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WAVELET-IN-TIME MULTIGRID-IN-SPACE PRECONDITIONING
OF PARABOLIC EVOLUTION EQUATIONS∗

ROMAN ANDREEV†

Abstract. Two space-time variational formulations of linear parabolic evolution equations are
considered, one is symmetric and elliptic on the trial space while the other is not. In each case, a
space-time Petrov–Galerkin discretization using suitable tensor product trial and test functions leads
to a large linear system of equations. The well-posedness of this system with respect to parabolic
norms induces a canonical preconditioner for the algebraic equations that arise after a choice of basis.
For the iterative resolution of this algebraic system with parallelization in the temporal direction we
propose a sparse algebraic wavelet-in-time transformation on possibly nonuniform temporal meshes.
This transformation approximately block-diagonalizes the preconditioner, and the individual spatial
blocks can then be inverted for instance by standard spatial multigrid methods in parallel. The
performance of the preconditioner is documented in a series of numerical experiments.
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1. Introduction and problem formulation.

1.1. Introduction. We present a preconditioner for space-time simultaneous
Petrov–Galerkin discretizations of linear parabolic evolution equations that is suit-
able for large scale parallel-in-time computation. The basic rationale for the design
of the preconditioner is the ability to use existing spatial finite element codes and
preconditioners for elliptic problems, such as multigrid. In the context of large scale
parallel computation we therefore stipulate that the space-time solution vector is dis-
tributed across computing nodes along the temporal dimension so that a node, or a
group of nodes, each hold only a few temporal snapshots of the solution out of many.
By many we mean hundreds or thousands of snapshots. Then, space-time simulta-
neous iterative computation asks for the reduction of communication between these
groups of nodes as far as possible, in particular when it comes to preconditioning.
This will be achieved by a transformation to a temporal multiscale basis.

We consider two different space-time variational formulations of the linear para-
bolic evolution equation (Section 1.3). The key difference between them is that one
is symmetric and elliptic while the other is not. The lack of symmetry has implica-
tions on the choice of discrete trial and test spaces and on the choice of the iterative
solver (Sections 2.1–2.4). The symmetric formulation, on the other hand, involves
the inverse of the spatial operator, which renders its numerical implementation more
challenging. However, we will show that both formulations admit the same canoni-
cal preconditioner induced by the continuous norm on the trial space (Section 2.4).
Throughout, we assume the regime of small Péclet numbers. That is we assume that
the symmetric part of the generator is elliptic, and the asymmetric part is relatively
small.

As we shall explain (Section 3.2.2), the space-time preconditioner involves the
construction of a temporal piecewise polynomial multiscale basis with compact sup-
port which can be rescaled to a Riesz basis both in the Lebesgue space L2 and in the
Sobolev space H1. Many such bases of wavelet type are known, but their construction
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2 R. ANDREEV

is typically based on dyadic refinement, posing restrictions on the temporal mesh. The
classical fast Fourier transform suffers from the same drawback. For piecewise lin-
ear spline spaces we provide an algebraic algorithm that works on arbitrary temporal
meshes (Section 3.3). The algorithm proceeds as follows: a) identify basis functions in
the top frequency band; b) approximately orthogonalize to those of lower frequency;
c) split off the resulting detail space; d) repeat. Approximate iterative orthogonaliza-
tion in the second step allows to produce compactly supported wavelet-like functions.
Due to the purely algebraic approach no complications appear at the boundary of the
interval. Extensions to splines of higher polynomial degree are of interest but will not
be discussed here.

The sparsity of the multiscale transformation to the wavelet-like basis in the tem-
poral variable is crucial for reducing the interprocess communication cost. Moreover,
the Riesz basis property simultaneously in L2 and H1 allow to transform and approxi-
mate the nonlocal canonical preconditioner as a block-diagonal one, where each block
corresponds to a spatial Helmholtz problem with an imaginary frequency. For the
purpose of preconditioning, this block can be replaced by multigrid versions of posi-
tive definite Helmholtz problems with real frequency while maintaining control over
the quality of the preconditioner (Section 3.2). This block-diagonal preconditioner
can then be applied in parallel. We emphasize that parallelization is achieved in the
temporal direction, but the effect of the multiscale wavelet-like transformation in time
is such that the individual spatial blocks of the preconditioner do not correspond to
small temporal subintervals, rather to wave packets of different temporal scale.

In Section 4 we present our numerical experiments that document the quality of
the preconditioner and its performance in the space-time simultaneous resolution of
parabolic evolution equations. We conclude in Section 5.

In the Appendix we provide A) a Matlab code for the construction of the wavelet-
like basis, and B) a generalized LSQR algorithm that is used in the complete space-
time algorithm.

1.2. Problem class. Let V and H be real separable Hilbert spaces with con-
tinuous and dense embedding V ↪→ H. The Hilbert space H is identified with its
(continuous) dual H ′ by the Riesz isomorphism. This results in the Gelfand triple
V ↪→ H ∼= H ′ ↪→ V ′ with continuous and dense embeddings. We write ‖ · ‖V for the
norm on V . The scalar product on H and (its continuous extension to) the duality
pairing between V and V ′ is denoted by (·, ·). For the duality pairing on other Banach
space we write 〈·, ·〉. We write L2(J ;V ′) for the Bochner space of V ′-measurable func-
tions on J , and H1(J ;V ′) for the Bochner–Sobolev subspace of weakly differentiable
functions w on J with derivative dtw in L2(J ;V ′), see [22] or [39, Chapter 1]. Similar
notation is employed for other instances of Hilbert spaces.

Let J = (0, T ) be a nonempty bounded interval. Let A(t) : V → V ′, (a.e.) t ∈ J ,
be a family of bounded linear operators. We assume that, for some fixed constants
C > 0, α > 0, and γ0 ≥ 0, the family A(t), t ∈ J , satisfies the conditions

a) For all χ, χ̃ ∈ V , the mapping t 7→ (A(t)χ, χ̃) is Lebesgue measurable. (1)

b) |(A(t)χ, χ̃)| ≤ C‖χ‖V ‖χ̃‖V for all χ, χ̃ ∈ V and (a.e.) t ∈ J . (2)

c) (A(t)χ, χ) ≥ α2‖χ‖2V − γ2
0‖χ‖2H for all χ ∈ V and (a.e.) t ∈ J . (3)

Let f ∈ L2(J ;V ′) and g ∈ H be given. The subject of this paper is the abstract
linear parabolic evolution equation

u(0) = g, dtu(t) +A(t)u(t) = f(t) (a.e.) t ∈ J, (4)
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where the equalities are understood in H and V ′, respectively. Equivalently, one
could write dtu + Au = f with equality in L2(J ;V ′), where Au stands for the map
t 7→ A(t)u(t), t ∈ J . In order to make the concept of a solution precise, we introduce
the Sobolev–Bochner spaces

