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Abstract

We propose a new probabilistic pattern formation algorithm for oblivious mobile robots that oper-

ate in the ASYNC model. Unlike previous work, our algorithm makes no assumptions about the local

coordinate systems of robots (the robots do not share a common “North” nor a common “Right”), yet

it preserves the ability to form any general pattern (and not just patterns that satisfy symmetricity pred-

icates). Our proposal also gets rid of the previous assumption (in the same model) that robots do not

pause while moving (so, our robots really are fully asynchronous), and the amount of randomness is kept

low – a single random bit per robot per Look-Compute-Move cycle is used. Our protocol consists in the

combination of two phases, a probabilistic leader election phase, and a deterministic pattern formation

one. As the deterministic phase does not use chirality, it may be of independent interest in the determin-

istic context. A straightforward extension of our algorithm permits to form patterns with multiplicity

points (provided robots are endowed with multiplicity detection), a new feature in the context of pattern

formation that we believe is an important feature of our approach.
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1 Introduction

We consider a set of mobile robots that move freely in a continuous 2-dimensional Euclidian space. Each

robot repeats a Look-Compute-Move (LCM) cycle [10]. First, it Looks at its surroundings to obtain a snap-

shot containing the locations of all robots as points in the plane, with respect to its ego-centered coordinate

system. Based on this visual information, the robot Computes a destination and then Moves towards the

destination. The robots are identical, anonymous and oblivious i.e., the computed destination in each cycle

depends only on the snapshot obtained in the current cycle (and not on the past history of execution). The

snapshots obtained by the robots are not consistently oriented in any manner.

The literature defines three different models of execution: in the fully synchronous (FSYNC) model,

robots execute LCM cycles in a lock-step manner, in the semi-synchronous (SSYNC) model, each LCM

cycle is supposed atomic, and in the most general asynchronous (ASYNC) model, each phase of each LCM

cycle may take an arbitrary amount of time. This last model enables the possibility that a robot observes

another robot while the latter is moving (and moving robots appear in the snapshot exactly the same way

static robots do), and that move actions are based on obsolete observations.

In this particularly weak model it is interesting to characterize which additional assumptions are needed

for the robots to cooperatively perform a given task. In this paper, we consider the pattern formation problem

in the most general ASYNC model. The robots start in an arbitrary initial configuration where no two robots

occupy the same position, and are given the pattern to be formed as a set of coordinates in their own local

coordinate system. An algorithm solves the pattern formation problem is within finite time the robots form

the input pattern and remain stationary thereafter.

Related Works. The pattern formation problem has been extensively studied in the deterministic set-

ting [3, 2, 8, 9, 5, 11, 12, 6, 7, 10]. The seminal paper on mobile robots [10] presents a deterministic

solution to construct general patterns in the SSYNC model, with the added assumption that robots have ac-

cess to an infinite non-volatile memory (that is, robots are not oblivious). The construction was later refined

for the ASYNC model by Bouzid et al., still using a finite number of infinite precision variables.

The search for an oblivious solution to the general pattern formation proved difficult [7]. For oblivious

deterministic robots to be able to construct any general pattern, it is required that they agree on a common

“North” (that is, a common direction and orientation) but also on a common “Right” (that is, a common

chirality), so that robots get to all agree on a common coordinate system. If only a “North” (and implicitly

if only a “Right”) is available, then some patterns involving an even number of robots cannot be formed.

Relaxing the common coordinate system condition let to a characterization of the patterns that can be formed

by deterministic oblivious robots [8, 9, 12]. The best deterministic algorithm so far in the ASYNC model

without a common coordinate system [12] proves the following: If ρ denotes the geometric symmetricity of

a robot configuration, and I and P denote the initial and target configurations, respectively, then P can be

formed if and only if ρ(I) divides ρ(F). All aforementioned deterministic solutions assume that both the

input configurations and the target configuration do not have multiplicity points (that is, locations hosting

more than one robot), and that robots share a common chirality. Overall, oblivious deterministic algorithms

either need a common coordinate system or cannot form any general pattern.

To circumvent those impossibility results, the probabilistic path was taken by Yamauchi and Yamashita [13].

The robots are oblivious, operate in the most general ASYNC model, and can form any general pattern

from any general initial configuration, without assuming a common coordinate system. However, their ap-

proach [13] makes use of three hypotheses that are not proved to be necessary: (i) all robots share a common

chirality, (ii) a robot may not make an arbitrary long pause while moving (more precisely, it cannot be ob-

served twice at the same position by the same robot in two different Look-Compute-Move cycles while it

is moving), and (iii) infinitely many random bit are required (a robot requests a point chosen uniformly at

random in a continuous segment) anytime access to a random source is performed. While the latter two

are of more theoretical interest, the first one is intriguing, as a common chirality was also used extensively
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in the deterministic case. The following natural open question raises: is a common chirality a necessary

requirement for mobile robot general gathering ? As the answer is yes in the deterministic [7] case, we

concentrate on the probabilistic case.

Our contribution. In this paper, we propose a new probabilistic pattern formation algorithm for oblivious

mobile robots that operate in the ASYNC model. Unlike previous work, our algorithm makes no assump-

tions about the local coordinate systems of robots (they do not share a common “North” nor a common

“Right”), yet it preserves the ability to form any general pattern (and not just patterns such that ρ(I) divides

ρ(F)). Besides relieving the chirality assumption, our proposal also gets rid of the previous assumption [13]

that robots do not pause while moving (so, they really are fully asynchronous), and the amount of random-

ness is kept low – a single random bit per robot is used per use of the random source – (vs. infinitely many

previously [13]). Our protocol consists in the combination of two phases, a probabilistic leader election

phase, and a deterministic pattern formation one. As the deterministic phase does not use chirality, it may

be of independent interest in the deterministic context.

A straightforward extension of our algorithm permits to form patterns with multiplicity points (provided

robots are endowed with multiplicity detection), a new feature in the context of pattern formation that we

believe is an important feature of our approach.

2 Model and Notations

Robots operate in a 2-dimensional Euclidian space. Each robot has its own local coordinate system. For

simplicity, we assume the existence (unknown from the robots) of a global coordinate system. Whenever it

is clear from the context, we manipulate points in this global coordinate system, but each robot only sees the

points in its local system. We say two set of points A and B are similar, denoted A ≈ B, if B can be obtained

from A by translation, scaling, rotation, or symmetry. A configuration P is a set of positions of robots at a

given time. Each robot that looks at this configuration may see different (but similar) set of points.

Each time a robot is activated it starts a Look/Compute/Move cycle. After the look phase, a robot obtains

a configuration P representing the positions of the robots in its local coordinate system. After an arbitrary

delay, the robot computes a path to a destination. Then, it moves toward the destination following the

previously computed path. The duration of the move phase, and the delay between two phases, are chosen

by an adversary and can be arbitrary long. The adversary decides when robots are activated assuming a fair

scheduling i.e., in any configuration, all robots are activated within finite time. The adversary also controls

the robots movement along their target path and can stop a robot before reaching its destination, but not

before traveling at least a distance δ > 0 (δ being unknown to the robots).

An execution of an algorithm is an infinite sequence P(0),P(1), . . . of configurations. Let P(ψ) be the

set of all possible configurations in all possible executions of Algorithm ψ. A robot is static when it is not in

the moving phase. A configuration is static if all robots are static (note that this information is not known by

the robots). A configuration P is said to be empty for an algorithm ψ, denoted ψ(P) = ∅, if ψ does not order

any robot to move, otherwise the configuration is said to be active. A configuration P ∈ P(ψ) is terminal

(or stationary) for ψ if P is static and empty for ψ.

An algorithm ψ forms a pattern F if, for any execution P(0),P(1), . . ., there exists a time t such that

P(t′) ≈ F for all t′ ≥ t. In the sequel, F denotes the pattern to form.

Combination of Algorithms. Since robots are oblivious and the scheduling is asynchronous, we cannot

explicitly concatenate several algorithms to be executed in a specific order. However, one can simulate

the effect of concatenation of two (or more) algorithms by inferring from the current configuration which

algorithm to execute. Implementing this technique is feasible if sub-algorithms have disjoint active sets, and

robots do not switch sub-algorithms when in a configuration containing moving robots. We say an algorithm

ψ satisfies the termination awareness property if empty configurations are terminal.
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A combination of algorithms is a set Ψ of algorithms that each satisfies the termination awareness prop-

erty, and having disjoint active sets. The fact that one algorithm is executed before results from the relation

↝, where ψ1 ↝ ψ2 holds if an execution of ψ1 starting with an active configuration of ψ1 contains an active

configuration of ψ2. We say that a combination of algorithms Ψ is partially ordered if the transitive closure of

the relation ↝ is a partial order on the set Ψ. A partially ordered combination Ψ = {ψ1, . . . , ψp} is useful be-

cause it terminates if and only if each algorithm ψi terminates. Moreover, terminal(Ψ) = ⋂r
i=1 terminal(ψi)

and Ψ satisfies the termination awareness property. We denote ψ∣A the restriction of algorithm ψ to a set of

configurations A.

