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Optimal a posteriori fringe tracking in optical interferometry
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the Laboratoire Hubert Curien, Université Jean Monnet, Saint-Étienne, France;

bUniversity of Porto, Departamento de Engenharia F́ısica

ABSTRACT

The so-called “phase delay tracking” attempts to estimate the effects of the turbulence on the phase of the
interferograms in order to numerically cophase the measured complex visibilities and to coherently integrate
them. This is implemented by the “coherent fringe analysis” of MIDI instrument1 but has only been used for
high SNR data. In this paper, we investigate whether the sensitivity of this technique can be pushed to its
theoretical limits and thus applied to fainter sources. In the general framework of the maximum likelihood and
exploiting the chromatic behavior of the turbulence effects, we propose a global optimization strategy to compute
various estimators of the differential pistons between two data frames. The most efficient estimators appear to
be the ones based on the phasors, even though they do not yet reach the theoretical limits.

Keywords: optical interferometry, phase delay tracking cophasing

1. INTRODUCTION

Monomode optical interferometers get rid of atmospheric effects by integrating observables which are insensitive
to the differential pistons between the interfering telescopes. For instance, the Fourier phase of the object is
preserved in the so-called phase closures. This is however to the detriment of the amount of measured information.
Exploiting the chromatic behavior of the differential pistons, it is in principle possible to perform “a posteriori
fringe tracking” to coherently add the complex visibilities of the short exposure interferograms and thus not only
enhance the signal to noise ratio but also minimize the loss of information. To benefit from these improvements,
there are several important issues. First, the ultimate performances of the method depend on the quality of the
criterion introduced to measure the co-phasing the errors. Second, no closed form solution exists to the problem
of minimizing these errors and global optimization is mandatory to estimate the instantaneous differential piston
parameters from the available data. These may explain why the “coherent fringe analysis” of MIDI instrument1

has only been used for high SNR data. For instance, the study of Tatulli & le Bouquin2 clearly shows that
model-based estimators are superior to more simple ones computed by fast Fourier transforming the data. In
this paper, we investigate whether the sensitivity of a posteriori fringe tracking can be pushed to its theoretical
limits and thus applied to fainter sources.

2. FRINGE DATA

2.1 Available raw data

We consider an interferometric instruments like Amber or Pionier3 which exploit spatial filtering to convert
phase fluctuations due to the turbulence into photometric and piston fluctuations. Using matrix notation, a
general model of the raw interferometric data ỹ provided by the detector of such interferometers takes the form:4

ỹ = H ·x+ ñ , (1)

where H is a generalization of the “visibility to pixel matrix” (V2PM2,3), ñ accounts for the noise and x combines
photometric parameters, the complex visibility of the object and atmospheric piston errors. For an ideal two
telescope monomode recombiner, the measured interferogram writes:

ỹk,�,m =
N�,m
γ K

[1 + ρ�,m cos(ϕk,� + ψ�,m)] + ñk,�,m = (H� ·x�,m)k + ñk,�,m , (2)

Further author information: E-mail: ferreol.soulez@univ-lyon1.fr
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with N�,m the expected total number of photons of the fringe pattern in �-th spectral channel of m-th frame,
K the number of samples along such a pattern, γ the detector gain (in e− per digital level), ρ�,m and ψ�,m the
contrast and phase of the fringes and ϕk,� the instrumental phase offset to sample the fringes. In this paper,
to maintain the consistency of the notations, k, � and m are respectively the pixel, spectral channel and frame
indexes. Here, to simplify the equations, we assumed that K and γ are the same for all spectral channels. Using
a matrix notation, the components of the deterministic term of Eq. (2) are:

x�,m = N�,m

⎛

⎝

1
ρ�,m cosψ�,m
ρ�,m sinψ�,m

⎞

⎠ and H� =
1

K γ

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 cos(ϕ1,�) − sin(ϕ1,�)
...

...
...

1 cos(ϕk,�) − sin(ϕk,�)
...

...
...

1 cos(ϕK,�) − sin(ϕK,�)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (3)

Assuming L spectral channels and M frames and going back to Eq. (1), H is very sparse with 3×K blocks and
x = {x�,m ∈ R

3 | � = 1, . . . , L;m = 1 . . . ,M}. The second and third components of x�,m form what is commonly
called the “raw complex visibilities” which we denote as:

z�,m =
[

(

x�,m
)

2
,
(

x�,m
)

3

]�
∈ R

2 ⇐⇒ z�,m =
(

x�,m
)

2
+ i
(

x�,m
)

3
= N�,m ρ�,m eiψ�,m ∈ C . (4)

As formally expressed above, the 2-D variables z�,m can also be seen as complexes denoted as z�,m.

The contrast ρ�,m and the phase ψ�,m are related to the complex visibility of the object and are what one
wants to recover from the data. These quantities are however affected by time varying effects mostly due to the
atmospheric turbulence. The phase of the fringes is randomly shifted due to optical delay not compensated by
the delay lines:

ψ�,m = φ� + κ� pm (5)

where φ� is the phase of the object complex visibility at λ�, the effective wavelength in �-th channel, pm is the
optical path difference between the two interfering telescopes during m-th frame and κ� is a chromatic factor. If
the delay lines are in the vacuum, κ� = 2π/λ�. The speckle noise and the motion of the fringes during a frame
yield variations of the flux (and thus N�,m) and of the fringe contrast ρ�,m. This paper focuses on getting rid of
the phase jitter.