X := L2(J ;V ) ∩H1(J ;V ′) and Y := L2(J ;V )×H. (5)

A generic element of Y has the form v = (v1, v0). A norm on X is given by

|||w|||2X := ‖w‖2L2(J;V ′) + ‖dtw‖2H1(J;V ′) w ∈ X. (6)

We recall the continuous embedding X ↪→ C0([0, T ];H). In particular, w(t0) is well-
defined in H for any w ∈ X and 0 ≤ t0 ≤ T , and w 7→ w(t0) is continuous, see [22,
Section 5.9.2] or [39, Chapter 1]. An equivalent norm (with equivalence constants
depending on T , see Section 2.5) is therefore given by

‖w‖2X := |||w|||2X + ‖w(T )‖2H , w ∈ X, (7)

and henceforth, X is understood to be equipped with this norm. With the obvious
corresponding inner product, it is a Hilbert space. The choice of the norm can be mo-
tivated as follows. Suppose A is the embedding V ↪→ V ′. Then ‖dtu+Au‖2L2(J;V ′) =

‖u‖2X − ‖u(0)‖2H can be verified by expanding the square and using integration by
parts. Therefore ‖u‖2X = ‖f‖2L2(J;V ′) + ‖g‖2H if u satisfies (4).

Under the stated assumptions on A and the data f and g, there exists a unique
solution u ∈ X to (4), and it depends continuously on the data [39, Chapter 3, §4.7].

In view of the usual transformation u 7→ v := [t 7→ u(t)e−γ
2
0 t], which is an

automorphism on X, we assume from now on without loss of generality that γ0 = 0.

1.3. Space-time variational formulations. Our first space-time variational
formulation is from [46]. It is based on testing dtu + Au = f by v1 ∈ L2(J ;V ′)
and appending the initial condition u(0) = g using a Lagrange multiplier v0 ∈ H.
Specifically, define the bounded linear operator B : X → Y ′ by

〈Bw, v〉 :=

∫
J

(dtw +Aw, v1)dt+ (w(0), v0), (w, v) ∈ X × Y, (8)

and the bounded linear functional F ∈ Y ′ by

Fv :=

∫
J

(f, v1)dt+ (g, v0), v ∈ Y. (9)

Here and in the following we omit the dependence of the integrands on t. The space-
time variational formulation then reads

Find u ∈ X : 〈Bu, v〉 = Fv ∀v ∈ Y. (10)

Our second variational formulation is an instance of the Brézis–Ekeland–Nayroles
variational principle [15, 41]. To state it, we introduce the notations

Â := 1
2 (A+A′), Ã := 1

2 (A−A′) and C̃ := dtw + Ãw, w ∈ X, (11)

where Â and Ã denote the symmetric and the anti-symmetric part of A, respectively.
Define the bounded linear operator B̂ : X → X ′ by

〈B̂w, v〉 :=

∫
J

{
(Â−1C̃w, C̃v) + (Âw, v)

}
dt+ (w(T ), v(T )), (12)
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for w, v ∈ X, and the bounded linear functional F̂ ∈ X ′ by

F̂ v :=

∫
J

(f, Â−1C̃v + v)dt+ (g, v(0)), v ∈ X. (13)

The second space-time variational formulation then reads

Find û ∈ X : 〈B̂û, w〉 = F̂w ∀w ∈ X. (14)

The essential property of this space-time variational formulation to (10) is that the

trial space and the test space coincide, and the operator B̂ is symmetric, that is
〈B̂w, v〉 = 〈B̂v, w〉 for all w, v ∈ X. Moreover, owing to X-ellipticity of B̂,

∃γ̂ > 0 : 〈B̂w,w〉 ≥ γ̂2‖w‖2X ∀w ∈ X, (15)

see [2, Proposition 3.2.26], the Lax–Milgram lemma shows that there is a unique
solution û to (14), and it depends continuously on the data. It is instructive and
straightforward to verify that u from (4) satisfies the variational formulation (14).

For completeness, we mention another space-time variational formulation [7, 8,
27, 16, 40] which is based on testing dtu + Au = f by v ∈ X with v(T ) = 0,
performing integration by parts in time, and putting the adjoint of A onto the test
function. This exposes u(0), which is then replaced by the known initial datum g.
The result is the space-time variational formulation: Find u ∈ L2(J ;V ) such that∫
J

(u,−dtv + A′v)dt =
∫
J

(f, v)dt + (g, v(0)) for all v ∈ X with v(T ) = 0. It can be
treated analogously to the first one. Yet another space-time variational formulation
based on fractional temporal derivatives was given in [37], with the effect that only
H and V appear in the definitions of the trial and test spaces, but not V ′. Finally,
time-periodic problems with periodicity condition u(0) = u(T ) require only minor
modifications, and will not be discussed here.

In the remainder of the paper we focus entirely on space-time full tensor product
discretizations of the variational formulations (10) and (14). We point out, however,
that they can serve as a basis for space-time adaptive and space-time compressive
discretizations. Some references in that direction are given in the next section.

1.4. A brief overview of space-time methods. In order to improve on time-
stepping schemes and to achieve parallelization in time, several methods have been
developed for parabolic evolution equations. Without claiming exhaustiveness we
mention waveform relaxation [50, 33, 31], low rank tensor approximation [21], parallel
multiple shooting [35] and “parareal” [38, 25], Laplace transformation [47], Toeplitz
matrix representation [9], space-time multigrid [29, 32, 24], unstructured space-time
decomposition [42], space-time wavelet discretization [1] and sparse grids [28, 27] with
heuristic adaptivity. See [23] for a historical perspective and further references.

Those works do not exploit the fact that parabolic evolution equations define
well-posed operator equations between Bochner spaces, and thus admit well-posed
space-time variational formulations. This was first done in [7, 8] using conforming
discretizations of a space-time variational formulation of the heat equation with piece-
wise polynomials in time. In [46] and subsequently [16, 17, 34, 37], the applicability
of adaptive wavelet methods to parabolic evolution equations was shown. By means
of a reduction to a boundary integral equation [20], stable space-time compressive
algorithms were constructed in [18]. Well-posed space-time variational formulations
and stable a priori Petrov–Galerkin discretizations were derived and implemented in
[36, 40, 4, 5], space-time compressive variants in [2, 3, 6]. Quasi-optimality in space-
time norms and space-time adaptivity were investigated in [49].
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2. Conforming space-time tensor product discretization.