Notations. Let P be a set of points, then C(P) denotes the smallest enclosing circle of P. If P is regular

(see Definition 1), then c(P) denotes the center of the regular set, otherwise c(P) denotes the center of

C(P). The circle of a robot r ∈ P is the circle centered at c(P) containing r. We say a robot moves on its

circle if its trajectory is contained in its circle. A radial movement is a linear movement whose origin and

destination are on the same half-line of origin c(P). We say a robot moves radially if it performs a radial

movement.

The pattern to form, F, is given to each robot as a set of points in their local coordinate system. However,

at each activation, robots can translate and scale their local coordinate system so that C(P) = C(F). Hence,

we suppose in the remainder of the paper that C(P) = C(F), and that the radius of C(P) is the common

unit distance (unless otherwise mentioned). This is possible because in our case, the configuration where all

robots share the same location (that is, are gathered) is not reachable. For two points a and b, ∣a∣b = ∣a − b∣
denotes the distance between a and b. In a n-robot configuration P, as we are often interested in the distance

between a point and the center c(P), we simply write ∣a∣ instead of ∣a∣c(P). Also, lP denotes the distance to

c(P) of the second closest point of P to c(P).
For a set S , ∣S ∣ denotes its cardinal. D(a) denotes the open disc of radius a centered at c(P). For an

open disc D, D denotes the closure of D, and Circum(D) = Circum(D) denotes its circumference. The

interior and the exterior of a disc or a circle do not include the circumference. We said that a set of points A

(or simply a point) holds C(P) if C(P/B) ≠ C(P), for a subset B ⊂ A.

The angle formed by three points u, v and w is denoted ang(u, v,w) ∈ [0,2π) and the orientation depends

on the context. If the orientation is not given, it is either clockwise or counterclockwise, but it does not vary

for a given robot during a cycle. Then, angmin(u, v,w) ∈ [0, π) denotes the minimum angle among both

orientations. The angle formed by two half-lines h1 and h2 with same origin o, denoted ang(h1,h2), is the

angle ang(u1,o,u2) where u1 ∈ h1 and u2 ∈ h2.

Let M be a set of points, Hc(M) denotes the set of half lines starting at a point c that contains at least one

robot in M. Let p ∈ M, αmin,c(p,M) denotes the minimum, not null, angle angmin(p, c,m) where m ∈ M.

Then, αmin,c(M) denotes the minimum αmin,c(p,M) for all p in M (i.e., the minimum angle between two

half lines in Hc(M)). If c is clear from the context (especially, if c = c(M)), it is omitted. Finally, we say

that a robot r is selected if r ∈ D (lF/2) and r is the only robot in D (2∣r∣) (see Figure 1a).

Local View and Symmetricity. Let P be a configuration and r ∈ P. If r ≠ c(P), we define the local view

Zr of robot r as the set of positions of robots in P in the polar coordinate system centered at c(P) where r

is at coordinate (1,0) and with the orientation that maximizes the view (using the lexicographic order over

the set of coordinates). Of course, if both orientations give the same view, r is on an axis of symmetry. Two

robots are equivalent if they have the same view with the same orientation. It is known that all equivalency

classes have the same cardinal, which is the rotational symmetry factor ρ(P) (also called the symmetricity

of P). Moreover, if ρ(P) > 1, each equivalency classes forms a ρ(P)-gon centered at c(P). However, If

ρ(P) = 1, the configuration can have an axis of symmetry. In this case, for all r ∈ P, either r has a symmetric

robot that has the same view with a different orientation, or r’s view is invariant with both orientations (r is

on the axis of symmetry). Moreover, if there is one axis of symmetry, then there are ρ(P) axes of symmetry,

and the robots cannot agree on a common orientation.
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Regular Set. We now give several definitions to characterize in a configuration what symmetry informa-

tion can be retained from past configurations. In more details, starting from a symmetric configuration, we

want to move a subset of robots while keeping the information that the initial configuration was symmetric.

To do so, we give the definition of the m-regular set of a configuration. Every symmetric configuration

contains a unique m-regular set and if a configuration contains a m-regular set and we know that only the

robots in this subset have moved, then the previous configuration contains the same m-regular set. First, we

give the conditions for a set to be m-regular (see Figures 1b and 1c).

Definition 1. A set of robots M, with m = ∣M∣ ≥ 2, is m-regular (resp. m/2-regular) if there is a point c and an

angle α (resp. two angles α and β) such that Hc(M) = {h0, . . .hm−1} and for all 0 ≤ i < m, ang(hi,hi+1) = α
(resp. ang(hi,hi+1) = α if i is even, β otherwise) were hm = h0. If M is m/2-regular, we say it is bi-angled,

and the lines that cut equally the angle formed by hi and hi+1 are called the virtual axes of symmetry of M.

The center and the angles α and β of a m-regular set are unique and be computed in linear time [1].

Moreover, a m-regular set remains m-regular (with the same center) upon radial moves of the robots in M.

Indeed, the center of a m-regular set is its Weber point [1], which is unique and invariant under straight line

movement towards it. Regular sets were defined by Bouzid et al. [3], but we use here a simpler definition

that only captures equiangular and biangular configurations.

We now define the regular set of a configuration, which represent intuitively the regular set that is closest

to the center. In the following definition it is crucial to observe that, in order for a configuration to have

a m-regular set, it is not sufficient to have a subset that is m-regular. Indeed, the entire configuration must

satisfy additional requirements to be coherent with the m-regular subset.

Let P be a n-robot configuration (with c(P) ∉ P). We consider the increasing sequence of subset of

robots Q1, . . . , Qk (k ≤ n) where Qi contains the i robots in P with greatest local view that does not hold

C(P). Since the local views are uniquely defined and the fact whether a robot hold C(P) is computed the

same way by all robots, then the sequence (Qi)1≤i≤k is also uniquely defined. For each Qi in this sequence,

every robot can check (a) whether Qi is m-regular with center c(P). If so, it can check (b) whether m divides

ρ(P/Qi), and (c), in the case when Qi is bi-angled, whether the virtual axis of symmetry of Qi are axes of

symmetry of P/Qi. Among all Qi that satisfy those three properties, let Qmax be the largest one (or the empty

set if no such Qi exists). Again, Qmax is uniquely defined.

Definition 2 (The regular set reg(P) of a configuration P). Let P be a n-robot configuration (with c(P) ∉ P).

If P is a m-regular set (with m = n, or m = n/2), then reg(P) = P. Otherwise, reg(P) = Qmax. If reg(P) = ∅,

we say that the configuration P does not contain a regular set.

Property 1. Let P be a n-robot configuration. If ρ(P) > 1, or if P contains an axis of symmetry, then P

contains a regular set.

By construction, the regular set of a configuration is unique and, if P ≠ reg(P), its center is the center

of C(P). For our purpose, we need to be able to elect a robot in a regular set. This is possible by shifting a

single robot i.e., by moving it on its circle, so that it is the only robot that breaks the regularity. In this case

we say the configuration contains a shifted regular set (see Figure 1d).

Definition 3. Let P be a n-robot configuration. Then, P contains a ε-shifted-m-regular set (with 0 < ε ≤ 1/4)

if there exist r ∈ P and r′ ∈ R2/P such that P′ = P−{r}∪{r′} contains a m-regular set of center c satisfying:

(a) angmin(r, c, r′) = εαmin(P′), (b) αmin(r,P) < αmin(r′,P′), and (c) ∣r∣ = ∣r′∣ = minu∈P ∣u∣. In this case, ε

is the shift, r is the shifted robot, and reg(P) = reg(P′) − {r′} ∪ {r} is the shifted regular set of P. The

associated regular set of reg(P) is reg(P′).
A shifted-regular set is obtained from a regular set Q by moving one of the robot that is closest to the

center. This robot moves on its circle in the direction that decreases the minimum angle with the other
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C(P) = C(F)

lF

α
α

β

< αmin/4

Figure 1: (a) A configuration of robots that contains a selected robot and the pattern to form (white nodes),

(b) a 5-regular set, (c) a bi-angled 4-regular set and (d) a bi-angled shifted-4-regular set

reg(P)

(a) A configuration that strictly con-

tains a bi-angled 2-regular set.