2.2 Statistics of the raw data

With current detectors (CCD or CMOS), we can safely assume that measurements provided by distinct detector
elements or from different detector frames are statistically independent. The covariance matrix of the noise ñ is
thus diagonal and, its inverse, the “statistical weighting matrix” W, is also diagonal: W = Cov(ñ)−1 = diag(w)
with w the vector of diagonal elements of W. In principle, the elements of w are simply equal to the reciprocal
of the variance of the corresponding measurement. At the cost of having an improper statistics, it is possible to
rigorously account for bad or missing data by taking:

wk,�,m =

{

0 for bad pixels,
1/Var{ñk,�,m} else.

(6)

This amounts to assuming that the variance of missing or bad pixels is infinite which is consistent with the fact
that they provide no valuable information. Accounting for Poisson photon noise plus Gaussian detector noise
and digitization yields:5

Var{ñk,�,m |x} = E{ỹk,�,m |x}/γ + (σ/γ)2 = (1/γ) (H ·x)k,�,m + (σ/γ)2 , (7)

where E{ỹk,�,m |x} is the expected value of the data given the model parameters x and σ is the standard deviation
of the detector noise (in e− rms per pixel). For instance, to account for digitization errors:

σ =
√

σ2
ron + γ2/12 , (8)

with σron the standard deviation of the read-out noise (in e− per pixel per frame).

Proc. of SPIE Vol. 9146  91462Y-2



2.3 Reduced fringe data

The real statistics of the raw data is quite complex as it combines the Poisson distribution of the signal, the
distribution of the detector noise but also non-trivial effects such as digitization. Here, we assume that this
complex statistics is fairly well approximated by a Gaussian distribution with a non-uniform variance given by
Eq. (7). Then, maximizing the likelihood of the data amounts to minimizing the co-log-likelihood:

Lraw(x) = (1/2)
{

(ỹ −H ·x)� ·W · (ỹ −H ·x)− log|W|+
}

(9)

where |W|+ is the product of the strictly positive eigenvalues of the statistical weighting matrix W (described
in the previous section). When W is non-singular, it is positive definite, and |W|+ is just the determinant of
W. The term log|W|+ comes from the normalization factor of a, possibly improper, Gaussian distribution.6

In an attempt to reduce the amount of data which has to be processed and to unify the outputs of the
different types of instruments, we introduce x̃, a particular value of variables x which minimizes the first term
in the right hand side of Eq. (9):

x̃ ∈ argmin
x

(ỹ −H ·x)� ·W · (ỹ −H ·x) ⇐⇒ (H� ·W ·H) · x̃ = H� ·W · ỹ . (10)

A solution of the so-called “normal equations” (after the ⇔ sign above) always exists but may not be unique.
Now, using the equality in Eq. (10), it is possible to rewrite the first term in the right hand side of Eq. (9):

(ỹ −H ·x)� ·W · (ỹ −H ·x) = (x− x̃)� ·Q · (x− x̃) + c with Q
def
= H� ·W ·H , (11)

and with c = ỹ� ·W · ỹ−x̃� ·Q · x̃ which is a constant with respect to the sought parameters x as x̃ only depends
on the original data ỹ. Besides, we note that log|W|+ = log|Q|+− c′ where c′ = log|H� ·H|+ is independent on
the sought parameters x. Finally, after discarding the constant terms c and c′, finding the maximum likelihood
parameters amounts to minimizing the following data fidelity criterion:

Lreduc(x) = (1/2)
{

(x− x̃)� ·Q · (x− x̃)− log|Q|+
}

. (12)

Note that Q only depends on the variables x if the weighting matrix W does depend on x (see previous section).
If W is known a priori (it does not depend on the sought parameters), the term log|Q|+ is a constant which
can be dropped from Eq. (12) and the reduced data x̃ are also the most likely values of the linear parameters x.

As previously pointed, a solution of the normal equations always exists but is not necessarily unique unless
the matrix Q is invertible. However, the matrix Q does not need to be invertible to define a particular solution
to the normal equations. For instance, introducing Q†, the pseudo inverse of Q (which does always exist), yields
the following particular solution of the normal equations (10):

x̃ = R · ỹ with R = Q† ·H� ·W = (H� ·W ·H)† ·H� ·W . (13)

In order to compute x̃ given the raw data ỹ, the pseudo-inverse Q† does not need to be explicitly formed (e.g.,
using the singular value decomposition (SVD) of Q). There are faster means. For instance, for uncorrelated
spectral channels, Q is block diagonal and independent smaller problems have to be solved for the different
channels. Starting with a null initial solution, the linear conjugate gradient method7 will produce the minimum
norm solution to the problem (10) in a few iterations.8

It is important to realize that fitting the “reduced” interferometric data x̃ by minimizing Lreduc in Eq. (12)
is exactly equivalent to fitting the raw interferometric data ỹ by minimizing Lraw in Eq. (9): there are no loss of
valuable information. In other words, the reduced variables x̃ have “sufficient statistics”9 for our needs. There
is a close relationship between the matrix R and the “pixel to visibility matrix”2,3 (P2VM). It can be shown that
x̃ = R · ỹ defined in Eq. (13) is the “best linear unbiased estimator”10 (BLUE) of the raw complex visibilities
and therefore has the highest possible SNR.

