re[r,c(P)], Pu{r}~{ri} is biangular then

| r; moves toward r
else

| r1 moves toward c(P)
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Algorithm cleanExterior(i): remove robots outside C;

Phase Condition: i = 1 or |interior(C;_ N exterior(C;) n P'| =0
r < smallest robot in exterior(C;)
C « circle centered at c(P) that contains r
if |C n P| > 1 then
| r moves toward ¢(P) without reaching the circle of another robot nor C;
else
a < max,sec, ang(ry, c(P),r") if ang(ra,c(P),r) > a then
| r moves toward ¢(P) to reach C;
else
|~ moves on C; in the direct orientation to have an angle (27 + a) /2

Algorithm locateEnoughRobots(i): locate enough robots on C;

Phase Condition: |C; n P'| > m;
r < greatest robot in interior(C;)
C « circle centered at ¢(P) that contains r
if |Cn P| > 1 then
| r moves away from toward c¢(P) without reaching the circle of another robot nor C;
else
a < minyc, ang(ra,c(P),r")
if ang(ra,c(P),r) < a then
| r moves away from c(P) to reach C;
else
|~ moves on C; in the indirect orientation to have an angle a/2

Algorithm removeRobotsInExcess(i): remove robot in excess on C;

Phase Condition: |C; n P'| = m;
/| Where Poly(a,b) denotes the set of vertice of the regular a-gon centered at ¢(P) that have the line ¢c(P)ry as axis of symmetry union b
points evenly distributed in the arc between angle 0 and /a
if i > 1 then
r < smallest robot on C;
‘ r moves toward ¢(P) without reaching the circle of another robot
else

if robots the my greatest robots on Cy forms Poly(m;,0) then
‘ r < smallest robot on C}

r moves toward c(P) without reaching the circle of another robot
else
| robots on Cy form Poly(my,|Pn Cy|—my)

Algorithm rotateRobotOnCircle: move the robots on their circle to reach their final destination

Phase Condition: F’ = P’
Let ry,...,r,—1 be the robots in P’ in the lexicographic order of their polar coordinates in the global coordinate system.
Letdy,...,d,—1 be the point of F” in the lexicographical order of their polar coordinates in the global coordinate system.
fori=1,...,n-1do
A < the arc of the circle of r; delimited by r; and d; that does not contains the point of angle 0
if An P’ + @ then
¢ « closest robot in A n P’
d < point of A in the middle r; and ¢
A < the arc of the circle of r; delimited by r; and d
if r; € C(P) and then
| d < the farthest point on A so that C(P) does not change
r; moves on A toward d
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Algorithm fixEnclosingCircle: locate the robot of C(P) n P’ on C(P) n F’ when [C(F)n F'| =2

Phase Condition: |C(F) n F'| # 2 or there are only two robot in C(P) located on the two point of C(F) n F’
if |C(P) n P'| = 2 then
r < greatest robot in interior C(P)
C « circle centered at c(P) that contains r
if |Cn P| > 1 then
| r moves away from toward ¢(P) without reaching the circle of another robot nor C(P)
else

a < min,iec(py ang(ra, c(P),r")
if ang(ry,c(P),r) < a then
| rmoves away from c(P) to reach C(P)

else
| rmoves on C(P) in the indirect orientation to have an angle a/2

else
r < greatest robot in C(P)
'« smallest robot in C(P)
if r and r' are located the points of C(P) N F' then
"’ « second smallest robot in C(P) N P’
r’" moves toward ¢(P) without reaching the circle of another robot
else
Let ry, ..., rg be the other robots in C(P) N P’ in the lexicographical order of their polar coordinates
/| perform the following movements while preserving C(P) and the ordering of robots
r moves on C(P) toward the greatest point in C(P) n F’
r’ moves on C(P) toward the smallest point in C(P) n F’
fori=1,...,jdo
a < ang(ry,c(P),r") +ix (ang(r2,c(P),r") + ang(r2,c(P),r))/(j+ 1)
L r; moves on C(P) toward the point in C(P) N F’ with angle a

for ' instead of the second greatest so that no robot can prevent r’ to reach the smallest point in C(P) n F’,
especially if it has a null angle. Once r and r’ reach their destination, the other robots can leave C(P), starting
from the smallest. Those last movements change the ordering of r, so that it becomes the second greatest robot.