2 = ρ(P/reg(P)) and the virtual

axis of reg(P) are axis of sym-

metry of P/reg(P).

reg(P)

(b) A configuration that strictly con-

tains a 4-regular set. We see that

4 divides 8 = ρ(P/reg(P)).

r1

r′1

r2
r3

r4

r′4
r′3

r′2

(c) r1 and r′1 have the greatest view

but hold C(P) so reg(P) =
{r2, r

′

2}.
Figure 2: Examples of configurations that strictly contain a regular set.

robots. The shift ε is the factor between angle ang(r, c(P), r′) and the minimum angle between every two

half-lines centered at c(P). The robots can check if a the configuration contains a ε-shifted-m-regular set; it

is unique if ∣P∣ ≥ 7.

Theorem 1. Let n ≥ 7 and P be a n-robot configuration that contains a ε-shifted-m-regular set Q of center

c. Then Q, c, m, ε and the shifted robot are unique.

Algorithm overview The algorithm consists of several phases, described in pseudo-code in algorithm

formPattern. Line 6 corresponds to randomized symmetry breaking algorithm ψRS B descripted in section

3. Lines 7 to 17 correspond to the deterministic pattern formation algorithm ψDPF descripted in section 4.

Each function calls correspond to a phase that is executed if and only its phase condition is not verified. If

the condition is verified, the next phase is considered. Each time a robot is activated, it must find the first

phase with a condition that is not verified and follow the corresponding instructions. Each phase is done not

to break the previous phase conditions. The condition line 3 is checked before because the movement line 4

breaks the condition of the other phases.

3 Randomized Symmetry Breaking Algorithm

In this section we describe Algorithm ψRS B. A n-robot configuration P is in the active set of ψRS B if (i) P

does not have a selected robot, (ii) if does not have a unique robot with maximal view, or (iii) if the set P from

which we remove the robot with maximum view forms the pattern F from which we remove one of the point

with maximal view. The goal of ψRS B is, starting from any active configuration, to obtain a configuration

with a selected robot (and thus is not in the active set of ψRS B). We partition the active set of ψRS B in two

sets Q and Qc, depending whether the configuration contains a regular set or not, and we study the two

algorithms ψRS B∣Q and ψRS B∣Qc separately. We show that both algorithms satisfy the termination awareness
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Algorithm formPattern: main algorithm that forms a pattern F

1 ClosestF ← { f s.t. f has a maximal view and f does not hold C(F)}
2 ClosestP ← {r s.t. r has a maximal view}
3 if ClosestP = {r} and ∃ f ∈ ClosestF s.t. P − {r} ≈ F − { f} then

4 r moves toward f

5 else

6 rs ← selectARobot()
7 Z ← createGlobalCoordinateS ystem(rs )
8 P′ ← P − {rs}
9 F′ ← F − { fmax} (where fmax is a robot with a maximal view)

10 Let C1, C2, . . ., Cm be the m circles centered at c(P) with decreasing radius, each containing at least one point in F′ . For each

1 ≤ i ≤ m, let mi = ∣Ci ∩ F′ ∣ > 0

11 if ∣Ci ∩ F′ ∣ = 2 then

12 f ixEnclosingCircle()

13 for i = 1, 2, . . . ,m do

14 cleanExterior(i)
15 locateEnoughRobots(i)
16 removeRobotsInExcess(i)

17 rotateRobotOnCircle()

property, and terminate with probability one. Also, ψRS B∣Qc
↝ ψRS B∣Q , so that ψRS B = {ψRS B∣Q , ψRS B∣Qc}

is a partially ordered combination of algorithm. The pseudo-code of this phase is given in the procedure

selectARobot called line 6 of the main algorithm. The phase is ignored if the phase condition is verified.

3.1 The current configuration P is in Q.

In this subsection, Q denotes the m-regular set (shifted of not) of P. Also, all movements ordered by ψRS B∣Q
are done so that any configuration that is immediately reachable from P also contains a regular set (possibly

shifted) with the same robot and the same center as Q (see property 2 in the appendix). This feature is

important to ensure that, when a robot becomes selected, all robots in P are static so that ψRS B∣Q satisfies

the termination awareness property.

If the regular set is not shifted, the goal is to elect a robot among robots in Q. Once a robot is elected (see

below how the probabilistic election process takes place), it moves on its circle to create a shift ε = 1/8. If

the regular set is shifted with a shift 1/8 < ε < 1/4 such that the other robots in Q are not on the same circle

as the shifted robot, then the shifted robot moves on its circle to create a shift ε = 1/8. The shifted robot may

be activated multiple times before reaching a configuration with a 1/8-shifted regular set. If another robot

in Q is activated during the movement of the shifted robot (i.e., when the shift is not exactly 1/8), it chooses

not to move.

If the configuration P contains a shifted regular set with a shift ε = 1/8, the shifted robot does not move

and the other robot in the shifted regular set move radially to reach the circle of the shifted robot. When it is

done, and when the shifted robot is activated, it knows that the other robots have reached their destination and

are now static. Thus it can start its last movement to become selected. It first moves on its circle so that the

shift is ε = 1/4, and then moves radially toward c(P) until it becomes selected. During this last movement,

all the other robots are static so that when the shifted robot become selected, the whole configuration is

static. So the algorithm ψRS B∣Q satisfies the termination awareness property. The probabilistic, and most

challenging, part of the algorithm ψRS B∣Q is therefore the robot election.

Robot Election. If the current configuration P contains a regular set Q, the goal is to elect a robot. A

robot re is elected when ∣re∣ < 7
8

minr∈Q−{re} ∣r∣ where distances are taken from c(P). A robot is aware that

it is elected if it is elected during its look phase. When a robot is aware it is elected, it moves on its circle

to create a 1/8-shifted-regular set. To elect a robot, each robot r in Q proceeds in the following way. If

there is another robot in Q that is strictly closer to the center, then r does not move. If r is not elected and
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Algorithm selectARobot: select a robot

Phase Condition: There exists a selected robot rs

Returned Value: rs

if P contains a ε-shifted regulard set Q then
re ← the shifted robot

S ← {r ∈ P ∣ ∣r∣ > ∣re∣}
if S ≠ ∅ and ε ≠ 1/8 then

re moves on its circle to create a 1/8-shifted regular set

else if S ≠ ∅ and ε = 1/8 then

for r ∈ S do
r moves radially at distance ∣r∣ from c(P)

else if ε < 1/4 then
re moves on its circle to create a 1/4-shifted regular set

else
re moves radially toward c(P) to become selected

else if P contains a regulard set Q then

if P/Q = ∅ then

d ← minr′∈P/Q ∣r′∣
else

d ←∞
handlePartiallyFormedPattern()

for r ∈ P do

if ∣r∣ < 7
8

minr∈Q−{r} ∣r∣ then

r moves on its circle to create a 1/8-shifted regular set

else if {r′ ≠ r s.t. ∣r′∣ < ∣r∣} = ∅ then
c← 1 with probability 1/2, 0 otherwise

if c then
r moves a distance ∣r∣/8 toward c(P)

else

r moves a distance min ( 1
2
(d − ∣r∣) , 1

7
∣r∣) away from c(P)

else
rmax ← unique robot with maximum view that does not hold C(P)
if ∃r ∈ [rmax, c(P)], P ∪ {r} − {rmax} is regular then

rmax moves toward r

else
rmax moves toward c(P)

is one of the closest robot (unique or not), then r chooses randomly (each choice with probability 1/2) to go

toward or away from the center c(P). If r chooses to move toward the center, it moves a distance ∣r∣/8. If r

chooses to move away to the center, it moves a (possible null) distance min (1
2
(d − ∣r∣) , 1

7
∣r∣), where d is the

minimum distance to the center among robots in P/Q (and d = ∞ if P/Q = ∅). This ensures that robots in

Q does not move outside Dmax defined in Property 2, so that it is a (M1)movement. We observe that during

that phase, no robot becomes selected. Indeed if r is the closest robot to the center and lQ = minr′∈Q−{r} ∣r′∣,
then lQ ≥ ∣r∣ ≥ 3

4
lQ >

1
2
lQ, so that other robots are in D (2∣r∣). Also, to ensure that n − 1 robots cannot form

part of the pattern, a special case is handled by calling the function handlePartiallyFormedPattern() (which

is discribed in the appendix). So that the configuration cannot leave the active set of ψRS B∣Q without being

aware of it. The following properties hold: (i) eventually one robot is aware it is elected with probability

one, and (ii) once a robot is aware it is elected, another robot cannot be elected.