2.1. Space-time tensor product subspaces. The discrete space-time trial
and test spaces are built from nested finite-dimensional univariate temporal subspaces
EL ⊂ H1(J), FL ⊂ L2(J), and spatial subspaces VL ⊂ V parameterized by an integer
L ≥ 0. We then define the discrete trial and test spaces (recall X and Y from (5))

XL := EL ⊗ VL ⊂ X and YL := (FL ⊗ VL)× VL ⊂ Y, (16)

where ⊗ denotes the algebraic tensor product. If
⋃
L≥0EL is dense in H1(J) and⋃

L≥0 VL is dense in V then
⋃
L≥0XL is dense in X.

We assume henceforth that all subspaces are nontrivial and satisfy the discrete
inf-sup condition

∀L ≥ 0 : γL := inf
w∈XL\{0}

sup
v∈YL\{0}

〈Bw, v〉
‖w‖X‖v‖Y

> 0, (17)

where B is as in (8). Note that at this stage, γL > 0 may not be bounded away from
zero as L→∞.

By ellipticity (15) of the symmetric operator B̂, its discrete inf-sup constant γ̂L
automatically satisfies γ̂L ≥ γ̂ > 0 when XL is used simultaneously as the trial and
as the test space.

In the quantification of the well-posedness of the discrete problems the quantity

ΓL := sup
w∈XL\{0}

sup
v∈YL\{0}

〈Bw, v〉
‖w‖X‖v‖Y

, L ≥ 0, (18)

will also play a role. It is clear that ΓL ≤ ‖B‖. Similarly, the corresponding sup sup

quantity Γ̂L for B̂ satisfies Γ̂L ≤ ‖B̂‖.
The discrete inf-sup condition (17) necessitates dimXL ≤ dimYL. We discuss the

cases dimXL = dimYL and dimXL ≤ dimYL in Sections 2.2 and 2.3, respectively.

2.2. Discrete variational formulation. In this section we assume that XL ⊂
X and YL ⊂ Y have the same dimension. The existence of such subspaces satisfying
the discrete inf-sup condition (17) is guaranteed by bounded invertibility of B : X →
Y ′. Practical instances are more subtle due to the non-symmetric contribution of
the temporal derivative; however, in [5] it was shown that collocation Runge–Kutta
time-stepping schemes applied to spatial semi-discretizations admit an interpretation
as a discrete space-time variational formulation, see (19) below, with discrete trial and
test spaces of the form (16). In addition, discrete stability γL ≥ γ > 0 in (17) may be
achieved for all L ≥ 0 under mild assumptions on the discretization parameters.

Given such XL and YL, it is straightforward to define the discrete solution by the
discrete nonsymmetric space-time variational formulation

Find uL ∈ XL : 〈BuL, v〉 = Fv ∀v ∈ YL. (19)

With the assumption that the discrete inf-sup condition (17) holds for XL and YL, a
unique solution uL ∈ XL to (19) exists by standard finite element method theory.

For any nontrivial subspaceXL ⊂ X, symmetry and ellipticity (15) of B̂ guarantee
its ellipticity on XL. The Lax–Milgram theorem then provides a unique solution to
the discrete symmetric space-time variational formulation

Find ûL ∈ XL : 〈B̂ûL, w〉 = F̂w ∀w ∈ XL. (20)
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Again, we emphasize that XL is used as the trial and as the test space simultaneously.
We will content ourselves with the full tensor product subspace XL as in (16), but
we mention that space-time compressive discretizations XL and YL could be used for
(19) and for (20), see [3].

Let Φ be a basis for XL, and Ψ a basis for YL. Here, and where appropriate, we
omit the subscript L for readability. We write uL = ΦTu with a vector of coefficients
u ∈ RΦ indexed by the elements of Φ, and define the system matrix B ∈ RΨ×Φ with
the components Bψφ = 〈Bφ,ψ〉, as well as the load vector F ∈ RΨ with the compo-
nents Fψ = Fψ, where (φ, ψ) ∈ Φ×Ψ. Then the discrete variational formulation (19)
is equivalent to the algebraic equation

Bu = F. (21)

The discrete inf-sup condition (17) implies that B is injective, so that (21), and also
(24) below, is uniquely solvable.

Defining B̂ ∈ RΦ×Φ and F̂ ∈ RΦ analogously, and writing ûL := ΦTû, the
symmetric discrete variational formulation (20) is equivalent to the algebraic equation

B̂û = F̂. (22)

2.3. Minimal residual variational formulation. For details and proofs for
this section we refer to [3, 2]. Contrary to the aforegoing section we now assume that
dimYL ≥ dimXL, both finite but possibly unequal. The motivation to consider this
case is the fact that the discrete inf-sup condition (17) and indeed, discrete stability
γL ≥ γ > 0, is then easier to achieve, for one is allowed to choose any discrete test
space YL that is “large enough”. In this case the discrete variational formulation
(19) is meaningless. Instead, we define the discrete solution as the minimizer of the
functional residual by

uL := argmin
wL∈XL

R(wL), R(wL) := sup
v∈YL\{0}

|〈F −BwL, v〉|
‖v‖Y

. (23)

In the particular case dimXL = dimYL this formulation reduces to (19), so it is
appropriate to use the same symbol uL here. Under the inf-sup condition (17) there
exists a unique solution uL ∈ XL to (23), it depends linearly and continuously on the
load functional F , and the operator norm of the discrete solution mapping F 7→ uL is
bounded by 1/γL. Defining B, F, and u as in the aforegoing section, the functional
residual minimization (23) is equivalent to the algebraic equation

B>N−1Bu = B>N−1F, (24)

where N is the symmetric positive definite matrix such that v>Nv = ‖ΨTv‖2Y for all
coefficient vectors v ∈ RΨ. Note that (24) has the form of generalized Gauss normal
equations. If dimXL = dimYL then it is equivalent to (21), and therefore henceforth
we consider (21) as a special case of (24), and do not discuss it separately. We will
solve (24) iteratively with the generalized LSQR algorithm provided in Appendix B.

Instead of the exact N in (24), an approximation may be used, say N′ with
c2NN ≤ N′ ≤ C2

NN for some constants 0 < cN ≤ CN < ∞. If u′ denotes the
corresponding solution, and u′L := Φ>u′ then the quasi-optimality estimate holds:

‖u− u′L‖X ≤ CL inf
wL∈XL

‖u− wL‖X with CL :=
CN

cN

ΓL
γL
. (25)

Our objective now is to devise a preconditioner for the symmetric algebraic equa-
tions (22) and (24). This is the subject of the next section.
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2.4. Parabolic space-time preconditioners. As in the aforegoing Sections
2.2 and 2.3, assume XL ⊂ X and YL ⊂ Y are nontrivial finite-dimensional subspaces
that satisfy the discrete inf-sup condition (17), and with dimXL ≤ dimYL possibly
unequal. The algebraic equations (22) and (24) stem from a space-time Petrov–
Galerkin discretization of a parabolic evolution equation, so that direct solution is
likely impossible due to the large size of the system. Two basic methods for their
approximate iterative solution are therefore

• the preconditioned Richardson iteration, and
• the preconditioned conjugate gradients method.