B.2 Almost Pattern Formation

Reach the Correct Circle. This sub-phase consists in moving robots so that there is the right number of robots
on each circle centered at ¢(P). Let Cy, Ca, ..., Cp, be the m circles centered at ¢(P) with decreasing radius,
each containing at least one point in F'. For each 1 <i < m, letm; = |C;nF'| > 0. We have >.7, m; = |F'| = n—1.

Before beginning this sub-phase, the robots that have a null angle (except r») move on their circle following
the direct orientation while preserving the order (i.e., without reaching another robot), so that no robot has a null
angle (except r,). This is required for proper operation of action ii), defined below. Also, if m; = 2, since two
robots cannot move on C(P) synchronously to keep C(P) unchanged, we need to execute a special procedure
(see subsection B.1) to ensure that the two robots are located at the two points of C(P) n F’, keeping C(P)
unchanged. Informally, this procedure moves another robot on C(P) if there are only two robots on it, then the
two greatest robots reach their destination point in C(P) n F’. Then, the other robots can leave safely C(P).
From now on, we suppose that if m; = 2, then C; already contains two robots located at their corresponding
point in F.

Recursively, we move robots such that each circle C; contains exactly m; robots. We define the following
procedure for a given i, 1 <i < m. The procedure executes three actions sequentially and assumes, if i > 1, that
linterior(Ci—1) n P'| = YL m;.

i) cleanExterior(i): If i > 1, moves robots so that interior(C;_y) N exterior(C;) n P'=: the smallest robot
in exterior(C;) moves to C; while it remains greater than robots already in C;. To do so, it can moves a
little toward c(P), so that there is no other robot in its circle, then moves on its circle so that its angle is
greater than the angles of robots in C;, and finally moves radially toward c¢(P) to reach C; (e.g., movement
of robot r5 in Figure 3b). If i = m, we also ensure that its angle is less than 27 —ang(ry,c(P),r), in order
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not to break the guided configuration. We repeat this procedure until there are no more robots between
Ci_1 and C; (e.g., movement of robots r5 and rg in Figure 3b).

ii) locateEnoughRobots(i): Move robots so that |C; 0 P'| > m;: we have |interior(C;) n P'| > 1. Indeed, if
i =1, interior(Cy) n P'| =m; — |Cy n P'| > 1, otherwise, there are by hypothesis at least m; robots inside
Ci_1, and after performing action i), theses robots are not between C; and C;_. The greatest robot in
interior(C;) now moves to C; while remaining smaller than robots already in C;. To do so, it can move a
little away from c(P) so that no other robot remains in its circle, then move on its circle so that its angle
is smaller than the angles of robots in C; (but not null), and finally move radially away from c¢(P) to reach
C; (e.g., movement of robot r; in Figure 3b).

iii) removeRobotsInExcess(i) Move robots so that |C; n P’| < m;: the smallest robot in C; moves a little

toward c(P) (here, “a little” means a small distance such that the order is preserved, i.e., the robot does
not reach the circle of another robot nor C;;1). We repeat this process until there are exactly m; robots on
Ci.
If i = 1, make sure that C(P) does not change. (see Figures 3d and 3e). However, we know that m; > 3.
The m; greatest robots 7, . .., r,—_n,, remain on Cj, and have to be the only robots to hold C(P). To do so,
the angles formed by two consecutive robots in {ry, . .., F,—m, } have to be smaller than, or equal to 7. This
is obtained by moving the robots on C, while preserving the ordering and C(P), such that 7y, ..., 7,
form the regular m;-gon that has the line ¢(P)r, as an axis of symmetry (see Figure 3d). At the same
time, if the m;-gon is not formed yet, other robots in C; move on C; to be evenly distributed in the arc
between angle 0 and 7r/m; (see the blue arc in Figure 3d), again while preserving the ordering and C(P).
Overall, each robot on C| has a deterministic (and non-blocking) destination. Once the m-gon is formed
(even if some other robots are still moving), the smallest robot in C(P) n P moves a little toward c(P)
(see Figure3e). This is repeated until only 7y, ..., 7,—,,, remain on Cj.

After executing those actions for i = 1,2,...,m, each circle contains the proper number of robots i.e., there are
m; robots on C;.