Lemma 1. The following properties hold: (i) eventually one robot is aware it is elected with probability

one, and (ii) once a robot is aware it is elected, another robot cannot be elected.

Proof. i) Suppose first that robots always reach their destination. Initially the configuration is in a state

where there are at least two robots whose location (or destination for those that are moving) are the closest

to the center. Let r be the first (or one of the first) activated robot among them. With probability 1/2, it

chooses to move toward the center. Let r′ be another robot among them. If r′ is activated after r begins

7



its movement, r′ does not move, otherwise it moves away from the center with probability 1/2. So with

probability greater than 1/2n, r is the only robot to move toward the center. After that, if another robot is

activated before the next activation of r, it does not move. At the next activation of r, with probability 1/2, r

chooses to move toward the center and becomes elected (and r is aware it is elected when it is next activated

since the other robots are static). If this does not happen, i.e., if the first or the second choice of r is to

move away the center or if another robot chose to move toward the center, then the configuration gets back

to its initial state. So, we have infinitely often a probability greater than 1/2n+1 to have an elected robot. So,

eventually there is a single elected robot with probability one.

If robots does not always reach their destinations, the probability that r moves by a distance d toward

the center (to become elected), is 1/2⌈ d
δ
⌉, instead of 1/4 in the first case. Indeed, in the first case r needs to

chose two times to move toward the center, and here r needs to choose ⌈ d
δ
⌉ times to move toward the center.

The probability that one of the other robot chooses to move away (and stay still while it is not one of the

closest robot to the center) is still 1/2. So that there is again a non null probability that a robot is elected,

which implies that a robot is eventually elected with probability one.

ii) Once a robot re is elected, the other robots are currently either moving away, not moving, or moving

toward the center by a distance at most the eighth of their distance to the center. In each case, when another

robot looks again (after it finishes its movement) it sees that the robot re is the only closest robot to the center,

and then it chooses not to move. Indeed, if another robot r is moving toward the center, it is by a distance at

most ∣r∣/8. Since we have ∣re∣ < 7
8
∣r∣ when r started its movement, we have ∣re∣ < ∣r∣ after r finishes it. After

r’s movement, re is maybe no longer elected, but since re was aware it was elected, it already chooses to

move on its circle to create a 1/8-shifted-regular set (and it moves by a non null distance, so that in the next

look phase, it is shifted). �

We shown that if P is in Q, then eventually a robot become selected with probability one. As soon

as the elected robot is selected, the configuration is static. Finally, until the elected robot is selected, the

configuration remains in Q and cannot reach a configuration in Qc. Thus we have the following lemma:

Lemma 2. ψRS B∣Q terminates in finite time with probability one, ψRS B∣Q ↝ ψDPF, ψRS B∣Qc
ª ψRS B∣Q , and

ψRS B∣Q satisfies the termination awareness property.

3.2 The current configuration P is in Qc.

If P ∈ Qc, then, by Property 1, ρ(P) = 1 and P does not have an axis of symmetry. So, all robots have distinct

views and there exists a unique robot rmax with maximum view, among the robots that do not hold C(P).
If the robot with maximum view holds C(P), then all robots are on C(P). Since the algorithm ψRS B∣Qc

only orders rmax to move toward the center c(P), as soon as rmax moves it becomes the unique robot with

maximum view, and remains the only robot ordered to move by ψRS B∣Qc
.

First, ψRS B∣Qc
checks if there is a position in the segment [rmax, c(P)) such that the whole configuration

is a regular set (shifted or not). If it is the case, the first such point in the path becomes the destination of rmax.

Otherwise, rmax is ordered to move toward the center until it becomes selected. The resulting configuration

cannot strictly contains a regular set since P does not contain one and rmax performs a radial movement.

Starting from a static initial configuration, once rmin is selected, or once the configuration is regular, all the

robots are static, so we have the following lemma:

Lemma 3. ψRS B∣Qc
terminates in finite time, ψRS B∣Qc

↝ ψDPF, ψRS B∣Qc
↝ ψRS B∣Q , and ψRS B∣Qc

satisfies the

termination awareness property.
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4 Deterministic Pattern Formation without Chirality

We now present a new deterministic pattern formation algorithm ψDPF that forms an arbitrary pattern F from

an initial configuration that contains a selected robot. The initial n-robot configuration P must either contain

a selected robot rs or have a unique robot with maximum view and the other robots form the pattern F from

which we remove a robot with maximal view. In order to be part of the main pattern formation algorithm

Ψ, the algorithm ψDPF ensures that this initial condition remains true during the entire executionWhen the

set P − {rs} match the pattern, then rs moves to its final destination (line 4). The destination of rs is a point

fs in F that has maximal view, among points that do not hold C(F) (which always exists if ∣F∣ ≥ 4). The

selected robot remains the unique robot with maximum view during this last move. So first, the robots in

P′ = P − {rs} have to form the pattern F′ = F − { fs}. Even if f ′s is another point with maximal view (that

does not hold C(F)), F−{ fs} ≈ F−{ f ′s} so that the choice of the point with maximal view is not important.

The algorithm does not assume that the robots are aware of a global orientation (chirality). For that, the

algorithm ensures that the configuration is never axially symmetric, except maybe in the initial configuration

and in the terminal configuration. Also, since there is a selected robot, the symmetricity is one. So, all robots

can agree on a common global oriented coordinate system at any time of the algorithm. The algorithm ψDPF

consists in three phases. The first phase (line 7) creates the global oriented coordinate system. The second

phase (line 14, 15 and 16) moves robots so that they are at the right distance to the center c(P). The last

phase (line 17) moves robots on their circle to create the pattern.

Algorithm createGlobalCoordinateSystem: create the global coordinate system

Phase Condition: There exists a robot rmax such that:

i) ∣rmax∣ = minr∈P−{rs} ∣r∣
ii) angmin(rs, c(P), rmax) = minr∈P−{rs} angmin(rs , c(P), r)
iii) ∣rmax∣ ≤ ∣ fmax∣
iv) 2angmin(rs , c(P), rmax) < θF′ with

θF′ = min ({π} ∪ {angmin( fmax, c(F), f ) ∣ f ∈ F′ − { fmax}, ∣ f ∣ = ∣ fmax∣})

(where fmax is any robot in F′ that maximizes the view)

Returned Value: the polar coordinate system of center c(P), vector
ÐÐÐÐÐ→
c(P)rmax, and the orientation that maximizes the coordinates of rs

if rs = c(P) then
rmax ← minr∈P−{rs} ∣r∣
d ← min(lF ,minr∈P′ ∣r∣)/2
rs moves at distance d from c(P) such that i), ii) and iv) are true

else

if ∃rmax such that i), ii) and iv) are true then
rmax moves toward c(P) at distance ∣ fmax ∣ from c(P)

else
rs moves toward c(P)

Phase 1. In this phase (described in algorithm createGlobalCoordinateSystem), only two robots move in

order to create the global coordinate system used in the remainder of Algorithm ψDPF. We need a unique

robot rmax in P − {rs} that satisfies the following conditions (distances are taken from c(P) = c(F)): i)

∣rmax∣ = minr∈P−{rs} ∣r∣; ii) angmin(rs, c(P), rmax) = minr∈P−{rs} angmin(rs, c(P), r); iii) 2angmin(rs, c(P), rmax) <
θF′ with

θF′ = min ({π} ∪ {angmin( fmax, c(F), f ) ∣ f ∈ F′ − { fmax}, ∣ f ∣ = ∣ fmax∣})
(where fmax is any robot in F′ that maximizes the view). In particular, rmax maximizes the view among

robots in P − {rs}. If rmax does not exist initially, the selected robot rs moves to the center c(P) and then

moves to create a unique rmax. Indeed, once rs is at c(P), it can choose any robot r ∈ P − {rs} that is the

closest to c(P) and moves a little in a direction so that the angle angmin(rs, c(P), r) is small enough for r to

satisfy the last two conditions. Finally, if ∣ fmax∣ < ∣rmax∣, then rmax moves radially at the same distance from
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c(P) as fmax. The phase ends when rmax exists and is at most at distance ∣ fmax∣ from the center c(P). Note

that rs can still be in movement, but the definition of the global coordinate system does not depend on the

distance ∣rs∣.
The existence of rmax implies that we can define a global polar coordinate system Z ∶ R → R+ × [0,2π),

with center c(P), vector
ÐÐÐÐÐ→

c(P)rmax, and the orientation that maximizes the coordinates of rs. If rs, rmax,

and C(P) do not change, then Z remains invariant. We already have C(F′) = C(P) and from now, F′ is

mirrored so that the orientation of a point with maximal view fmax coincides with the orientation of Z, and

rotated so that the points fmax and rmax are on the same half-line of origin c(P). Again the choice of fmax

and the choice of the orientation (if both orientations of fmax have a maximal view) are not important since

the resulting coordinates of points in F′ in Z are identical. So, from now on, robots see the points in F′ in

the same way in the global coordinate system.