It may be preferable to apply the Richardson iteration to the symmetric formulation
(22) due to the fact that even the forward application on B̂ requires solutions of ellip-
tic problems. The preconditioned conjugate gradient method applied to the normal
equations (24) is equivalent to the generalized LSQR method given in the Appendix.

Both iterative schemes necessitate a good preconditioner, that is a matrix M
such that the condition numbers (27) are small (or the eigenvalues are clustered) [26].
To exhibit such a preconditioner we exploit the mapping properties of the operators
B and B̂. Given a basis Φ ⊂ XL we define M ∈ RΦ×Φ as the matrix such that
wTMw = ‖ΦTw‖2X for all coefficient vectors w. Its components are then

Mϕφ =

∫
J

{(φ(t), ϕ(t))V + (dtφ(t), dtϕ(t))V ′}dt+ (φ(T ), ϕ(T )). (26)

The variational characterization of the extremal singular values shows that the set of
singular values σ of the preconditioned matrices satisfies σ(M−1/2B̂M−1/2) ⊂ [γ̂L, Γ̂L]
and σ(N−1/2BM−1/2) ⊂ [γL,ΓL], and the intervals are the smallest possible, see [2,
Proof of Proposition 4.2.3], and Section 2.2 for the definition of these quantities. In
practice, only M−1 and N−1 will be needed, but not their square roots. It follows

κ2(M−1/2B̂M−1/2) = Γ̂L/γ̂L and κ2(M−1/2BTN−1BM−1/2) = Γ2
L/γ

2
L (27)

for the condition numbers with respect to the euclidean norm.
In Section 3 below we discuss the Kronecker structure of the system matrices

B and B̂, the norm matrix N, and the preconditioner M. We then describe the
structure of the inverses N−1 and M−1, and their practical approximations based on
a wavelet-in-time multigrid-in-space transform.

2.5. Norm equivalence on the trial space. As noted above, the two norms
‖ · ‖X and |||·|||X , related by ‖w‖2X = |||w|||2X + ‖w(T )‖2H , are equivalent. Since the
norm |||·|||X gives rise to a simpler preconditioner than (26), it is of interest to quantify
this norm equivalence. Obviously, |||·|||X ≤ ‖ · ‖X . For the reverse comparison we
need to find the constant CX in the estimate ‖w(T )‖H ≤ CX |||w|||X , from which

‖w‖2X ≤ (1+C2
X) |||w|||2X follows. We shall do this only in the (relevant) situation that

H is infinite-dimensional and the embedding V ↪→ H is compact. In this case there
exists a countable orthonormal basis {σk}k∈N for H, which is also an orthogonal
basis for V and V ′. Set λk := ‖σk‖V . The indexing is assumed to be such that
0 < λ1 ≤ λk for all k ∈ N. Then 1/λ1 is the norm of the embedding V ↪→ H,
appearing in the Friedrichs inequality when V and H are Sobolev spaces. Further, by
orthonormality of the basis in H there follows λ−1

k = ‖σk‖V ′ . Expanding w ∈ X into
this basis we can write w =

∑
k∈N wk ⊗ σk, which implies ‖w(0)‖2H =

∑
k∈N |wk(0)|2,

‖w‖2L2(J;V ) =
∑
k∈N ‖λkwk‖2L2(J) and ‖∂tw‖2L2(J;V ′) =

∑
k∈N ‖λ

−1
k w′k‖2L2(J).

This motivates the reduced question: Given λ > 0, find the smallest C > 0
such that for all f ∈ H1(J) there holds C−2|f(0)|2 ≤ ‖λf‖2L2(J) + ‖λ−1f ′‖2L2(J).
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Herein, we can without loss of generality suppose that f(0) = 1. Then the question
becomes that of minimizing the right hand side. Applying the variational principle
leads to the boundary value problem −λ−2f ′′+λ2f = 0 with the boundary conditions
f ′(0) = 0 and f(T ) = 1. This problem can be solved explicitly, yielding the catenary
as the solution. A direct computation then shows C = 1/

√
tanh(λ2T ). This is a

decreasing function of λ. Therefore, the best constant in ‖w(T )‖ ≤ CX |||w|||X is
given by C2

X := 1/ tanh(λ2
1T ). As T → ∞, we have CX ↘ 1. For instance, if

λ2
1T ≥ 1 then CX ≤ 1.1459. On the other hand, if T is small, we can approximate

tanh(λ2
1T ) ∼ λ2

1T , so that CX ∼ 1/
√
λ2

1T diverges as T ↘ 0.
In summary, if T is large enough, then the last term in (26) can be omitted

without sacrificing the quality of the preconditioner M.

3. Wavelet-in-time multigrid-in-space approximation. In order to sim-
plify the further exposition of the main ideas relating to preconditioning, we shall as-
sume from now on that in the parabolic evolution equation (4), the generator t 7→ A(t)
is time-independent. Hence we write A instead of A(t). While the results are stable
with respect to slight perturbations of these assumptions, the discretization of the op-
erators (8) and (12) becomes technical, and the quality of the proposed preconditioner
may deteriorate for large variations of t 7→ A(t).

The assumption that A is time-independent allows us to equip the space V with
the norm ‖χ‖V := (Âχ, χ)1/2, which by (1)–(3) is equivalent to the original norm.

In order to avoid in practice the computation of the dual norm ‖·‖V ′ that appears
in the definition (7) of the norm ‖ · ‖X , for any nontrivial finite-dimensional subspace
VL ⊂ V we introduce ‖χ‖V ′L as the norm of the functional 〈χ, · 〉 ∈ V ′ restricted to
VL, and the measure of self-duality 0 < κL ≤ 1 as the largest constant satisfying

‖χ‖V ′L ≤ ‖χ‖V ′ ≤ κ
−1
L ‖χ‖V ′L ∀χ ∈ VL. (28)

Equivalently, κ−1
L is the norm of the H-orthogonal projector from V to VL ⊂ V , see

[3, Lemma 6.2] and the discussion therein, as well as [10] for a quantitative analysis
for finite element subspaces.