B.3 Robot Election Pre-phase

This pre-phase is executed before the robot election, i.e., when the current configuration P contains a CEB-set
Q of cardinal m. Before executing the robot election algorithm, a robot checks if the current configuration
satisfies the following conditions:

i) the pattern can be rotated so that robots in P \ Q are located at points in F,

ii) among the m remaining points of F, denoted F,, at least m — 1 are on m — 1 half lines, each containing
exactly one robot in Q.

If those conditions are not both satisfied, the robot election is performed as previously described. Otherwise
three cases can happen. Let d; be the radius of the smallest circle enclosing F,. If D (d;)nF, + &, let d, be the
smallest radius such that D (dy) n exterior(D (d2)) N F, = @, otherwise let d = dy. Also, letd = (dy +d>)/2
(D (a) denotes the open disc centered at ¢(P) of radius a)

In the first case, at least one robot r satisfies |r| > d;. Then, all such robots move toward c¢(P) to reach the
circle of radius d;. After each robot reaches its destination, either the whole configuration forms F, or P from
which we remove the robot with maximum view form F from which we remove a point with maximal view
(the configuration is associated with the termination phase), or the configuration is still with the same phase
and satisfies the second or the third case. If the configuration is no more associated with the same phase, then
the configuration is static.

In the second case, at least one robot r satisfies |d| > |r| and |r| > |d|. Then, all such robots move toward
c(P) to reach the circle of radius d. After each robot reaches its destination, the configuration satisfies the third
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case. During this phase the configuration is associated with the same phase since no robot reaches a point in
F,.

In the third case, the robots in Q are at most at distance d from ¢(P). Then the robot election proceeds as
previously described, except that a robot with destination p such that |p| > d does not move. During this phase
the configuration is associated with the same phase. Indeed, if d; # d, then there is at least one point in F,
that does not contain a robot (and it is not a point with maximum view since some points are closer to ¢(P)),
otherwise (all points in F, are at distance d to c¢(P)), there are at least two robots inside D (d) (because the
whole configuration associated with this phase) and they cannot reach the circle of radius d.

B.4 Formation of a Guided Configuration 2

If P does not have a CEB-set, then, by Theorem 2, p(P) = 1 and P has a unique smallest robot r;. The
robots check if there is a position in the segment [ry, ¢(P)) such that the whole configuration is equiangular or
biangular (possibly with a shifted robot). If it is the case, the first such point in the path becomes the destination
of ri. Otherwise, r; is ordered to move toward the center until the configuration becomes guided. The resulting
configurations cannot have a CEB-set (except if it is the whole configuration) since P does not contain one and
r; performs a radial movement. Starting from a static initial configuration, once the configuration is guided, or
once CEB(P) = P, all robots are static. Thus we have the following Lemma.

Lemma 5. After executing the FCB2 phase, the configuration is static and associated with either the FCB1
phase or the Almost Pattern Formation.

C Omitted Proofs

Lemma 1 (restated). The Termination phase terminates on a configuration P ~ F.

Proof. The phase is executed when the configuration is ordered and every point of F is occupied. If F' contains
points of multiplicity, and if a robot r, distinct from ry, is not located at a point of F, then r is close to a point
of F i.e., there is a unique point f € F in its circle such that ang(f,c(P),r) < a(F)/4. In this case, r moves
toward f while remaining on its circle. So that in finite time r; is the only robot not located at a point of F.

No we assume that r; is the only robot not located on its destination in F. Let P’ = P\ {r;} and for
a multiset A, let U(A) the set obtained from A by removing the multiplicity information. The configuration
formed by the visible robots U(P') may be symmetric even if P’ is not. So there may be multiple possible
destinations p for r; such that U(P") u{p} is similar to U (F) (one can observe that all the possible destination
are all at the same distance to the center). We have to show that the closest possible destination is the only
remaining point in F where a robot is missing i.e., one of the smallest point of F in the partial ordering. If
the smallest point of F' is a point of multiplicity, then r; is already located on it and so, from the definition of
a guided configuration (the configuration was guided before a point of multiplicity appeared), r, is the unique
robot that minimize the distance to the center of the configuration and such that