Phase 2. Thanks to this global coordinates system Z, we can strictly order the robots of P′ = P − {rs},
rmax = rn−1 < rn−2 < . . . < r1 using the lexicographic order on their polar coordinates. We keep this ordering

unchanged during the remainder of the algorithm.

This phase consists in moving robots so that there is the right number of robots on each circle centered

at c(P). Let C1, C2, . . ., Cm be the m circles centered at c(P) with decreasing radius, each containing at

least one point in F′. For each 1 ≤ i ≤ m, let mi = ∣Ci ∩ F′∣ > 0. We have ∑m
i=1 mi = ∣F′∣ = n − 1.

Before beginning this phase we move the robots that have a null angle (except rmax) on their circle in the

direct orientation while preserving the order (i.e., without reaching another robot), so that no robot has a null

angle (except rmax). This is required for proper operation of action ii), defined below. Also, if m1 = 2, since

two robots cannot move on C(P) synchronously to hold C(P), we need to execute a pre-phase to ensure

that the two robots are located at the two points of C(P) ∩ F, keeping C(P) unchanged. Informally, this

pre-phase moves a robot on C(P) if there are only two robot on it, then the two greatest robot reach their

destination point in F ∩ C(P). Then the other robots can leave safely C(P). So now we suppose that if

m1 = 2, then C1 already contains two robots located at their corresponding point in F.

Recursively we move robots such that each circle Ci contains exactly mi robots. We define the following

procedure for a given i, 1 ≤ i ≤ m. The procedure executes four actions sequentially and assumes, if i > 1,

that ∣interior(Ci−1) ∩ P′∣ = ∑m
j=i m j.

cleanExterior(i) If i > 1 and ∣interior(Ci−1)∩ exterior(Ci)∩P′∣ > 0, then the smallest robot in exterior(Ci)
moves to Ci while it remains greater than robots already in Ci. To do so it can move a little toward c(P), so

that there is no other robot in its circle, then moves on its circle so that its angle is greater than the angles

of robots in Ci, and finally moves radially toward c(P) to reach Ci. If i = m, we also ensure that its angle is

less than 2π − ang(rs , c(P), rmax), so that the second property of rmax defined in phase 1 remains true. We

repeat this process until there are no more robots between Ci−1 and Ci.

Algorithm cleanExterior(i): remove robots outside Ci

Phase Condition: i = 1 or ∣interior(Ci−1 ∩ exterior(Ci) ∩ P′∣ = 0

r ← smallest robot in exterior(Ci)
C ← circle centered at c(P) that contains r

if ∣C ∩ P∣ > 1 then
r moves toward c(P) without reaching the circle of another robot nor Ci

else

a← maxr′∈Ci
ang(rmax , c(P), r′) if ang(rmax , c(P), r) > a then

r moves toward c(P) to reach Ci

else
r moves on Ci in the direct orientation to have an angle (2π + a)/2

locateEnoughRobots(i) If ∣Ci∩P′∣ < mi, then we have ∣interior(Ci)∩P′∣ ≥ 1. Indeed, if i = 1, ∣interior(C1)∩
P′∣ = m1− ∣C1∩P′∣ ≥ 1, otherwise, there are by hypothesis at least mi robots inside Ci−1, and after performing
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action i), theses robots are not between Ci and Ci−1. We order the greatest robot in interior(Ci) to move to

Ci while remaining smaller than robots already in Ci. To do so, it can move a little away from c(P) so that

there is no other robot in its circle, then moves on its circle so that its angle is smaller than the angles of

robots in Ci (but not null) and finally moves radially away from c(P) to reach Ci. We can repeat this process

until there are exactly mi robots on Ci.

Algorithm locateEnoughRobots(i): locate enough robots on Ci

Phase Condition: ∣Ci ∩ P′∣ ≥ mi

r ← greatest robot in interior(Ci)
C ← circle centered at c(P) that contains r

if ∣C ∩ P∣ > 1 then
r moves away from toward c(P) without reaching the circle of another robot nor Ci

else
a← minr′∈Ci

ang(rmax , c(P), r′)
if ang(rmax, c(P), r) < a then

r moves away from c(P) to reach Ci

else
r moves on Ci in the indirect orientation to have an angle a/2

removeRobotsInExcess(i) If i > 1 and ∣Ci ∩ P′∣ > mi, then the smallest robot in Ci moves a little toward

c(P) (here, “a little” means a small distance such that the order is preserved i.e., the robot does not reach

the circle of another robot nor Ci+1). We repeat this process until there are exactly mi robots on Ci.

If i = 1 and ∣C1∩P′∣ > m1, then we cannot do the exact same thing because we have to ensure that C(P) does

not change. However, we know that m1 ≥ 3. The m1 greatest robots r1, . . . , rm1
remain on C1, and have to be

the only robots to hold C(P). To do so, the angles formed by two consecutive robots in {r1, . . . , rm1
} have to

be smaller than or equals to π. This is obtained by moving the robots on C1, while preserving the ordering

and C(P), such that r1, . . . , rm1
form the regular m1-gon that have the line c(P)rmax as an axis of symmetry.

At the same time, if the m1-gon is not formed yet, other robots in C1 move on C1 to be evenly distributed in

the arc between angle 0 and π/m1 (the blue arc in Figure 4), again while preserving the ordering and C(P).
Overall, each robot on C1 has a deterministic (and non-blocking) destination. Once the m1-gon is formed

(even if some other robots are still moving), the smallest robot in C(P)∩P moves a little toward c(P). This

is repeated until only r1, . . . , rm1
remain on C1.

Algorithm removeRobotsInExcess(i): remove robot in excess on Ci

Phase Condition: ∣Ci ∩ P′∣ = mi

//Where Poly(a, b) denotes the set of vertice of the regular a-gon centered at c(P) that have the line c(P)rmax as axis of symmetry union b

points evenly distributed in the arc between angle 0 and π/a
if i > 1 then

r ← smallest robot on Ci

r moves toward c(P) without reaching the circle of another robot

else

if robots the m1 greatest robots on C1 forms Poly(m1 , 0) then
r ← smallest robot on C1

r moves toward c(P) without reaching the circle of another robot

else
robots on C1 form Poly(m1 , ∣P ∩C1∣ −m1)

After executing the above procedure for a given i, we have mi robots on Ci and ∣interior(Ci) ∩ P′∣ =
∣interior(Ci−1) ∩ P′∣ − mi = ∑m

j=i+1 m j, so that we can execute the same procedure with i + 1. If i < m it is

important to observe that some robots (those ordered to move in the last two cases) may still be in movement,

but since they are now strictly between Ci and Ci+1, they receive new order with deterministic destinations

when executing the procedure with i+ 1. Hence, at the end of the procedure with i = m, all robots are static.

Also, if i = m, rmax may be ordered to move radially to fmax, but if it is the case, only the distances of Z
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change, so the ordering is preserved.

After executing those actions for i = 1,2, . . . ,m, each circle contains the right number of robots.

θ

< θ/2c(P) = rs

rmaxfmax

Figure 3.a: Step 1: rs create a

unique robot rmax (θ = θF′), then

rmax move to reach the circle of

fmax.

C2

C1

rmax

rs

r8

r7
r6

r5

r4

r3

r2

r1

Figure 3.b: Resolution of the case

i) and ii)

C2

C1

rmax

rs

Figure 3.c: Second phase of the

pattern formation agorithm

Phase 3. Let i ∈ [1,m], Ci now contains mi robots and mi destinations for those robots. The robots and

the destinations are ordered so that each robot is aware of its corresponding destination. They can all move

toward their destination, while remaining on Ci and preserving the robots ordering (i.e., without reaching

another robot position). When a robot r is active and another robot is on the way, r choose on the circle half

the distance to this robot. There cannot be a deadlock since there is no cycle in the waiting relation. Indeed,

robots on Ci are ordered by angle so that they behave like they are on a finite segment of length 2π.