3.1. Kronecker product structure of discretized operators. Recall from
(16) that the discrete trial and test spaces XL ⊂ X and YL ⊂ Y are of the tensor
product form XL = EL ⊗ VL and YL = (FL ⊗ VL)× VL. This has implications on the

structure of the system matrices B and B̂ introduced in Section 2.2.
Let now Θ ⊂ EL, Ξ ⊂ FL, and Σ ⊂ VL, be bases for the respective spaces. Set

Φ := {θ ⊗ σ : (θ, σ) ∈ Θ× Σ} and Ψ1 := {ξ ⊗ σ : (ξ, σ) ∈ Ξ× Σ}. Then

Φ ⊂ XL and Ψ := (Σ× {0}) ∪ ({0} ×Ψ1) ⊂ YL (29)

are bases for XL and YL, respectively.
The system matrix B ∈ RΨ×Φ from Section 2.2, whose components are Bψφ =

〈Bφ,ψ〉, then has the form

B =

(
CFE
t ⊗Mx + MFE

t ⊗Ax

e0 ⊗Mx

)
, (30)

where a) “temporal FEM” matrices CFE
t ,MFE

t ∈ RΞ×Θ and the row vector e0 ∈
R1×Θ have the components

[CFE
t ]ξθ = (θ′, ξ)L2(J), [MFE

t ]ξθ = (θ, ξ)L2(J), [es]1θ = θ(s), (31)
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and b) the usual “spatial FEM” mass and stiffness matrices Mx,Ax ∈ RΣ×Σ have
the components

[Mx]σ̃σ = (σ̃, σ), [Ax]σ̃σ = (Aσ̃, σ). (32)

Let ME
t and MF

t denote the temporal mass matrices for Θ ⊂ EL and Ξ ⊂ FL,

respectively, and AE
t the temporal stiffness matrix for Θ ⊂ EL. Let Âx be the

symmetric part of Ax. Then the preconditioner M from Section 2.4 satisfies

M ∼M + (eTT ⊗ eT )⊗Mx, (33)

where

M := ME
t ⊗ Âx + AE

t ⊗ (MxÂ
−1
x Mx). (34)

Note that eTT ⊗ eT in (33) is a rank-one matrix in RΘ×Θ of the same size as ME
t

and AE
t . Employing the estimate (28) for the last term of (34), together with the

observation ‖ΣTc‖2V ′L = cTMxÂ
−1
x Mxc, shows the equivalence in (33).

The norm-measuring matrix N from Section 2.3 is the block matrix

N =

(
MF

t ⊗ Âx 0
0 Mx

)
. (35)

Finally, the matrix B̂ from Section 2.2 has the form

B̂ = Z + ME
t ⊗ Âx + (eTT ⊗ eT )⊗Mx, (36)

where Z ∈ RΦ×Φ is a symmetric matrix with the components Zϕφ := 〈Â−1C̃ϕ, C̃φ〉.
Details for a concrete example of Z are discussed in Section 4.1.3.

3.2. Multigrid-in-space. As indicated in Section 2.4, we require a practical
way to apply the inverses of N and of the preconditioner M.

3.2.1. Inverse of N. From (35) we have the representation

N−1 =

(
(MF

t )−1 ⊗ Â−1
x 0

0 M−1
x

)
(37)

for the inverse of N. Using an L2-orthogonal basis for the temporal test space FL ⊂
L2(J), see Section 4.1.4, renders MF

t a diagonal matrix, so that N−1 is block-diagonal.

The inverse Â−1
x can be replaced by a multigrid iteration.

3.2.2. Inverse of M. Based on the discussion in Section 2.5 and the equivalence
(33), instead of M we will consider the simpler matrix M as the preconditioner. For
the sake of readability, we omit the superscript in the notation for the “temporal
FEM” matrices. Let Vt be a transformation matrix of the same size as At and Mt

such that VT
t MtVt and VT

t AtVt are spectrally equivalent to some diagonal matrices
Jt and Dt, respectively, where the constants of the equivalence should be close to one.
We refer to the ratio of those constants as the condition number of the transformation.
The canonical choice of Vt is the matrix collecting in its columns the Mt-orthonormal
eigenvectors of the generalized eigenvalue problem Atv = λMtv, in which case Jt :=
VT
t MtVt is the identity and Dt := VT

t AtVt has the eigenvalues on the diagonal.
In this case, the condition number of the transformation is one, but the drawback
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is that Vt is a dense matrix. A sparse alternative Vt := TT
t is given by the inverse

wavelet(-like) transformation introduced in Section 3.3 below, and we take Jt as the
diagonal of VT

t MtVt and Dt as the diagonal of VT
t AtVt. The condition numbers are

investigated in Section 3.3.2. We suppose now that Vt is such that

VT
t MtVt ∼ Jt and VT

t AtVt ∼ Dt (38)

with some nonnegative diagonal matrices Jt and Dt, where Jt is positive definite
(specifically, we use (48)). Let Ix denote the identity matrix of the same size as Mx

and Ax. We set T := VT
t ⊗ Ix. Then TT = Vt ⊗ Ix.

To obtain a computationally accessible approximation of M−1, we begin with the
change of temporal basis

M−1 ∼M
−1

= TT(TMTT)−1T ∼ TT(Jt ⊗ Âx + Dt ⊗ (MxÂ
−1
x Mx))−1T. (39)

This requires the approximation of the inverse of the block-diagonal matrix

Jt ⊗ Âx + Dt ⊗ (MxÂ
−1
x Mx), (40)

where each block has the form j2Âx + d2(MxÂ
−1
x Mx) with some nonnegative reals j

and d, and we recall that Âx denotes the symmetric part of the spatial FEM stiffness
matrix Ax. Thus, the inversion of the space-time matrix (40) is equivalent to a
sequence of independent spatial problems of the form

j2Hγ
xp = q with Hγ

x := Âx + γ2(MxÂ
−1
x Mx), (41)

where γ = d/j. Intuitively, these spatial blocks measure the energy content of the
part of the solution associated to the temporal basis function of frequency γ. Now, the
identity Hγ

x = (Âx + iγMx)Â−1
x (Âx− iγMx), where i is the imaginary unit, is easily

verified. Thus, solving (41) is equivalent to solving two Helmholtz problems with the

imaginary parameter ±iγ, with one forward application of Âx between them. In order
to avoid complex numbers arithmetics, one can observe that the right-hand side of the
identity is the Schur complement of a 2× 2 block matrix that admits iterative solvers
that are robust in γ [54]. Recalling, however, that M is merely a preconditioner, we
estimate Hγ

x by the composition of two Helmholtz problems

Hγ
x ≤ H

γ

x := (Âx + γMx)Â−1
x (Âx + γMx) ≤ 2Hγ

x (42)

with a real frequency γ. Indeed, one only has to verify 2γMx ≤ Hγ
x, but this follows by

changing to the eigenvalue basis of the generalized eigenvalue problem Âxp = µMxp
together with the estimate 2γ ≤ µ+ γ2/µ. Therefore, in the inverse of (40), which is
again block-diagonal, we replace each spatial block by the corresponding real double
Helmholtz problem, that is, by the application of the mapping

q 7→ j−2(Âx + γMx)−1Âx(Âx + γMx)−1q. (43)

The exact solution of these positive definite Helmholtz problems can be replaced by
one of the following strategies:

1. The multigrid iteration, which is robust in γ > 0 [43].

2. The (incomplete) LU or Cholesky factorization of the matrix Âx + γMx.
This is simpler to implement than the multigrid iteration but may not be
applicable to very fine spatial discretizations.
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3. The preconditioner from [14, Section 4.2], again robust in γ. In fact, it easily
extends to a preconditioner for the compound matrix H

γ

x in (42) and can
therefore replace the mapping (43).