2ang(ri,c¢(P),r2) < min ang(fr,c(F), f) €))
F#h11=1fl

So that r; can locate , and move toward it. Otherwise, if the smallest point f; of F is isolated, r; can still
detect the position of r, = f,. Moreover, by definition of the partial ordering, ang(fi,c(P), f>) is minimal
so that the destination of r; is the destination closest to r,. Also, since f] and r; are on the same side of the
half line [¢(P),r;) (because their positions relative to the half line depend on the orientation of the guided
configuration) and since all the possible destinations for r; are on the same circle, then the closest destination
to rp is also the closest destination to ry (see Figure 4). While moving toward its destination, r; still satisfy

condition (1) so that r; still detect r, in the next activation.
|
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Lemma 2 (restated). After the Almost Pattern Formation phase, each robot in P reaches its destination in F’,
and the Termination phase is executed.

Proof. After executing the three actions cleanExterior (i), locateEnoughRobots(i), and removeRobotsInExcess(i)
for a given i, we have m; robots on C; and |interior(C;) n P'| = |interior(Ci-1) N P'| =m; = ¥, mj, so that we
can execute the same procedure with i + 1. If i < m it is important to observe that some robots (those ordered to
move in the last two cases) may still be in movement, but since they are now strictly between C; and C;, 1, they
receive a new order with deterministic destination when executing the procedure with i + 1. Hence, at the end

of the procedure with i = m, all robots are static.

After executing those actions for i = 1,2, ...,m, each circle contains the proper number of robots i.e., there
are m,; robots on C;.

Then, we have to prove that when reaching their final destinations on their circles, the robots does not create
a deadlock and does not change C(P). First we show that there is no deadlock. Suppose we have on a circle
C,mrobots ri < rp < ... < r, and m destinations d; < d» < ... < d,,. r; has destination d; and moves toward
it (staying on C) in the direct orientation if r; < d; and in the indirect orientation otherwise. For the sake of
contradiction, suppose that r; < d; and r; cannot reach d;, even after an infinite number of activation. we observe
that, to block r;, r;y1 must satisfy r; < riy1 < d; and riy is not able to free the way for r;;. This implies that
riv1 < rip3 < di. Recursively, this means that r,, < d;. But nothing blocks r,, to reach d,, when r,, < d,;, a
contradiction.

Now suppose for the purpose of contradiction that C(P) is modified. This means that there exist two robots
rand r' on C; that form an angle greater than 7. Before C(P) is modified, they form an angle of at most 7,
so that one robot’s movement on C; in the direct orientation, and the other’s movement on C; in the indirect
orientation. This is possible only if there is no point in F on Cy between r and r/, which is a contradiction with
the fact that C(P) = C(F). ]

Lemma 3 (restated). The following properties hold: (i) eventually one robot is aware it is elected with proba-
bility one, and (ii) once a robot is aware it is elected, another robot cannot be elected.

Proof. i) Suppose first that robots always reach their destination. Initially the configuration is in a state where
there are at least two robots whose location (or destination for those that are moving) are the closest to the
center. Let r be the first (or one of the first) activated robot among them. With probability 1/2, it chooses to
move toward the center. Let ' be another robot among them. If #’ is activated after r begins its movement,
r’ does not move, otherwise it moves away from the center with probability 1/2. So with probability greater
than 1/2", regardless of the scheduler’s choices, r is the only robot to move toward the center. After that, if
another robot is activated before the next activation of r, it does not move. At the next activation of r, with
probability 1/2, r chooses to move toward the center and becomes elected (and r is aware it is elected when it is
next activated since the other robots are static). So, with probability greater than 1/2"*1, r is aware it is elected.
If this does not happen, i.e., if the first or the second choice of r is to move away the center or if another robot
chose to move toward the center, then the configuration gets back to its initial state. So, since the probability of
success is constant (for a given n), eventually a robot is aware it is elected with probability one. Now, if robots
do not always reach their destinations, the probability that » moves by a distance d toward the center (to become

d
elected), is 1 /2[5], instead of 1/4 in the first case. Indeed, instead of choosing two times to move toward the
center, now r needs to choose [%] times to move toward the center. The probability that one of the other robot

chooses to move away is still 1/2. So that there is again a non null probability (greater than 1 /2’”[%1) that a
robot is elected, which implies that eventually a robot is aware it is elected with probability one.