If i = 1, during their movement, robots also ensure that C(P) remains unchanged. To do so, if a robot

r ∈ C1 is active and detects that its movement can modify C(P), then it moves the most it can without

changing C(P).
At the end of the phase, robots in P − {rs} form F′ and rs can move directly to fs. There is no robot on

the path to fs because fs is one of the closest point to the center. Also, C(P) does not change so that the

robots can easily check whether they are in this last step. After this movement, the robots form F.

Lemma 4. ψRS B terminates in finite time, ψRS B ª ψDPF and ψDPF satisfies the termination awareness

property.

From Lemmas 2, 3, and 4, we can state our main result:

Theorem 2. The combination of algorithms {ψRS B, ψDPF} forms any pattern F from any initial configura-

tion I (that do not contain multiplicity points) with probability 1, provided n ≥ 7.

C2

C1

rmax

rs

r5

r4

r3 r2

r1

C2

C1

rmax

rs

(2)

(1)
r5

r4

r3

r2

r1

Figure 4: Resolution of the case iv) (with m1 = 3). When the 3 greatest robots form the regular 3-gon, r5 moves

toward c(P). Then r4 moves a little toward c(P).
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Algorithm rotateRobotOnCircle: move the robots on their circle to reach their final destination

Phase Condition: F′ = P′

Let r1, . . . , rn−1 be the robots in P′ in the lexicographic order of their polar coordinates in the global coordinate system.

Let d1 , . . . , dn−1 be the point of F′ in the lexicographical order of their polar coordinates in the global coordinate system.

for i = 1, . . . , n − 1 do
A← the arc of the circle of ri delimited by ri and di that does not contains the point of angle 0

if A ∩ P′ ≠ ∅ then

c← closest robot in A ∩ P′

d ← point of A in the middle ri and c

A← the arc of the circle of ri delimited by ri and d

if ri ∈ C(P) and then
d ← the farthest point on A so that C(P) does not change

ri moves on A toward d

5 Extensions and Perspectives

Similarly to previous work [13], neither the initial configuration nor the target pattern should contain mul-

tiplicity point for our approach to work. We show that if robots are endowed with multiplicity detection,

a straightforward extension of our algorithm permits to form any general pattern that can contains points

of multiplicity. However, the case of handling initial configurations with points of multiplicity requires

algorithmic tools that are yet to be developed.

The case of patterns that contain points of multiplicity. If we assume that robots are endowed with

multiplicity detection, the ordering of robots in the last phase of algorithm ψDPF remains unchanged except

for robots located at points of multiplicity. Indeed, we can still compute the number of robots greater than

a robot r, not located at a point of multiplicity, which gives its unique index. However, robots at points of

multiplicity are incomparable. If we only allow robots that have the same destination point to form points of

multiplicity, then the pattern can be formed by the same algorithm. The only case that need a small change

in the algorithm is when c(F) is a point of multiplicity. In this case we first form the pattern F̃ where the

destinations at c(F) are replaced by the middle g f between c(F) and fmax. Once F̃ is formed, the robots at

g f move to c(F). More details can be found in Appendix C.

The case of initial configurations that contain points of multiplicity. In the case where the initial con-

figuration contains points of multiplicity, a convenient solution would be to reuse known pattern formation

algorithms (such as ours) and run a preliminary phase where multiplicity points are eliminated. This task is

known as the scattering task in the literature [4]. However, even the most recent developments [4] only con-

siders the SSYNC model. Of course, as our protocol (and its multiplicity extension) also performs correctly

in SSYNC, it is possible to combine the two to obtain a protocol in SSYNC that manages multiplicities both

in I and in F: indeed, it is easy to combine protocols in SSYNC because moves are always aware of the

latest configuration, so for all configurations that have multiplicities that do not belong to a legitimate path

toward the target pattern, the scattering phase is run, until robots either reach a configuration where there

is no point of multiplicity or a configuration that makes progress toward the target pattern. Extending this

scheme to the ASYNC model requires to solve the open problem of ASYNC scattering, and making sure

the combinations of protocols is feasible, which is a challenging path for future research.
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A Robot Election Pre-phase

Algorithm handlePartiallyFormedPattern: executed before the robot election to handle configura-

tion that can create a configuration that verifies in line 3 of the main algorithm

if {Fr ∩ Fc
r} is a partition of F such that Fc

r ≈ P/Q and

∣Q∣ − 1 robots in Q are located on an halfline [c(P), f ), with f ∈ Fr then
d1 ← radius of C(Fr)
d2 ← min{d ∣ D (d1) ∩ exterior(D (d)) ∩ Fr = ∅}
d ← (d1 + d2)/2
if ∃r ∈ Q s.t. ∣r∣ > d then

if ∃r ∈ Q s.t. ∣r∣ > d1 then

for r ∈ Q s.t. ∣r∣ > d1 do
r moves radially at distance ∣d1∣ from c(P)

else

for r ∈ Q s.t. ∣r∣ > d do
r moves radially at distance ∣d∣ from c(P)

exit

This pre-phase is executed before the robot election, i.e., when the current configuration P contains a

regular set Q, with m = ∣Q∣. Before executing the robot election algorithm, a robot checks if the current

configuration satisfies the following conditions:

i) the pattern can be rotated so that robots in P/Q are located at points in F,

ii) among the m remaining points of F, denoted Fr, at least m− 1 are on m− 1 half lines, each containing

exactly one robot in Q.

If those conditions are not both satisfied, the robot election is performed as previously described. Otherwise

three cases can happen. Let d1 be the radius of the smallest circle enclosing Fr. If D (d1) ∩ Fr ≠ ∅, let

d2 be the smallest radius such that D (d1) ∩ exterior(D (d2)) ∩ Fr = ∅, otherwise let d2 = d1. Also, let

d = (d1 + d2)/2.

In the first case, at least one robot r satisfies ∣r∣ > d1. Then, all such robots move toward c(P) to reach

the circle of radius d1. After each robot reaches its destination, either the whole configuration forms F, or P

from which we remove the robot with maximum view form F from which we remove a point with maximal

view (the configuration is no more in the active set of ψRS B), or the configuration is still in the active set of

ψRS B∣Q and satisfies the second or the third case. If the configuration is no more in the active set of ψRS B∣Q ,

then the configuration is static, so that ψRS B∣Q still satisfies the termination awareness property.

In the second case, at least one robot r satisfies ∣d1∣ ≥ ∣r∣ and ∣r∣ > ∣d∣. Then, all such robots move toward

c(P) to reach the circle of radius d. After each robot reaches its destination, the configuration satisfies the

third case. During this phase the configuration remains in the active set of ψRS B∣Q since no robot reaches a

point in Fr.

In the third case, the robots in Q are at most at distance d from c(P). Then the robot election proceeds

as previously described, except that a robot with destination p such that ∣p∣ ≥ d does not move. During this

phase the configuration remains in the active set of ψRS B∣Q . Indeed, if d1 ≠ d, then there is at least one point

in Fr that does not contain a robot (and it is not a point with maximum view since some points are closer

to c(P)), otherwise (all points in Fr are at distance d to c(P)), there are at least two robots inside D (d)
(because the whole configuration is active for ψRS B∣Q) and they cannot reach the circle of radius d.
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Algorithm fixEnclosingCircle: locate the robot of C(P) ∩ P′ on C(P) ∩ F′ when ∣C(F) ∩ F′∣ = 2

Phase Condition: ∣C(F) ∩ F′ ∣ ≠ 2 or there are only two robot in C(P) located on the two point of C(F) ∩ F′

if ∣C(P) ∩ P′∣ = 2 then
r ← greatest robot in interior C(P)
C ← circle centered at c(P) that contains r

if ∣C ∩ P∣ > 1 then
r moves away from toward c(P) without reaching the circle of another robot nor C(P)

else

a← minr′∈C(P) ang(rmax , c(P), r′)
if ang(rmax , c(P), r) < a then

r moves away from c(P) to reach C(P)
else

r moves on C(P) in the indirect orientation to have an angle a/2

else
r ← greatest robot in C(P)
r′ ← smallest robot in C(P)
if r and r′ are located the points of C(P) ∩ F′ then

r′′ ← second smallest robot in C(P) ∩ P′

r′′ moves toward c(P) without reaching the circle of another robot

else

Let r1, . . . , rk be the other robots in C(P) ∩ P′ in the lexicographical order of their polar coordinates

// perform the following movements while preserving C(P) and the ordering of robots

r moves on C(P) toward the greatest point in C(P) ∩ F′

r′ moves on C(P) toward the smallest point in C(P) ∩ F′

for i = 1, . . . , j do

a ← ang(rmax , c(P), r′) + i × (ang(rmax , c(P), r′) + ang(rmax, c(P), r))/( j + 1)
ri moves on C(P) toward the point in C(P) ∩ F′ with angle a

B Pattern Formation when ∣C(F) ∩ F′∣ = 2

We execute this special phase before executing Phase 2 of Algorithm ψDPF, if ∣C(F) ∩ F′∣ = 2. Once rmax

exists, if ∣C(F) ∩ F∣ = 2 and there are not exactly two robots in C(P) located at the two points in C(F) ∩ F,

then the following is executed.