4. A wavelet transform and a diagonal matrix like in the temporal direction
(38), which is robust in γ if the wavelets form Riesz bases for V and H.

As a further simplification, γ may be rounded to one of reference values {γref
i }, for

instance logarithmically equispaced such that for any occurring γ there is a reference
value γref

i with | log2(γ/γref
i )| ≤ 1/2. This approximation allows to speed up the

application of the preconditioner through the recycling of matrices in the 1st strategy
or factorizations in the 2nd strategy, at the cost of another factor of two in the spectral
equivalence (39) and additional memory consumption. In the numerical experiments
we will use the 1st and the 2nd strategy with γref

i := 2i. In view of parallelization we
reiterate here that (40) is a block-diagonal matrix.

In summary, the following approximations have been made to obtain a tractable
version of the inverse of M: replace the ‖ · ‖V norm by the ‖ · ‖V ′L norm using (28);
omit the final-time term in (33) as quantified in Section 2.5; block-diagonalize with
(38); round the frequency γ to one of the reference values; approximate the inverse of
each block through one of the four strategies above.

3.3. Construction of the inverse wavelet transform. In this section we
construct the inverse wavelet transform Tt such that the sparse matrix Vt := TT

t

has the properties required in Section 3.2.2. The main idea is to identify the “most
energetic” hat functions that lie in the top energy bandwidth of relative width η > 0,
approximately orthogonalize them to the remaining ones thus defining the fine scale
subspace, and to proceed recursively. A similar construction was given and analyzed
in [51, 52] but on a predefined hierarchy of meshes.

3.3.1. Construction. Let T denote the collection of finite temporal meshes
T = {0 =: t0 < t1 < . . . < tN := T}. Recall that J = (0, T ). For any T ∈ T
let Θ(T ) denote the set of hat functions (hats) T , that is the set of piecewise linear
splines θt on T that evaluate to one on some t ∈ T and to zero on all other nodes.
We let s(T ) denote the left-most node s ∈ T \ {0, T} for which the energy ε(T ) :=
‖θs‖2H1(J)/‖θs‖

2
L2(J) is maximized among the non-boundary hats θt ∈ Θ(T )\{θ0, θT }.

A wavelet-like basis for the span of Θ(T ) is constructed as follows.

Assume given:

1. T ∈ T with #T ≥ 3.
2. Relative energy bandwidth parameter η > 1 (we will use η := 1.9).
3. Number of orthogonalization steps ν ∈ N.

Step 0. Set Θ0(T ) := Θ(T ) and K := 0.

Step 1. Given T ∈ T , identify fine T+ ⊂ T and coarse nodes T− ⊂ T by:

1. Set T0 := T and n := 0.
2. While #Tn ≥ 3 and ε(Tn) ≥ η−1ε(T0) do:

Set Tn+1 := Tn \ s(Tn) and increase n by 1.
3. Define T− := Tn and T+ := T \ T−.

Please note that, after the n-th iteration, Θ(Tn+1) does not equal Θ(Tn) \ {θs(Tn)}
because removing a node from Tn modifies the hats associated with the two neigh-
boring nodes of s(Tn) ∈ Tn by widening their support. Yet, obviously Θ(Tn) and
{θs(Tn)} ∪ Θ(Tn+1) span the same space. On a uniform grid T , in particular, the
algorithm collects every second node of T \ {0, T} in T− and every other in T+. Also,
each intermediate Θ(Tn) constitutes a partition of unity on the interval J , and so do
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the coarse hats Θ(T−).
Step 2. Let Θ+(T ) denote the set of hats that are removed from Θ(Tn) over

all iterations n during Step 1. In general, the set of obtained fine hats Θ+(T ) is not
the same as {θt ∈ Θ(T ) : t ∈ T+} because neighboring nodes of T may have been
selected into T+. Now, the basis Θ+(T ) ∪ Θ(T−) is a two-scale basis for the span of
Θ(T ). To obtain a wavelet-like basis Ψ+(T ) for the detail space spanned by Θ+(T ) we
perform an approximate orthogonalization of the fine hats Θ+(T ) against the coarse
hats Θ(T−) using the mapping

PT− : L2(J)→ L2(J), θ 7→ PT−θ := θ −
∑

ζ∈Θ(T−)

(ζ, θ)L2(J)

(ζ, 1)L2(J)
ζ, (44)

which can be interpreted as a Jacobi preconditioned Richardson iteration for the exact
L2 orthogonalization. The wavelet-like basis Ψ+(T ) is defined by

Ψ+(T ) := {[PT− ]νθ : θ ∈ Θ+(T )}, (45)

where ν ∈ N was given. An application of PT− to a compactly supported θ increases
its support by at most the support of the few coarse hats that are nonzero there.

Step 3. Call ΨK := Ψ+(T ) and ΘK+1 := Θ(T−). If #T− = 2 then terminate. If
#T− ≥ 3, increase K by one, and continue with Step 1 for T := T−.

Once the algorithm terminates, we have constructed a multiscale basis

Ψ(T ) := ΘK+1 ∪ΨK ∪ . . . ∪Ψ1 ∪Ψ0 (46)

for the span of the original hats Θ(T ). Since the number of levels is not known in
advance, K + 1 denotes the coarsest while 0 denotes the finest level.

Clearly, the mapping PT− in (44) operates only in the subspace spanned by Θ(T−)
leaving its orthogonal complement in L2(J) unchanged. Since Θ(T−) constitute a
partition of unity on J we have PT−1 = 1−

∑
ζ∈Θ(T−) ζ = 0. Therefore, PT−θ has at

least one vanishing moment, so it is indeed a wavelet-like oscillating function. In the
limit ν →∞, the function [PT ]νθ is orthogonal to the span of Θ(T−).

Some typical wavelet-like basis functions are shown in Figure 3. On the uniform
mesh, there is a striking similarity to the 2,2νψ family of wavelets of [19]. But unlike
those, our wavelet-like functions do not have 2ν vanishing moments, hence are not
exactly the same.

In the Appendix we provide a Matlab code that constructs the coefficient trans-
formation matrix Tt such that the mass matrix with respect to the multiscale basis
is TtMtT

T
t where Mt is the mass matrix with respect to the original hat basis Θ(T ).