ii) Once a robot r, is elected, the other robots are currently either moving away, not moving, or moving
toward the center by a distance at most the eighth of their distance to the center. In each case, when another
robot looks again (after it finishes its movement) it sees that the robot r, is the only closest robot to the center,
and then it chooses not to move. Indeed, if another robot r is moving toward the center, it is by a distance at
most |r|/8. Since we have |r,| < Z|r| when r started its movement, we have |r,| < |r| after r finishes it. After r’s
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movement, r, is maybe no longer elected, but since r, was aware it was elected, it already chooses to move on
its circle to create a 1/8-shifted-regular set (and it moves by a non null distance, so that in the next look phase,
it is shifted). ]

Lemma 4 (restated). After executing the FCB1 phase, the configuration is static and associated with either the
Termination phase or the Almost Pattern Formation (in finite time with probability one).

Proof. We proved in Lemma 3 that a unique robot is elected with probability one. During the robot election
the configuration still has the same CEB-set and we cannot have |rj| < |r;|/2 so that the configuration cannot
be guided and remains associated with the FCB1 phase. Once a robot is elected, it is shifted. When a robot r is
shifted, no robot is located to a point (or has a destination) p such that |p| = |r|, so that every other robot in the
CEB-set receives a new destination when it sees that the configuration contains a CEB-set with a shifted angle
6/8. The shifted robot increases the shift angle from 6/8 to 6/4 only when all the other robots in the CEB-set
have reached their destinations. Once the shift angle is greater than 6/8 all the robots are static. When the
shifted robot has a shift angle of 6/4, it moves toward the center and the other robots remain static. When the
shifted robot r stops i.e., when |r| = min(|r,|, | f2|) /2, the configuration is guided and all the robots are static. O

C.1 Proof of Theorem 2

The following algorithm presents the construction of the CEB-set when the configuration P is regular or sym-
regular (but not equiangular or biangular)

Algorithm constructCEBSet:
Q=0 Ignore < g
while P \ (Ignoreu Q) + @ do
Let S be the set of smallest robots in P \ (Ignore u Q) according to the partial ordering of robot
if Q U S holds P then Ignore < Ignoreu S
else if Q U S is equiangular or biangular then Q < QuU §
else stop

Theorem 2 (restated). For a configuration P, if p(P) > 1, then P has a unique, non-empty, CEB-set.

Proof. If p(P) > 1, then the configuration is regular or sym-regular. If P is biangular or equiangular, then
CEB(P) = P. Otherwise, if P is regular, then the first set S in the construction of Q (algorithm constructCEB-
Set) does not hold P, so S is added to Q, which becomes non-empty. If P is sym-regular and not regular, then
the set S of smallest robots always contains one or two robots. Since n > 5, the while loop is executed at least
three times. As we cannot have three disjoints subset of P that hold P, Q is not empty. O

C.2 Uniqueness of the shifted robot

Let P be a n-robot configuration with n > 5. 6(P) is the minimum angle between two robots in P, centered at
the center ¢(P). We show that, for a shifted robot to be unique, it is sufficient that the shift angle is at most
6(P)/2, and the orientation of the shift (the inverse of the orientation where we have to rotate the robot to create
a CEB-set configuration) must reduce the minimum angle it forms with the other robots of the configuration.
In the sequel, let W(P) denote the position of the Weber point of set P.

. / / —> / .
Lemma 6. Let P be a n-robot configuration and P’ = P~ {r} u{r'}. If u = W(P")W(P), then for any point
p € P~ {r}, we have:

_—

cos (ang (7, W(P)r)) - cos (ang (7, W)) > cos (ang (7, m)) - cos (ang (7, W))
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Proof. Tt is known that W(P) is such that

> -0

peP
where v,, is the normalized vector v, = %, or any vector such that ||v,|| < 1 if p = W(P). The equality is

true by taking only the % component of each vector, which implies

Z cos (ang (7, WP)[))) =0

peP

Where we assume that cos (ang ( u, W(P)p)) can be any number in [—1, 1] if p = W(P). The same equality
holds in P’. By subtraction, we get:

COS (ang (7, WP);))-COS (ang (7, m)) = pd;{r} COS (ang (T/t), M))—COS (ang (7, m))
2)

One can observe that, for every point p € P\ {r}, we have:

cos (ang (7, m)) > cos (ang (7, WP)P))

so that each term in the sum of the right hand side of equation (2) is positive, which implies that the left hand
side is not smaller than each term in the right hand side, Q.E.D.
O

Lemma 7. Let P be a n-robot configuration and P' = P\ {r} u{r'}, with 6 = ang,;,(r, W(P),r") < 6(P), and
|r’|W(P) = |[rlw(py = minyep [plw(p). We have ¥ p € P, angmin(W(P), p, W(P")) < 6.