Proc. of SPIE Vol. 9146  91462Y-3



2.4 Statistics of the reduced fringe data

In order to derive the statistics of the reduced data, we consider a particular spectral channel and frame. To
simplify the equations, we therefore discard the spectral index � and the frame index m to only keep the pixel
index k. For the simple interferogram given in Eq. (2), the direct model of k-th data pixel writes:

ỹk =
N

K γ
[1 + ρ cos(ϕk + ψ)] + ñk . (14)

where N is the expected value of the total number of detected photons, K is the number of pixels which sample
the fringe, γ is the detector gain in e− per digital level, ϕk is the phase shift at pixel k, ρ is the actual contrast
of the fringes (possibly accounting for some instrumental loss) and ψ is their phase. Using matrix notation:

ỹ = H ·x+ ñ with x = N

⎛

⎝

1
ρ cosψ
ρ sinψ

⎞

⎠ and H =
1

K γ

⎛

⎜

⎜

⎝

...
...

...
1 cos(ϕk) − sin(ϕk)
...

...
...

⎞

⎟

⎟

⎠

.

Thanks to the properties of the pseudo inverse (denoted by the † exponent), the covariance matrix of the
estimated linear fringe parameters x̃ = R · ỹ defined in Eq. (13) is simply:

Cov(x̃ |x) = R · Cov(ỹ |x) ·R� = (H� ·W ·H)† ,

where W = Cov(ỹ |x)−1 = diag(w) is a diagonal weighting matrix (the pixels are statistically independent, cf.
Section 2.2). From Eqs. (6)–(7), the weights are:

wk =
γ2

γ E{ỹk |x}+ σ2
=

K γ2

N +K σ2

[

1 + ε cos(ϕk + ψ)
]−1

with ε =
N ρ

N +K σ2
∈ [0, 1) . (15)

To derive a useful expression for Cov(x̃ |x), it is more convenient∗ to consider the following invertible linear
change of variables:

ũ = Z�
ψ · x̃ ⇐⇒ x̃ = Zψ · ũ with Zψ =

⎛

⎝

1 0 0
0 cosψ − sinψ
0 sinψ cosψ

⎞

⎠ .

Note that Zψ is a unitary matrix such that Z−1
ψ = Z−ψ = Z�

ψ . The covariance of the new variables writes

Cov(ũ |x) = Z�
ψ · Cov(x̃ |x) ·Zψ and, thanks to the properties of Zψ, taking the pseudo inverse yields:

Cov(ũ |x)† = Z�
ψ · Cov(x̃ |x)† ·Zψ = (H ·Zψ)� ·W · (H ·Zψ) = 1

N +K σ2

⎛

⎝

q1 q2 q3
q2 q4 q5
q3 q5 q6

⎞

⎠

where:

q1 =
1

K

∑K

k=1

1

1 + ε cos(ϕk + ψ)
≈ 1√

1− ε2 , q2 =
1

K

∑K

k=1

cos(ϕk + ψ)

1 + ε cos(ϕk + ψ)
≈ −1−√1− ε2

ε
√
1− ε2 ,

q3 =
1

K

∑K

k=1

− sin(ϕk + ψ)

1 + ε cos(ϕk + ψ)
≈ 0 , q4 =

1

K

∑K

k=1

cos2(ϕk + ψ)

1 + ε cos(ϕk + ψ)
≈ 1−√1− ε2

ε2
√
1− ε2 ,

q5 =
1

K

∑K

k=1

− cos(ϕk + ψ) sin(ϕk + ψ)

1 + ε cos(ϕk + ψ)
≈ 0 , q6 =

1

K

∑K

k=1

sin2(ϕk + ψ)

1 + ε cos(ϕk + ψ)
≈ 1

1 +
√
1− ε2 ,

where all the terms having the form (1/K)
∑K
k=1 f(ϕk + ψ) have been approximated by the mean value of

f(ϕk + ψ) with respect to the sample offset ϕk. This is similar to the Riemann approximation of integrals by

∗this trick makes all phase arguments of the trigonometric functions into the form: ϕk + ψ
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discrete sums and assumes that the fringes are correctly and evenly sampled. Under these assumptions, replacing
the qi’s by their approximation in the expression of Cov(ũ |x)† and taking the inverse yields:

Cov(ũ |x) ≈ (N +K σ2
)

⎛

⎝

1 ε 0

ε 1 +
√
1− ε2 0

0 0 1 +
√
1− ε2

⎞

⎠

and:

Cov(x̃ |x) = Zψ · Cov(ũ |x) ·Z�
ψ ≈

(

N +K σ2
)×

⎛

⎝

1 ε cosψ ε sinψ

ε cosψ 1 +
√
1− ε2 0

ε sinψ 0 1 +
√
1− ε2

⎞

⎠ . (16)

The real and imaginary parts of the measured raw complex visibilities (the second and third components of x̃)
are therefore approximately independent with the same variance and thus follow Goodman model.11 To our
knowledge, this is the first demonstration of this property for a realistic non-stationary and signal dependent
noise model.

2.5 Least squares estimator

Another possibility is to use a least squares estimator for x:

x̃LSQ
def
= argmin

x
‖H ·x− ỹ‖2 = RLSQ · ỹ with RLSQ =

(

H� ·H)† ·H� . (17)

Compared to the maximum likelihood estimator x̃, this amounts to assuming that the noise is i.i.d. in the data
ỹ. Using the same approximations as previously (cf. Section 2.4), we can compute the covariance matrix of the
least squares estimator:

Cov{x̃LSQ |x} = RLSQ · Cov{ỹ |x} ·R�
LSQ ≈

(

N +K σ2
)×

⎛

⎝

1 ε cosψ ε sinψ
ε cosψ 2 0
ε sinψ 0 2

⎞

⎠ . (18)

Compared to the covariance matrix of the maximum likelihood estimator x̃ given in Eq. (16), we can see that:

Cov{x̃LSQ |x} 	 Cov{x̃ |x} .