If there are only two robots on C(P), then the greatest robot in interior(C(P)) reaches C(P), while

remaining smaller than robots in C(P) (see Action ii)). Now, there are at least three robots on C(P). The

greatest robot r in C(P) moves toward the greatest robot in C(F), the smallest r′ moves toward the other

point in C(P) ∩ F′, and the other robots choose evenly distributed destinations between r and r′. Those

movements are done while keeping C(P) and the ordering unchanged (like in Phase 3). The smallest robot

is chosen for r′ instead of the second greatest so that no robot can prevent r′ to reach the smallest point in

C(P) ∩ F′, especially if it has a null angle. Once r and r′ reach their destination, the other robots can leave

C(P), starting from the smallest. Those last movements change the ordering of r, so that it becomes the

second greatest robot.

C The case of patterns that contain points of multiplicity

In this section, we assume that robots are endowed with multiplicity detection. If F contains points of

multiplicity, but c(F) is not a point of multiplicity, then l f exists if n ≥ 4. Indeed, a point in F with

multiplicity greater than one does not hold C(F), in the sense that if we decrease its multiplicity by one

C(F) remains unchanged. In this case our algorithm works in the same way. Indeed, in Phase 2, robots in

a circle can move to their destination while preserving the ordering until they reach their destination. After

reaching their destination they are incomparable, but it is not important since they do not move anymore.

The only case we need to study separately is when c(F) is a point of multiplicity m. In the case F is not

just a point of multiplicity n, we consider F̃ = F − {(c(F),m)} ∪ {(gF ,m)} i.e., F̃ is the original multiset
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F, from which we remove the points at c(F) and we add the point gF with multiplicity m, where gF is the

middle between c(F) and the point distinct from c(F)with maximal view. Again gF is not uniquely defined,

but for two possible choices of gF , the two resulting multisets F̃ are similar. Then we use our algorithm

using F̃ instead of F. Once F̃ is formed, the m closest robots to c(F̃) i.e., robots at gF , move to c(F̃). Again,

the robots are aware that they are doing this last movement, by checking in the current configuration if the m

closest robots to the center are on the same half line starting at c(F), and the other robots form the pattern

F −{(c(F),m)}. Such a configuration cannot be obtained when executing ψRS B so the previous lemmas are

still true.

In the case F is a point of multiplicity n, we consider the set F̃ = F − {(c(F),1)} ∪ {(g,1)} i.e., F̃ is

the original multiset F, from which we decrease by one the multiplicity of c(F) and we add an arbitrary

point g (for a different point g, the resulting F̃ is similar). Once F̃ is formed i.e., once a point of multiplicity

n−1 exists, then the unique robot that is not at a point of multiplicity, moves toward the point of multiplicity

n − 1.

D Omitted Proofs

D.1 Proof of Property 1

Property 1 (restated). Let P be a n-robot configuration. If ρ(P) > 1 or if P contains an axis of symmetry,

then P contains a regular set.

Proof. It is sufficient to show that at least one set Q in the increasing sequence Q1, . . . ,Qk satisfies the three

properties (a), (b), and (c). Let ρ(P) = m. If P does not contain an axis of symmetry, then Qm contains the

m robots with maximum identical view (with the same orientation). Indeed the other robots are not closer to

c(P) and form n-gons so that the m robots with maximum view do not hold C(P). Then, Qm forms a m-gon

centered at c(P), and P deprived of Qm can still be partitioned in m-gons so that ρ(P/Qm) is a multiple of

m. In this case, Qmax = Qm.

Similarly, if P contains an axis of symmetry, Q2m satisfies the three properties. �

D.2 Proof of Theorem 1

We start by several lemmas related to the Weber point. Let P be a n-robot configuration with n ≥ 7.

Lemma 5. Let P′ = P − {r} ∪ {r′}. If P is regular, then

angmin(W(P′),W(P), r) ∈ [π
4
,

3π

4
] .

Proof. Let w be the symmetric of W(P′) with respect to W(P). Let angP(u) = angmin(w,W(P),u).
On the one hand, we know that:

cos(angP(r)) + ∑
p∈P−{r}

cos(angP(p)) = 0

cos(angP′(r′)) + ∑
p∈P−{r′}

cos(angP′(p)) = 0

So,

cos(angP(r)) − cos(angP′(r′)) + ∑
p∈P−{r′}

[cos(angP(p)) − cos(angP′(p))] = 0
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Figure 5: Worst case for the angle angmin(W(P), p,W(P′))

Also,

∀p ∈ P − {r} cos(angP(p)) − cos(angP′(p)) < 0 and cos(angP(r)) − cos(angP′(r′)) > 0

So,

∀p ∈ P − {r} cos(angP′(p)) − cos(angP(p)) ≤ cos(angP(r)) − cos(angP′(r′)) (1)

The fact that P is regular with ∣P∣ ≥ 7 implies that there is at least one robot in every cone centered at

W(P) of angle π/2. Let p in P − {r} be a point such that angP(p) ∈ [π4 , 3π
4
]. Suppose for the purpose of

contradiction that angP(r) ∉ [π4 , 3π
4
]. Then ∣angP(p) − π/2∣ < ∣angP(r) − π/2∣, which contradicts Equation

(1). �

Lemma 6. Let P′ = P − {r} ∪ {r′}, with angmin(r,W(P), r′) = θ ≤ αmin(P), and ∣r′ −W(P)∣ = ∣r −W(P)∣ =
minp∈P ∣p −W(P)∣. We have ∀p ∈ P, angmin(W(P), p,W(P′)) ≤ 2θ.

Proof. With the same notations as in the previous lemma, we have angP(r) ∈ [π/4,3π/4]. First, we suppose

∣W(P′) −W(P)∣ < ∣r −W(P)∣. The worst case happens when angP′(r′) = angP(r) = π/4 (see Figure 5).

Without loss of the generality, we suppose ∣W(P) − r∣ = 1. In this case, by the law of sines,

∣B −W(P)∣ = sin(θ)√
2
.

Then,

∣F −W(P)∣ = 1√
2

Since θ < π/4 (because ∣W(P′) −W(P)∣ < ∣r −W(P)∣), we obtain

∣F −H∣ = 1

cos(θ)√2
< 1.
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This implies that the disc of diameter FH is strictly included in the disc centered at W(P) of radius 1, and

since a point p such that angmin(W(P), p,W(P′)) < 2θ must be inside this disc, then ∣p−W(B)∣ < ∣r−W(B)∣.
In the case ∣W(P′) −W(P)∣ ≥ ∣r −W(P)∣, since argP′(r′) ≥ argP(r) (because otherwise the half lines

]W(P), r) and ]W(P′), r′) would intersect, which is impossible), then θ ≥ π/4. Since θ ≤ αmin(P) ≤ 2π/7,

this is not possible if ∣P∣ ≥ 7. �

Lemma 7. Let the robots be indexed in the clockwise order r = r1, r2, . . ., rn around the Weber point W(P).
Let P′ = P − {r} ∪ {r′}, with angmin(r,W(P), r′) = θ ≤ αmin(P′)/4 and ∣r −W(P)∣ = mini∈[1,n] ∣ri −W(P)∣.
Then, the robots in P′ are ordered in the same way as in P around W(P′).
Proof. For a vector Ð→u , let angÐ→u (p) = ang(ÐÐÐÐ→W(P)p,Ð→u ), and ang′Ð→u (p) = ang(ÐÐÐÐ→W(P′)p,Ð→u ). We see that

r1, r2, . . ., rn are ordered around W(P) is equivalent to:

i ∈ [1,n − 1], angÐ→u (ri) < angÐ→u (ri+1)
withÐ→u a vector such that angÐ→u (r) is minimal among robots in P, an ang′Ð→

u
(r′) is minimal among robots in

P (this is possible since angmin(r,W(P), r′) ≤ αmin(P′)/4). From lemma 6, we have