Proof. For this lemma, we assume that all angles are computed using a global orientation such that
_—
ang,i,(r, W(P),r") = ang(r, W(P),r"). Also we define @ = W(P")W(P) and arg,(r) = arg(u , pr)
From the previous lemma, we have:

COS(m_éW(P)(”)) - COS(aTéW(P’)(’J)) 2 COS(EW.’:W(P')(P)) - COS(aTéW(P) (p)) (3)
With the notations of Figure 5:
cos(7) —cos(t+80—-7y) >cos(B) —cos(B' +7') (4)

We observe that 7 < a_rfgW( py(r) < a_rfgW( pry(r") is not possible, because this would mean that the half-lines
HL(W(P),r) and HL(W(P'),r") intersect, which is not possible.

We can have three cases:
The case argyp(r) < m < argyp(r'): then

cos(argwpy(r)) — cos(argwpy(r')) < cos(argwpy(r)) +1<1-cos(6)
On the other hand, if argmin(W(P), p, W(P")) > 6, we have:

cos(argwpry(p)) - cos(argwp)(p) > 1 - cos(argmin(W(P), p, W(P'))) > 1 - cos(6)

which contradicts Equation 3, then we have argmi,(W(P), p, W(P')) < 6.
The case a_rfgW(P/) (ry<nm< a_rfgW(P) (r): again, we have

cos(@wp)(r)) - cos(@w(r) () < 1~ cos(@pry(r')) < 1 - cos(6)
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with the same argument, this implies that argmi, (W (P), p, W(P')) < 6.
The case a_rfgW( py(r) < a—rfgW( P’ (") < 7t This case corresponds to the configuration shown in Figure 5. Using
the notations of the figure, we want to prove that y’ < @ for any position of r, ', W(P), W(P'), and p (for an
arbitrary p € P~ {r}) verifying the conditions of the lemma. Like in previous cases, we suppose that y’ > 6 and
we reach a contradiction.

For simplicity, we suppose that |[W(P) — r| = 1 and we characterize the configuration using the angles 7, vy,
0, " and the distance [ = |W(P) — p| rather that the positions of the points. To this purpose, we start by giving
the distance w = |W(P) — W(P")| with respect to the angles 7, y, and 6 using the law of sinus:

sin(y)

b ’0 =.—
w(7.7.9) sin(t+60-7y)

Then, the angle 8’ is computed using the law of sinus:

Isin(y")

B'(1,y,0,1,y") = Bi(1,7,6,1,y") = arcsin
w(t,7,0)

) or B'(1,7.0,1,y") = B5(1.7.0,1.y") = n-B1(1.7.6,%".1)

which exists only if w(7,y,0) > Isin(y’). Then, we define fg:

fo: (T, v,0,1,y, i) > COs (ﬁl' (T, v,6,1, y')) - cos (,Bf (T, v,0,1, y') + y') —(cos(t)—cos(t+60-7y))

The domain of definition of fg is such that 6 € [0,7/4], y € [0,0), 7 € [0,7—0],1> 1,9 €[0,7/2],i € {1,2},
and w(7,y,0) > Isin(y"). In the sequel, except stated otherwise, fs(7,v,6,y',1,i) denotes the image by fs of an
arbitrary tuple (7,7,6,7’,1,i) in its definition domain. We want to show that if y' > 6, then fg(7,v,0,y',1,i) > 0,
which contradicts Equation 4. So now, for the sake of contradiction we suppose that y’ > 6. The following
claims 1 and 3 prove the lemma.