In words: the covariance of the least-squares estimator is larger than that of the maximum likelihood one.

2.6 Simulation of noisy reduced fringe data

Given the detector and fringes parameters, simulating noisy reduced fringe data x̃ can be done as follows:

x̃1 = N + ς1 ξ1 + ς2 (ξ2 cosψ + ξ3 sinψ) (19a)

x̃2 = N ρ cosψ + ς3 ξ2 (19b)

x̃3 = N ρ sinψ + ς3 ξ3 (19c)

where ξj ∼ N (0, 1), for j ∈ {1, 2, 3}, are 3 independant pseudo-random numbers drawn following a normal
distribution and with:

ς1 =
(

(

N +K σ2
)

√

1− ε2
)1/2

, (20a)

ς2 =

(

(

N +K σ2
) ε2

1 +
√
1− ε2

)1/2

, (20b)

ς3 =
(

(

N +K σ2
)

(

1 +
√

1− ε2
))1/2

. (20c)
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Figure 1. Detected flux per frame per channel as a
function of the magnitude. Parameters: spectral
resolution R = 1500, total throughput 1%, VLTI
with UT’s (subtract 3.3 to the magnitudes for the
AT’s) and 25ms exposure time.
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Figure 2. Fringe SNR for different flux levels and
fringe contrasts. The solid curves are for the
BLUES estimator, the dotted curves are for the
least square estimator.

For all simulations presented in this paper, we considered different fringe contrasts ρ and number of pho-
tons N per frame per channel. The other parameters where set to correspond to Amber instrument3 in H
band (λ = 1.65μm) at medium spectral resolution (λ/Δλ = 1500): K = 32 pixels per spectral channel,
σ = 9 e−/pixel/frame and L = 364 spectral channels. Assuming a total throughput (optics + detector) of 1%,
and a frame acquisition time of 25ms. Figure 1 shows the expected number of photons N per frame per channel
as a function of the magnitude.

2.7 Signal to noise ratio of the fringe signal

Considering the deterministic and stochastic terms in Eq. (19b) and Eq. (19c), the amplitude of the fringe signal
in the reduced data is given by N ρ while the standard deviation of the additive noise is equal to ς3. Thus, the
signal noise ratio (SNR) of the fringe information is given by:

SNRBLUE =
N ρ

ς3
=

ε
√
N +K σ2

√

1 +
√
1− ε2

=
N ρ

√

N +K σ2 +

√

(

N +K σ2
)2 − (N ρ

)2

. (21)

Note that this expression only depends on three parameters: N the number of photons, K σ2 the total variance
of the detector noise and ρ the fringe contrast (a.k.a. the fringe visibility). Figure 2 shows the evolution of the
SNR of a single frame from a single channel as a function of the number of photons N per frame per channel
and for different fringe contrasts ρ. For comparison, the SNR of the least-squares estimator would be:

SNRLSQ =
N ρ

√

2
(

N +K σ2
)

≤ SNRBLUE . (22)

When ε → 1 (that is photon noise regime and highly contrasted fringes), the BLUE estimator yields a
√
2

improvement with respect to the least squares one. When ε→ 0 (that is detector noise regime and fringes with
low visibility), the two estimators have the same SNR. Except for magnitudes brighter than 4, Amber is in this
latter regime.

2.8 Maximum likelihood parameters from the reduced data

Putting all together and taking into account the statistical independence of the reduced data from different
spectral channels and frames, maximizing the likelihood of the reduced data amount to minimize:

Lreduc =
1
2

∑

�,m

{

(x̃�,m − x�,m)� ·C−1
�,m · (x̃�,m − x�,m) + log|C�,m|+

}

(23)
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where x̃�,m are the reduced data for �-th spectral channel and m-th frame, C�,m = Cov(x̃�,m |x�,m) is the 3×3
covariance matrix given in Eq. (16) and:

x�,m =

⎛

⎝

N�,m
μ�,m cos(φ� + κ� pm)
μ�,m sin(φ� + κ� pm)

⎞

⎠ with 0 ≤ μ�,m = N�,m ρ�,m ≤ N�,m , (24)

their model. Here, the model parameters are: N�,m the expected number of photons, ρ�,meiφ� the complex
visibility of the fringes not accounting for pm the atmospheric piston. The phase φ� does not depend on the time
(and hence on the frame index m) but the amplitude ρ�,m is subject of temporal variations† and hence depend
on the frame index m.

3. COPHASING THE FRAMES

Fitting all the non-linear parameters on the reduced data is a difficult problem which involves global minimization
of the multi-variate criterion Lreduc in Eq. (23). The most difficult part is certainly to estimate the differential
piston between the frames, this process is called “cophasing” of “fringe tracking”. If this problem is properly
solved, one can coherently add the fringe information from the different frames and thus obtain interferometric
observables much more interesting (higher SNR and fewer missing information).

3.1 Maximum Likelihood Cophasing

Here only the “fringe part” of the reduced data is needed, so we discard the “photometric” part and introduce
the measured “raw visibility”:

z̃�,m =
[

(

x̃�,m
)

2
,
(

x̃�,m
)

3

]�
∈ R

2 ⇐⇒ z̃�,m =
(

x̃�,m
)

2
+ i
(

x̃�,m
)

3
∈ C . (25)

As shown in Section 2.6, the covariance matrix of z̃�,m is proportional to the identity. We denote the variance
of the real and imaginary parts of z̃�,m as σ�,m and their statistical weight as w�,m = σ−2

�,m. In the case of the
BLUE estimator:

σ2
�,m = N�,m +K σ2 −

√

(N�,m +K σ2)
2 − μ2

�,m . (26)

To slightly simplify the cophasing problem, we will assume that the statistical weights are known and ignore their
dependency with the sought parameters. This assumption can be relaxed by iteratively applying a reweigthing
technique.