∀p ∈ P, ∣angÐ→u (p) − angÐ→u (p)′∣ = angmin(W(P), p,W(P′)) < αmin(P′)/2.
That implies that for all i ∈ [1,n − 1], ang′Ð→u (ri) < ang′Ð→u (ri+1). �

Lemma 8. Let a, b, and c be distinct points in R2. Let θ1 and θ2 in R∗. There is at most one point p such

that: ⎧⎪⎪⎪⎨⎪⎪⎪⎩
ang(a, p,b) = θ1 ≤ π
ang(b, p, c) = θ2 ≤ π
ang(c, p,a) ≤ π

Proof. The set of points p such that ang(a, p,b) = θ1 is a circular arc Ca,b passing through a and b. Also

the set of points p such that ang(b, p, c) = θ2 is a circular arc Cb,c passing through b and c. If there are three

distinct points in Ca,b ∩Cb,c, then Ca,b and Cb,c are two arcs of the same circle. Yet, for any point p in this

circle, either ang(a, p,b) > π or ang(b, p, c) > π or ang(c, p,a) > π, depending on the position of p in the

circle. Hence, a contradiction. So, there is at most one point distinct from b in Ca,b ∩Cb,c. �

Lemma 9. Let P be a n-robot shifted regular configuration. If n ≥ 7, the shifted (elected) robot is unique.

Proof. Let P be a n-robot shifted regular configuration with shifted robot r (resp., r′), associated to the

m-regular set Preg = P − {r} ∪ {rreg} (resp., associated to the m′-regular set P′reg = P − {r′} ∪ {r′reg}). From

Lemma 7, the ordering is unchanged between P, Preg and P′reg. So, let r1, . . ., rn be a counterclockwise

ordering of robots in P around W(P). An ordering of robots in Preg (resp., P′reg) is obtained by replacing

r = ri0 by rreg (resp., r′ = ri′
0

by r′reg).

● If n = m = m′, since n ≥ 6, there exist three robots ri, r j, and rk (i < j < k) in Preg∩P′reg = P−{r}−{r′}
such that

ang(ri, c(Preg), r j) ≤ π ∧ ang(r j, c(Preg), rk) ≤ π ∧ ang(rk , c(Preg), ri) ≤ π
The angle between two robots is uniquely determined by the difference between their indexes (for instance

ang(ri, c(Preg), r j) = 2( j − i)π/n). Since the ordering around c(P′reg) is the same, we have:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ang(ri, c(Preg), r j) = ang(ri, c(P′reg), r j)
ang(r j, c(Preg), rk) = ang(r j, c(P′reg), rk)
ang(rk , c(Preg), ri) = ang(rk , c(P′reg), ri)
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By Lemma 8, c(Preg) = c(P′reg). Once we know the center is the same, since n ≥ 3, the shifted robot is

uniquely determined.

● If m = n/2 or m′ = n/2, the configuration can be divided in two subsets of n/2 robots that are both

n/2-regular, so that if n ≥ 8 we can find three robots as before in one of the n/2-regular subsets to find the

common center and the shifted robot. If m = 3, it is possible to have c(Preg) ≠ c(P′reg), so that n must be

greater that 7. �

Theorem 1 (restated). Let n ≥ 7, and P be a n-robot configuration that contains a ε-shifted-m-regular set Q

of center c. Then Q, c, m, ε and the shifted robot are unique.

Proof. Let P be a n-robot configuration that contains a ε-shifted-m-regular set Q. If ε = 0 and Q = P i.e.,

the configuration is regular, then the center is unique since it is the Weber point. If ε ≠ 0 and Q = P i.e., the

configuration is shifted regular, Lemma 9 implies that the center and the shifted robot are unique.

Now suppose Q ⊊ P. This implies that the possible shifted regular sets we consider have the same

center c(P). In the construction of Qmax, the increasing sequence of views is unique since each local view

is unique. So, the sequence Qi is also unique. Since all the conditions on each Qi can be checked the same

way by each robot, the maximum set Qi that satisfies all the conditions, that is Qmax, is unique. Therefore,

if ε = 0, then the regular set of P is unique.

Now suppose that ε > 0 and Q is the shifted regular set of P. The shifted robot re is the only robot

that minimizes the angle αmin(re,P) with the other robots. Indeed, since the robots in P/Q form a m-gon

centered at c(P), robots in Q − {re} all have the same (and greater than αmin(re,P)) minimum angle with

the other robots. �

D.3 Proof of property 2

The following property gives precisely what moves robots are allowed to make while maintaining a config-

uration with a shifted regular set (with the same center and shifted robot) that contains the same robots. In

the sequel, we abusively use 0-shifted-m-regular set instead of m-regular set.

Property 2. Let P be a n-robot configuration (n ≥ 7) that contains a ε-shifted-m-regular set Q (with 0 ≤
ε ≤ 1/4). Let Dmax be the largest open disc centered at c(P) that does not contains any robot in P/Q. After

one of the following movements, the configuration contains a ε′-shifted-m-regular set formed with the same

robots, with the same center and, if ε > 0, the same shifted robot as in Q:

• (M1) ε = 0 and a robot in Q moves radially in Dmax − {c(P)};
• (M2) ε = 0 and one of the robots that is closest to c(P)moves on its circle, creating a shift 0 < ε′ ≤ 1/4;

• (M3) ε > 0 and the shifted robot moves on, or inside, its circle, preserving a shift 0 < ε′ ≤ 1/4;

• (M4) ε > 0 and a robot in Q − {re} (with re the shifted robot) moves radially in Dmax/D (∣re∣).
Proof. First, if reg(P) = P then the property is given by the uniqueness of the shifted regular set.

Case (M1): we suppose that P contains a m-regular set Q ≠ P with ∣Q∣ = q (q = m or q = 2m). Let Q′ be

the robots in Q after the movement defined in (M1). To prove the property, it is sufficient to show that (i)
Q′ contains the q robots with greatest view, that (ii) Q′ satisfies the three property given in definition 1, and

that (iii) Q′ is the largest such set.

(i): The views of robots in Q′ that are inside D are greater than the views of robot in P/Q, and the robots

in Q′ that are in Circum(D) did not moved (because robots are not allowed to move from inside D to its

circumference). So their views are still greater than the views in P/Q. Moreover, since robots in Q do not

hold C(P), then robots in Q′ do not hold C(P) either.
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(ii): After the movement, Q′ is clearly a m-regular set. Since robots P/Q have not moved, m still divides

ρ(P/Q) and if Q is bi-angled, then Q′ is bi-angled and the virtual axis of Q′ are still axes of symmetry of

P/Q.

(iii): Since the three property are invariant by radial movement, the properties violated by a superset of Q

are also violated by the same superset of Q′ containing the same robots.

Case (M2): Let r′ be the position of r after its movement described in (M2). Then, Q′ is a ε-shifted-m-

regular set with associated regular set Q = Q′ − {r′} + {r}.
Case (M3): Since only the shifted robot moves, by definition of the associated regular set, the associated

regular set before and after the movement is the same.

Case (M4): Let Qreg = Q − {re} + {r′e} be the regular set associated with Q. Let Q′reg be the position of

robots in Qreg after the movement described in (M4). By applying Case (M1), P′−{re}+{r′e} contains Q′reg

as m-regular set formed by the same robots, with the same center as Qreg. Since no robots moved closer to

the center than re, P′ contains a ε-shifted-m-regular set that has Q′reg as associated regular set. �

D.4 Termination of phase 3

Lemma 10. During phase 3, each robot in P − {rs} reaches its destination in F′ and C(P) remains un-

changed.

First we show that there is no deadlock. We have r1 > r2 > . . . > rm and d1 > d2 > . . . > dm. Now, rk

has destination dk and moves toward it (staying on Ci) in the direct orientation if rk > dk and in the indirect

orientation otherwise. If rk+1 ≥ dk (resp., rk−1 ≤ dk), then rk cannot reach dk until rk+1 < dk (resp., until

rk−1 > di). There cannot be a deadlock because if rm ≥ di (resp,. r1 ≤ dk), nothing can prevent rm (resp. r1)

to move to dm (resp., d1), which would imply rm < dk (resp. r1 > d1).

Now suppose for the purpose of contradiction that C(P) is modified. That means that there are two

robots r and r′ on C1 that form an angle greater than π. Before C(P) is modified, they form an angle of at

most π, so that one robot’s movement on C1 in the direct orientation, and the other’s movement on C1 in

the indirect orientation. This is possible only if there is no point in F on C1 between r and r′, which is a

contradiction with the fact that C(P) = C(F).
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