Claim 1: if w(7,y,0) > 1, then fs(7,7y,0,1,y',i) > 0. First, if w(7,7,0) > 1, we can use a simple lower bound:

cos(B1(1,7,6,1,y") —y") — cos(B1(7,7,0,1,¥")) > 1 — cos(y") > 1 — cos(6)
Also, w(7,7y,0) > 1 implies that sin(y) > sin(7 + 6 —y), which in turn implies that y > 7+ 6 —y. Then we have:
O>y>t+0-y>T1

so that
1 -cos(8) > cos(7) —cos(t+80-7y) = fo(1,7,0,L,y',i) >0

Claim 2: if w(7,7,0) < 1, The minimum of fg is the minimum of f3 : (1,7,0) ~ fs(7,7,0,1,6,2). We want to
show that the minimum of fy is reached when y’ is minimum (i.e., when y' = ), when [ = 1, and with i = 2.
Since [ > w(t,,0), then B = B1(7,7y,0,1,") > ¥'. First, we have:

cos(B3) — cos(B +7") = cos(m = By) = cos(x - B +') = cos(B} —¥') - cos(By)

Since B} < /2, from the concavity of the cosine in [0,7/2] and, if 8] + ¥ > 7/2, from the symmetry of the
cosine with respect to 7r/2, we have:

cos(B; - ') - cos(B}) < cos(B}) - cos (B +7')

So that the minimum of fg is obtained with i = 2. Moreover, since

n/2> B > B (1,7.6,1,6)

21



Then, again, by concavity of the cosine we have:

cos(B5) —cos(B5 +v') = cos(By —y") —cos(B]) > cos(B'(7,7,6,1,0) =) — cos(B'(1,7,6,1,0))
> cos(B'(1,7,6,1,0) - ) — cos(B'(t,7.6,1,6))

Finally, again, by concavity of the cosine, since 8'(7,7,0,1,0) < 8/ (t,7,0,1,6), we have:
cos(B'(1,7,6,1,0) — 0) — cos(B'(1,7,6,1,0)) > cos(B'(1,7,6,1,0) — ) — cos(B' (1, 7,6, 1,6))

So that f5(7,7,60,1,9,i) > f5(7,7.6,1,0,2) = f3(1,7,0).
Claim 3: if w(7,y,0) < 1, then f3(7,7,0) > 0. Let f; : T — f3(1,7,0) for fixed y and 6. By analyzing Function
[+, we observe that f; is increasing and then decreasing, so that the minimum of f; is obtained with the greatest
or smallest possible value of 7. For fixed 6 < /4, and y < 6, we must have 7 < 7 — 6 and 7 > 2y — 6 (because
w(t,y,0) <1).

On the one hand, we have (where y and 6 are chosen in the definition domain of f3):

Vy, V0, f3(mr—0,y,0) =1-cos(0) + cos(0) —cos(y) >0
and on the other hand, we have:
Yy, V0, f3(2y—-0,7,0) =1-cos(0) —cos(2y - 0) + cos(y) >0

Where the last inequality is true since cos(y) — cos(6) > 0.
i

Lemma 8. Let P be a n-robot configuration. Suppose the robots are indexed in the clockwise order ry, 1y, ...,
1 around the Weber point W(P). Let P' = P~ {r} u {r'}, with anguin(r, W(P),r") < 0(P)/2 and |r'|ypy =
Irlw(py = minie[y o1 |7ilw(p). Then, the robots in P’ are ordered in the same way as in P around W(P") (with r'
instead of r).

_
Proof. Using the same notation as the previous lemma, we define % = W(P")W(P) and arg,(r) = arg(u, pr).
We suppose that the ordering of the robots in P is such that aTg:W(P) (ri) < eféW(P) (riy1), forallie [1.n—1]
(a circular permutation of the ordering can make this true).
Foralli € [1..n], let r] = r; if r # r;, otherwise let r; = r’. We now show that r{,...,r) is an ordering of the
robots in P’ around W(P'). If r # r; and r # r;;1, we have:

zEg:W(P')(rl{) < aTg:W(P)(ri) +6(P)/2 from Lemma 7
<argyp)(riv1) — 6(P)/2 by definition of §(P)
< aT)gw(pl) (rl{+1) from Lemma 7

If r = ryy1, resp. r = r;, then we have @W(P)(r) < ar_g:W(P,)(r'), resp. aT’gW(P,)(r’) < ar_g:W(P)(r) +6(P), so that
the previous inequality holds.
Overall, @W(Pl)(rlf) < e@’w(p)(rlﬁrl) foralli e [1..n— 1], and the ordering is preserved.
mi

Theorem 5. Let P be a n-robot (n > 5) biangular configuration that contains a shifted robot. The shifted robot
is unique.