In the limit of small errors, the variance of the phase of the complex data z̃ is given by:12

Var{arg(z̃)} = Re(z)2 Var{Im(z̃)} − 2 Re(z) Im(z) Cov{Re(z̃), Im(z̃)}+ Im(z)2 Var{Re(z̃)}
|z|4 (27)

with z
def
= E{z̃}. Applying this expression to the raw visibility z̃�,m yields:

Var{arg(z̃�,m)} = σ2
�,m

|E{z̃�,m}|2
= SNR−2 , (28)

where SNR is the signal to noise ratio introduced in Eqs. (21) and (22).

In order to account for the degeneracies of the problem, we express the expected values of the fringe data as:

z�,m(θ)
def
= E

(

z̃�,m |θ
)

= G�,m · z� with: G�,m = α�,m

(

cos(κ� sm) − sin(κ� sm)
sin(κ� sm) cos(κ� sm)

)

(29a)

z�,m(θ)
def
= E

(

z̃�,m |θ
)

= g�,m z� with: g�,m = α�,m eiκ� sm , (29b)

†The fringe contrast is scaled by a factor 2
√
Nj1,�,mNj2,�,m/N�,m where Nj,�,m is the expected number of photons

from j-th telescope in �-th channel and m-th frame and N�,m = Nj1,�,m +Nj2,�,m.
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where θ = {α, s,Z} represents the sought parameters with α = {α�,m ≥ 0 | � = 1, . . . , L;m ∈ M} non-negative
factors, s = {sm = pm − pref |m ∈M} the differential pistons for m-th frame and relative to an arbitrary piston
pref and Z = {z� ∈ C or z� ∈ R

2 | � = 1, . . . , L} where z� ∼ z� is the uncalibrated complex visibility equals to
that of the object times some chromatic attenuation and up to a phase shift due to the piston pref . For instance,
z� = z�,m0 the expected value of z̃�,m0 given the sought parameters at some reference frame m0, then pref = pm0

and α�,m = |z�,m|/|z�,m0 |. In order to derive more general equations, we consider the problem of cophasing a
subset M of the frames and we assume that some measurement z̃� of z� of the uncalibrated visibility is available
with w� its corresponding statistical weight (possibly w� ≡ 0 if no such data exists). Under our assumptions and
noting that:

[

z̃�,m − z�,m(θ)
]� · Cov(z̃�,m |θ)−1 · [z̃�,m − z�,m(θ)

]

= wk,�
∥

∥z̃�,m − z�,m(θ)
∥

∥

2

2
= wk,�

∣

∣z̃�,m − z�,m(θ)
∣

∣

2
,

the cophasing is achieved in a maximum likelihood sense by minimizing:

Lsync(α, s,Z) =
1
2

∑

�

{

w� |z̃� − z�|2 +
∑

m∈M

w�,m |z̃�,m − g�,m z�|2
}

, (30)

where any additive constants which do no depend on the parameters have been discarded and where the complex
notation has been used for it is the most compact.

To simply reduce the number of unknown, there are two possibilities: we can first optimize with respect to
the z� or with respect to the α�,m as the criterion depends quadratically on these variables. The former choice,
which we known describe, yields a simpler algorithm. Given the complex gains g�,m, the maximum likelihood
estimator of the uncalibrated visibility z� is:

z+� (α, s) =
w� z̃� +

∑

m∈M
w�,m g

�
�,m z̃�,m

w� +
∑

m∈M
w�,m |g�,m|2

=
w� z̃� +

∑

m∈M
w�,mG�

�,m z̃�,m

w� +
∑

m∈M
w�,m α2

�,m

. (31)

Which can be seen as a weighted average of the measured reduced raw visibilities corrected for their phase and
amplitude. This is the “best linear unbiased estimator” (BLUE) of the uncalibrated visibility but it is conditioned
to the knowledge of the gains, that is of α and s. It can be shown that the statistical weights of z+� are:

w+
� (α)

def
= Var

(

z+� (α, s)
∣

∣α, s
)−1

= w� +
∑

m∈M

w�,m |g�,m|2 = w� +
∑

m∈M

w�,m α
2
�,m , (32)

which only depends on α.

Substituting into Lsync the uncalibrated visibilities z� by z
+
� yields a new criterion which only depends on α

and s:

L +
sync(α, s)

def
= Lsync(α, s,Z

+(α, s)) =
1
2

∑

�

{

w� |z̃�|2 +
∑

m∈M

w�,m |z̃�,m|2 −
∣

∣w� z̃� +
∑

m∈M
w�,m g

�
�,m z̃�,m

∣

∣

2

w� +
∑

m∈M
w�,m |g�,m|2

}

.