The mapping w 7→ TT
t w is the inverse wavelet transformation, as it takes a vector

of coefficients w with respect to the multiscale wavelet-like basis Ψ(T ) and returns a
vector of coefficients with respect to the hat basis Θ(T ).

The transformation can be performed in a matrix-free fashion with linear complex-
ity known from wavelet pyramid schemes. However, we are thinking of the situation
where it is applied (from the right) to a distributed matrix that stores spatial vectors
in its columns. This is because (Tt ⊗ Ix)Vec(U) = Vec(UTT

t ) is precisely the type of
operation required in (39), where U is a matrix of suitable size and Vec(·) stacks the
columns of its argument one after the other into a long vector; see Section 4.2.4. We
therefore believe that it may be beneficial, at least at first, to formulate and test the
transformation in matrix form.
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Fig. 1. Condition number of the wavelet-like basis (left) and percentage of nonzeros in the
transformation matrix (right) as a function of the number of orthogonalization steps, see Section
3.3.2. Without orthogonalization, the condition number in L2 is very large.

3.3.2. Condition numbers of the basis. We compute the condition number
of the wavelet-like basis Ψ(T k) constructed in Section 3.3.1 for a test sequence of
temporal meshes T k, k = 1, . . . , 11. Each T k contains a uniform temporal mesh
on [0, T ] with 2k + 1 nodes and additionally the nodes 1/2 ± 2−r, r = 1, . . . , 20,
that provide geometric refinement towards t = 1/2. The condition number in L2(J)
and H1(J) is the ratio of the Riesz basis constants of the normalized wavelet-like
basis in L2(J) and in H1(J), respectively. These constants are precisely the extremal
eigenvalues of {TtMtT

T
t } and {TtAtT

T
t }, where {X} denotes the rescaled matrix

{X} := (diagX)−1/2X(diagX)−1/2, (47)

and Mt and At are the mass and the stiffness matrix with respect to the original hat
basis Θ(T k), cf. Section 3.3. Setting

Jt := diag(VT
t MtVt) and Dt := diag(VT

t AtVt) (48)

for Vt := TT
t , equivalence (38) is satisfied with those constants. Additionally, we

measure the percentage of nonzeros in the transformation matrix Tt.

The results depending on the number ν of orthogonalization steps are shown in
Figure 1 for T k with k = 11. It seems that ν = 2 is the appropriate choice because for
larger ν the condition number in L2(J) remains stable while that in H1(J) increases
slightly. Moreover, the percentage of nonzeros increases roughly linearly with ν, as
long as ν is small.

The dependence of the condition number on the number of nodes in T k, k =
1, . . . , 11, is shown in Figure 2 for ν = 1, 2, 3, orthogonalization steps. The condition
number in L2(J) is robust as the number of nodes increases, and that in H1(J)
exhibits a slight growth. Again, ν = 2 seems to be a good choice.

4. Numerical results. In Section 4.1 we document the quality of the space-
time preconditioners using a series of numerical examples in one spatial dimension.
In Section 4.2 we apply the preconditioner to the space-time resolution of a model
parabolic evolution equation in two spatial dimensions with parallelization in time.

4.1. Quality of the space-time preconditioner. In this section we investi-
gate the quality of the proposed preconditioner on small scale examples by computing
the condition numbers of the preconditioned system.
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Fig. 2. Condition number of the wavelet-like basis as a function of the size of the test mesh for
ν = 1, 2, 3 (left to right) orthogonalization steps.
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Fig. 3. Example of a wavelet-like basis function for ν = 1, 2, 3 (left to right). Top: uniform
mesh, bottom: highly non uniform mesh. The mesh is indicated by the vertical lines and the dots
on the horizontal axis. Note the increasing support with ν.

4.1.1. Model problem. In order to investigate the performance of the space-
time preconditioners in detail, we look at the model problem of convection-diffusion
on the interval D := (0, 1). We fix the end-time T := 1. Specifically, we assume for
(1)–(3) that H := L2(D), V := H1

0 (D), and

A := −∂2
x + β∂x (49)

with some constant β ∈ R. The symmetric part of A is then Â = −∂2
x, and the asym-

metric part is Ã = β∂x. Of particular interest is the performance of the preconditioner
with respect to the drift velocity β.

We recall from the introduction of Section 3 that the norm on V = H1
0 (D) is

taken as ‖χ‖V := ‖∂xχ‖L2(D). Then inequality (3) holds with α = 1 and γ0 = 0.

4.1.2. Computation of the condition numbers. The condition number κ2

of the preconditioned systems (27) with different approximate variants of the inverses
is computed by means of a power iteration for the maximal and minimal eigenvalue
of the associated generalized eigenvalue problems. The condition number is then
obtained as the ratio of the maximal to the minimal eigenvalue. For instance, in
order to approximate the maximal eigenvalue of M−1B̂ we iterate x̃n := M−1B̂xn−1,
emax
n := |x̃n|, xn = x̃n/e

max
n , starting with an all-ones vector. Then emax

n converges to
the maximum eigenvalue, and we stop the iteration when the relative improvement is
less than 10−4. In order to compute the minimal eigenvalue, more work is required.
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Here, we iterate x̃n := MB̂−1xn−1, emin
n := 1/|x̃n|, xn := x̃ne

min
n , starting with an all-

ones vector, upon which emin
n converges to the minimum eigenvalue. The application

of the inverse of B̂ is replaced by a preconditioned conjugate gradient iteration with
preconditioner M−1 and tolerance 10−6. We point out that in the case of multigrid
approximation of the blocks of M−1, say W ≈M−1, one needs the inverse W−1 ≈M
in the inverse power iteration. To that end we compute the matrix representation of
the multigrid iteration and subsequently its inverse. We use a symmetric version
of the multigrid where applicable. The overall computational effort to determine
the condition numbers limits our numerical experiments to one-dimensional spatial
domains. All computations are done in MATLAB R2014b.

4.1.3. Symmetric space-time variational formulation. For the symmetric
space-time variational formulation (14) we assume in the numerical experiments that
the spatial subspace VL ⊂ V are given as the L-dimensional space of polynomials
of degree at most (L + 1) satisfying the boundary conditions of H1

0 (D). A suitable
basis Σ ⊂ VL is given by Babuška–Shen basis, which is the set of integrated Legendre
polynomials IPk : t 7→

∫ t
0
Pk(s)ds, k = 1, . . . , L, where Pk is the shifted Legendre

polynomial on the interval D = (0, 1) of degree k normalized in L2(D). The temporal
discretization is achieved by taking EL ⊂ H1(J) as the space of continuous piecewise
affine functions on J with respect to a uniform partition of J . The number of the
intervals will be specified below. This then defines the tensor product trial and test
space XL by (16).