Proof. Let P be a biangular configuration with a shifted robot r (resp., r’), associated to the biangular set
Ppi = P~ {r} u{ry} (resp., associated to the biangular set P;; = P~ {r'} u{r;.}). For the sake of contradiction,
we suppose that r # /. From Lemma 8, the ordering is unchanged between P, P,; and P;i. So, letry, ..., ry
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be any ordering of robots in P around W(P). An ordering of robots in Py; (resp., P};) is obtained by replacing
r = ri, by rp; (resp., r' = ry by rp)-
If n > 5 and P is equiangular, there are 3 robots in Pp; N P[’,l- ordered in the same way around the center of
equiangularity. Their angles are uniquely determined by the difference between their indexes, indeed we have:
/ ‘i B J |27T
ang(r, W(P), ) = ang(r, W(P'),rj) = "2
Let arcy(a,b) be the set of points p such that ang(a, p,c) = a. arce(a,b) is a circular arc from a to b. Two
circular arcs intersect in at most two points, so that there is at most one point p ¢ {a,b,c} in arcy(a,b) N
arcg(b, ¢). This implies that that three robots are enough to deduce the position of the unique possible center of
equiangularity of Pp; and P;,. With a given center, there cannot be two shifted robots. Indeed, if ¢(Py;) = c¢(Py,;),
then the angles formed with " and the other robots are the same as the robot r;,; and [yl ) = [F']c(py ) e,
r'=rp.

If n > 8 and P is biangular, there are 3 robots in Pp; N Pfﬂ- whose difference between indexes are even, and
the previous argument holds.

The last case to consider is when n = 6 and P is biangular. In this case, if there are 3 robots in Pp;n P, whose
difference between indexes are even, then the previous argument holds. Otherwise, without loss of generality,
either {I"l, 2,13, 1’4} € Pyin Plln- or {rl, r3, r4, 1"6} € Pyin P;;i'

In the first case, the center of biangularity is the unique point of intersection of arcy,/3(ri,r3) with
arcyn)3 (r2,74). Indeed, the intersection is unique due to the ordering of robots.

In the second case, there can be two intersection points between arcy,/3(r1,73) and arcyy3(ra,76). We
suppose r = rp and 1’ = rs. Let @ < 3, resp. o' < 8, the two angles in the string of angles SA.(p,,)(Ppi), resp.
SAcry) (P},). For simplicity, we can suppose that & = arg(r, ¢(Pp;), pi)-

On the one hand, the robot r must be shifted in the orientation that decreases its angle with respect
to the other robots i.e., decreasing its angle with r;. On the other hand, r is in P;i so that » must verify
arg(re,c(Py;),r) = 2m/3. In particular, this implies that arg(ry,c(Py;),r) < arg(ri,c(Pp;), rp;) so that @’ < a.
Applying the same argument with 1’ leads to the contradiction @ < @’ < .

O

Theorem 3 (restated). Let n > 5, and P be a n-robot configuration that contains a CEB-set with a shifted robot.
Then, the shifted robot is unique.

Proof. Let P be a n-robot configuration that contains a CEB-set Q with a shifted robot. If the whole configura-
tion is biangular, Theorem 5 implies the result.

Otherwise, the configuration is regular or sym-regular, the center is the center of S EC(P), and, even if
different robots can be considered as shifted (when |Q| < 5), there can be only one robot that minimizes the
angle with the other robots. m|

23



4 -
, .
! 0 ~Ch \
\ \
! 3 \.7"2
\ \\ rl ~ ,l
\ N /
PR SN
N N 5 . a
5 e o
---""ro
(b) Execution of functions (c) Execution of  function
locateEnoughRobots(i) and rotateRobotOnCircle

(a) part of a guided configuration, lo-
cleanExterior (i)

cated near the center.
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(e) Execution of removeRobotsInExcess(i) when i = 1
when the 3 greatest robots form the regular 3-gon, rg

moves toward ¢(P). Then r; moves a little toward ¢(P).

Figure 2: Illustration of the pattern formation algorithm
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Figure 3: The blue region represents the possible location of fi. The red region represent the other possible locations of
/1 (based on the position of the visible robots U(P)).

Figure 4: Part of the configuration P, for the proof that y’ cannot be greater than 6.
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