Thus the maximum likelihood parameters α and s are:

{αML, sML} def
= argmin

α≥0,s
L +

sync(α, s) = argmax
α≥0,s

{

Csync(α, s)
def
=
∑

�

∣

∣w� z̃� +
∑

m∈M
w�,m g

�
�,m z̃�,m

∣

∣

2

w� +
∑

m∈M
w�,m |g�,m|2

}

. (33)

All the difficulty now consists in maximizing the cophasing criterion Csync. We propose to split this difficult
problem in easier to solve sub-problems. Starting by the cophasing of two frames which requires global op-
timization, we deduce a tractable estimate of all the delays. Finally, we fit all parameters by means of local
optimization. Note that the global problem is similar to a data fusion problem for which frames have to be
properly registered to add coherently.13 Like for the registration problem, the best cophasing parameters are the
ones which maximize Csync which is equivalent to maximizing the (squared) SNR of z+� summed over all spectral
channels �.
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3.2 Cophasing of two frames

We consider here the problem of cophasing the reduced data of two frames, say m0 and m1 using all the spectral
channels. Being able to solve this problem efficiently can be the building block of cophasing a complete sequence
of frames. We first consider an approach based on the maximum likelihood and then introduce alternative
methods where less variables need to be fitted and may thus yield better results.

3.2.1 Maximum likelihood cophasing of two frames

Using m0 as the reference (thus z̃� = z̃�,m0) and M = {m1}, the criterion (33) to be maximized writes:

Csync(α, s) =
∑

�

C sync
� (α�, s) with: C sync

� (α, s) =

∣

∣w�,m0
z̃�,m0

+ w�,m1
α e−iκ� s z̃�,m1

∣

∣

2

w�,m0 + w�,m1 α
2

, (34)

where, to simplify the notation, s ≡ sm1
and α� ≡ α�,m1

. Exploiting the partial separability with respect to the
wavelength, we maximize the criterion C sync

� (α, s) with respect to α subject to α ≥ 0. Taking the derivative:

∂C sync
� (α, s)

∂α
=

2w�,m0
w�,m1

(

c(s) + b α− a(s)α2
)

(

w�,m0
+ w�,m1

α2
)2 with:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

a(s) = w�,m1 q(s) ,

b= w�,m1 |z̃�,m1 |2 − w�,m0 |z̃�,m0 |2 ,
c(s) = w�,m0 q(s) ,
q(s) = Re

(

z̃�,m0 e
iκ� s z̃��,m1

)

.

As the denominator is strictly positive whatever α�, the stationary points of C sync
� (α, s) with respect to α are

the roots of the numerator which is a quadratic polynomial. The discriminant of this quadratic is always non-
negative, thus there are always two (possibly indistinct) roots. Maximizing C sync

� (α, s) with respect to α and
subject to α ≥ 0 yields:

α+
� (s) = argmax

α≥0
C sync
� (α, s) =

⎧

⎪

⎨

⎪

⎩

b+
√

b2 + 4 a(s) c(s)

2 a(s)
=

2 c(s)
√

b2 + 4 a(s) c(s)− b if q(s) > 0;

max
(

w�,m0 |z̃�,m0 |2, w�,m1 |z̃�,m1 |2
)

otherwise.

Remarks: The two expressions in the case q(s) > 0 are equivalent (the first one is numerically more stable for
b ≥ 0 while the second one is to be preferred if b ≤ 0); in the case q(s) ≤ 0 which correspond to z̃�,m0

eiκ� s and
z̃�,m1 making an angle wider than 90◦, the solution is either C sync

� (α = 0, s) or limC sync
� (α→∞, s).

Putting the expression of α+
� (s) in Csync(α, s) finally yields a criterion:

C+
sync(s) =

∑

�

C sync
� (α+

� (s), s) (35)

which only depend on the single variable s and has to be maximized by means of 1D global optimization. Figure 3
shows a typical plot of u(s) = −C+

sync(s). Compared to the full global optimization problem, such operation is
tractable and far more easier to perform safely with a rather simple algorithm Bradi given below.

Global minimization algorithm BRADI (bracket then dig). Given the search bounds smin < smax and a
sampling step δs > 0, find the global minimum of the continuous function u : R �→ R on [smin, smax].

0. Initialize: sbest = sb = sc = smin and ubest = ub = uc = u(smin).

1. Next sub-interval: sa ← sb and ua ← ub;
sb ← sc and ub ← uc;
sc ← min(sc + δs, smax) and uc ← u(sc).

If uc < ubest then update the best solution so far: sbest ← sc and ubest ← uc.

2. If ub ≤ min(ua, uc), a local minimum has been bracketed, then use Brent’s method14 to dig and find it:

sm ≈ argmin
s∈(sa,sc)

u(s) ,

and if um = u(sm) < ubest then update the best solution so far: sbest ← sm and ubest ← um.
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Figure 3. Criterion for cophasing two frames. The left panel displays the multi-modal criterion u(s) = −C +
sync(s) for a

differential piston s ∈ [−0.1mm,+0.1mm]. The right panel is a magnification around the global minimum. The red
vertical line indicates the true differential piston, the vertical lines are spaced by the effective wavelength.

3. If sb < sc, then go to step 1; otherwise, exit with the solution sbest. �
Remarks: (i) The Bradi algorithm is given in a rather standard form (that is to minimize a function). For

our needs, we use u(s) = −C+
sync(s). (ii) Our algorithm relies on the fact that not two local minima of u(s)

can be closer than 2 δs. In our case, since s is the differential piston, we expect close minima to be separated
by at least the smallest wavelength so we take: δs < (min� λ�)/2. (iii) A variant of the algorithm is to use
a given sampling of the search interval instead of the constant macro step size δs. (iv) The efficiency of the
proposed algorithm is that it performs an exhaustive search (without any randomness) and requires at most
1+�(smax−smin)/δs�+Nlocmin×Neval evaluations of the function (with Nlocmin the number of local minima in the
search interval and Neval the number of function evaluations for Brent’s method in a single interval). Typically in
our case, Nlocmin ∼ (smax−smin)/(min� λ�) and Neval � 20 although this latter depends on the requested precision.
So the total cost scales as ∼ (2 +Neval) (smax − smin)/(min� λ�) and, in any cases, terminates in a finite time and
cannot fail (providing δs is adequate). In a future work, we foresee to compare our algorithm to other 1D global
optimization algorithms notably Glomin by Brent14 which takes some random steps and Step by Swarzberg et
al.15 which performs an adaptive search but does not exploit the smoothness of the objective function.

3.2.2 Fitting scaled reduced data

If one form the variable:
r̃� = α�,m0

z̃�,m0
− α�,m1

z̃�,m1
e−iκ� s

with α�,m given (real or complex) factors and, as before, s = pm1
− pm0

, then:

E{r̃� |θ} =
(

α�,m0
|z�,m0

| − α�,m1
|z�,m1

|) ei (φ�+κ� pm0 ) ,

and it is easy to show that the real and imaginary parts of r̃� are i.i.d. Gaussian variables with variance:

Var{Re(r̃�) |θ} = Var{Im(r̃�) |θ} = |α�,m0
|2 σ2

�,m0
+ |α�,m1

|2 σ2
�,m1

.

Thus, if α�,m0
|z�,m0

| ≈ α�,m1
|z�,m1

|, then r̃� is approximately a centered complex variable whatever the phase
of the object complex visibility and the piston difference s can be estimated by minimizing:

s+scldif(α) = argmin
s

Cscldif(s |α) with: Cscldif(s |α) =
∑

�

∣

∣

∣α�,m0 z̃�,m0 − α�,m1 z̃�,m1 e
−iκ� s

∣

∣

∣

2

|α�,m0
|2 σ2

�,m0
+ |α�,m1

|2 σ2
�,m1

, (36)

where, here, α = {α�,m | � = 1, . . . , L;m ∈ {m0,m1}}. Clearly the result only depends on the ratio α�,m1
/α�,m0

(∀�) but we keep our definition for symmetry. Whatever the choice for α, solving the problem (36) requires global
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Table 1. Summary of the different methods for the cophasing of two frames.

Method Description

Scaled differences:
Method #0 s+#0 = argmax

s
C+
scldif(s |α) given by Eq. (36) with α�,m ≡ 1

Method #1 s+#1 = argmax
s

C+
scldif(s |α) given by Eq. (36) with α�,m0

≡ |z̃�,m1
| and α�,m1

≡ |z̃�,m0
|

Cross product:
Method #2 s+#2 = argmin

s
Ccross(s,α) with α� = |z̃�,m0 | |z̃�,m1 |

Method #3 s+#3 = argmin
s

{

minα Ccross(s,α)
}

Method #4 s+#4 = argmin
s

{

minα≥0 Ccross(s,α)
}

Maximum likelihood:
Method #5 s+#5 = argmax

s
C+
sync(s) given in Eq. (35)

1D optimization which we carry out with the Bradi algorithm described above. In our tests, we considered two
implementations of this approach: we neglect the variation of amplitude in the reduced data and take α�,m ≡ 1
(Method #0 ) or we take α�,m0 ≡ |z̃�,m1 | and α�,m1 ≡ |z̃�,m0 | (Method #1 ).

3.2.3 Cophasing with the cross-product

In order to get rid of most of the nuisance variables (the phase of the object complex visibility and, partially,
the amplitudes of the reduced data), we also considered using the cross product:

q̃� = z̃��,m0
z̃�,m1

.

Since, for m0 �= m1, z̃
�
�,m0

and z̃�,m1
are statistically independent and owning to their particular distributions, it

is easy to compute the expected value and the terms of the covariance matrix of q̃� (conditioned to the knowledge
of the parameters θ):

E{q̃� |θ} = E{z̃�,m0
|θ}� E{z̃�,m1

|θ} = α� e
iκ� s ,

Var{Re(q̃�) |θ} = |z�,m0
|2 σ2

�,m1
+ |z�,m1

|2 σ2
�,m0

+ 2σ2
�,m0

σ2
�,m1

.

Var{Im(q̃�) |θ} = Var{Re(q̃�) |θ} ,
Cov{Re(q̃�), Im(q̃�) |θ} = 0 ,

with α� = |z�,m0 | |z�,m1 | and s = pm1 − pm0 . Thus the real and imaginary parts of q̃� are uncorrelated and have
the same variance, even though they are certainly not Gaussian. Nevertheless under a Gaussian approximation,
we can fit the cross product q̃� simultaneously at all wavelengths (i.e. ∀�) to get an estimator of the differential
piston s. Depending on how we estimate α = {α� | � = 1, . . . , L}, we have several possibilities:

s+#2 = argmin
s

Ccross(s,α) with α� = |z̃�,m0
| |z̃�,m1

| , (37a)

s+#3 = argmin
s

{

min
α

Ccross(s,α)
}

, (37b)

s+#4 = argmin
s

{

min
α≥0

Ccross(s,α)
}

, (37c)

where:
Ccross(s,α) =

∑

�

wcross
�

∣

∣z̃��,m0
z̃�,m1

− α� eiκ� s

︸ ︷︷ ︸

E{q̃� | θ}

∣

∣

2
, (37d)
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Table 1). With ε the error for the differential piston:
|ε| < λ/2 (solid lines), λ/2 ≤ |ε| < λ (dashed lines) and
λ ≤ |ε| < 3λ/2 (dotted lines).
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with the statistical weights approximated from the variance of q̃� by replacing unknown terms, namely |z�,m0
|2

and |z�,m1
|2, by their empirical value‡:

wcross
� =

w�,m0
w�,m1

w�,m0
|z�,m0

|2 + w�,m1
|z�,m1

|2 + 2
≈ w�,m0

w�,m1

w�,m0
|z̃�,m0

|2 + w�,m1
|z̃�,m1

|2 + 2
. (37e)

The optimal value of α given s is trivial to compute (the problem being quadratic and separable with respect
to the spectral channel):

argmin
α�

Ccross(s,α) = Re
(

z̃��,m0
z̃�,m1

e−iκ� s
)

,

argmin
α�≥0

Ccross(s,α) = max
{

0,Re
(

z̃��,m0
z̃�,m1

e−iκ� s
)}

.

Though this is not the case for s, again we use Bradi for the related 1D global optimization.

3.2.4 Theoretical limit

The best achievable accuracy of an unbiased estimator is provided by the Fréchet-Darmois-Cramér-Rao (FDCR)
bound. Assuming all other parameters are known, the variance of any unbiased estimator ŝ of the differential
piston s is bounded by:

Var{ŝ} ≥ E

{

∂2L (z̃ |θ)
∂s2

∣

∣

∣

∣

θ

}−1

=

{

∑

�

κ2�
SNR2

�,m0
SNR2

�,m1

SNR2
�,m0

+ SNR2
�,m1

}−1

with SNR�,m = |z�,m|/σ�,m , (38)

with L (z̃ |θ) def
= const− log Pr{z̃ |θ} the co-log-likelihood of the data z̃ given the parameters θ and SNR�,m the

signal to noise ratio of the raw visibility in �-th channel during m-th frame as given by Eq. (21) or by Eq. (22)
depending whether maximum likelihood or least squares raw visibilities are used.

3.2.5 Comparison of pairwise cophasing methods

The proposed 6 cophasing methods for a pair of frames are summarized in Table 1. We compared these methods
for an intermediate fringe contrast (ρ = 0.3) and under various fluxes. Figure 4 shows the fraction of pairs of

‡however this slightly overestimate the denominator of wcross
� , notably at low SNR’s, because of a positive bias term

and thus underestimate the weights
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frames which are correctly cophased, or within one or two wavelengths. Note that if the ratio Δλ/λ (with Δλ
the total spectral bandwidth) is small (usually Δλ/λ ∼ 0.1), then phasing the frames up to a k λ offset, with
k a small integer in magnitude, can be very effective. Figure 5 shows the achieved accuracy. As expected, as
the number of photons decreases, the fraction of misregistered frames augments and the error worsens. Methods
#0, #1 and #2 behave the best, then come the maximum likelihood method #5 and method #4 (fitting the
cross-product with non-negative amplitude). Method #3 is grossly inefficient which is not unexpected as it
does not enforces the non-negativity of the amplitude parameter α� and thus yields a lot of spurious minima,
roughly at multiple of λ/2 with respect to the true value. The effectiveness of positivity constraints has also
been demonstrated for detection methods.16

In our simulations, method #0 uses the exact scaling factors (i.e. α = 1) so its performances should be
considered as the ultimate ones, at least for the scaled difference criterion in Eq. (36). Methods #1 and #2
which nearly achieve the same best performances use empirical estimators for the scale factors and for the
amplitude α. Methods #3, #4 and #5 fit the value of α so as to optimize the corresponding criterion and
behave notably worse (in particular method #4) than the best methods. In fact looking closely at Eq. (37d)
and Eq. (36) when α is replaced by its empirical value, it appears that these criteria can both be rewritten as
weighted sums of squared phasors differences:

Cphasor(s) =
∑

�

wphasor
�,m0,m1

∣

∣ũ�,m1 − ũ�,m0 e
iκ� s

∣

∣

2
with ũ�,m

def
= z̃�,m/|z̃�,m| , (39a)

where only the expression of the weights change between method #1 and method #2:

wphasor
�,m0,m1

=
wphasor
�,m0

wphasor
�,m1

wphasor
�,m0

+ wphasor
�,m1

+ β
with wphasor

�,m
def
= w�,m |z̃�,m|2 , (39b)

where β = 0 for the scaled differences (method #1) and β = 2 for the cross product (method #2). A future
direction of investigation could be to derive improved weighting for the criterion in Eq. (39a). The results
of our tests however indicate that this is not a critical issue. Comparing the performances of the proposed
methods to optimal statistical bounds such as the Fréchet-Darmois-Cramér-Rao (FCDR) bound (the gray curve
in Fig. 5) shows that the ultimate performances are only achieved for the highest fluxes considered (� 500
photons/channel/frame). Note that for the lowest considered fluxes the measured accuracy is biased by the
modulo λ wrapping so it cannot be compared to the FCDR limit and it tends to λ/

√
12 � 0.28λ, i.e. the

standard deviation of a uniform distribution on [−λ/2,+λ/2]. The expression in Eq. (39b) motivates the use of

w′
�,m = w�,m |z̃�,m|2 as the statistical weight of an empirical phasor.

4. CONCLUSION AND PERSPECTIVES

The best methods for cophasing two given frames amount to fit the raw phasors (not the raw complex visibilities).
From this preliminary study, phase tracking seems possible with less than 100 photons/channel/frame. The
FCDR bound is however not achieved except for high fluxes (≥ 400 photons/channel/frame).

Further studies include: (i) Design a global strategy for cophasing all the frames of a sequence. (ii) Deal with
the fluctuations of the fringe contrast (due to speckle noise). (iii) Apply our method to real data.
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