Recall from Section 3.1 that the space-time system matrix B̂ contains the matrix
Z. It has the components Zϕφ = 〈Â−1C̃ϕ, C̃φ〉, where ϕ, φ ∈ Φ are the space-time

tensor product basis functions for XL from (29), and C̃ = dt + Ã. The computation

of this matrix is delicate due to the inverse of Â. Our choice of VL is motivated by
the fact that the action of the asymmetric part Ã and of the inverse Â−1 on functions
in VL can be computed exactly; thus we can compute the spatial matrices [A11

x ]σ̃σ :=

(Â−1Ãσ̃, Ãσ), [A01
x ]σ̃σ := (Â−1σ̃, Ãσ), [A00

x ]σ̃σ := (Â−1σ̃, σ), and A10
x := (A01

x )T,
where as before, the basis σ̃, σ ∈ Σ is used to index the components. In addition to
the temporal FEM matrices from Section 3.1 we need the temporal advection matrix
[C01

t ]θ̃,θ := (θ̃, θ′)L2(J), where θ̃, θ are elements of the temporal basis Θ, as well as its

transpose C10
t := (C01

t )T. The matrix Z can now be written as

Z = (AE
t ⊗A00

x ) + (C01
t ⊗A10

x ) + (C10
t ⊗A01

x ) + (ME
t ⊗A11

x ). (50)

We compute the condition number κ2(M−1/2B̂M−1/2) = Γ̂L/γ̂L by the power
iteration from Section 4.1.2, approximating the inverse M−1 as described in Sec-
tion 3.2.2. For the required temporal transformation Vt we use the inverse wavelet
transform from Section 3.3 with ν = 2 orthogonalization steps. The subspace VL ⊂ V
is spanned by L = 20 integrated Legendre polynomials (the results do not essentially
depend on L). All spatial inverses, such as in (43) and (50) are computed exactly. For
the values β = 0, 10, 20, . . . , 100, of the drift velocity in (49), the condition number of
the preconditioned system matrix as a function of N = 20, 21, 22, . . . , 211, equidistant
temporal intervals is shown in Figure 4 (left). For each value of β, the condition num-
ber increases with N up to a certain value, which seems to scale like β2. For β . 10
the condition number remains very small as expected, but deteriorates for larger β
especially with increasing number of temporal intervals. In Figure 4 (right) we show

the condition number where, motivated by the structure of B̃, we have added the
β-dependent term (ME

t ⊗A11
x ) to each block of the preconditioner (40); each block
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Fig. 4. Condition number of the preconditioned system matrix for the symmetric space-time
variational formulation as a function of the number of temporal intervals, see Section 4.1.3. Each
line from bottom to top corresponds to a value of drift velocity β = 0, 10, . . . , 100. Left: Wavelet-in-
time and exact computation in space. Right: Same preconditioner with an additional β-dependent
term.

is inverted exactly. This results in significantly lower condition numbers, which are
however, still not robust in β.

Optimization problems constrained by evolution equations like (4) provide a ma-
jor motivation for space-time simultaneous discretizations due to the coupling of the
forward-in-time state equation and the backward-in-time adjoint equation, see for
instance [45]. Consider the minimization of the standard tracking functional

J (y, u) := 1
2

∫
J
‖y(t)− y?(t)‖2L2(D)dt+ λ

2

∫
J
‖u(t)‖2L2(D)dt, (51)

where u is the control variable, y? is the desired state, y is the state variable con-
strained by the parabolic evolution equation

y(0) = 0, dty(t) +Ay(t) = f(t) + u(t) (a.e.) t ∈ J, (52)

and λ > 0 is a regularization parameter. Here A is given by (49) with zero drift
β = 0. Introducing the dual variable p for the constraint, forming the first order
optimality conditions, eliminating the control variable and discretizing the resulting
linear system leads to the saddle-point problem

A

(
y
p

)
= rhs where A :=

(
M0 B̂

B̂ −λ−1M0

)
, (53)

for some vector rhs which is of no importance here. Here, M0 := ME
t ⊗Mx is the

matrix corresponding to the space-time L2 inner product. The large block matrix
A is symmetric but indefinite, and therefore the system is typically solved using
the preconditioned MinRes method [12, 53]. It is of particular interest to obtain
computationally accessible preconditioners for (53) that are robust simultaneously in
the discretization parameters and in the regularization parameter λ > 0. Having
used the symmetric space-time variational formulation, we are in the situation that
each block of the matrix is symmetric, so that the block-diagonal matrix with blocks
M0 +

√
λB̂ and λ−1(M0 +

√
λB̂) is a good preconditioner for A, see [54, Section 4.1].

Replacing B̂ by the spectrally equivalent M we obtain the block preconditioner

P :=

(
M0 +

√
λM 0

0 λ−1(M0 +
√
λM)

)
. (54)
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Fig. 5. Condition number of
the preconditioned optimality sys-
tem as a function of the number
of temporal intervals. Each line
corresponds to one of the values
λ = 10−5, 10−4, . . . , 105 of the
regularization parameter, as in-
dicated by the arrow. Details in
Section 4.1.3.

As in Section 3.2.2 we transform this preconditioner to a block-diagonal one which
involves a series of independent spatial systems of the form (Mx +

√
λHγ

x)p = q
with Hγ

x from (41). These systems are small in our case and we solve them directly
(but a decomposition analogous to (42) is possible). The resulting condition numbers
κ2(P−1/2AP−1/2) with this approximation of P−1 are shown in Figure 5 for a range
of N and λ. The condition number stays bounded by three.

4.1.4. Nonsymmetric space-time variational formulation. The nonsym-
metric space-time variational formulation (10) is discretized using space-time tensor
product subspaces (16) as described in Section 2.3. As EL ⊂ H1(J) we take the
space of continuous piecewise affine functions on J with respect to a uniform parti-
tion, as specified below. The test space FL ⊂ L2(J) is taken as the space of piecewise
constants with respect to a single uniform refinement of the same partition. The di-
mension of FL is then roughly twice that of EL. With the basis for FL consisting of
piecewise constant functions nonzero on exactly one of the subintervals, the matrix
N defined in (35) and its inverse (37) are block-diagonal. The spatial discretization
VL ⊂ H1

0 (D) is also given by continuous piecewise affine functions with respect to a
uniform partition, the dimension will be specified below. For symmetric A, the re-
sulting full tensor product discretization (16) satisfies the inf-sup condition (17) and
the boundedness condition (18) with constants γL and ΓL that depend only on the
constants in the (1)–(3). In particular they can be estimated independently of the
temporal and spatial resolution.

We compute the condition number κ2(M−1/2BTN−1BM−1/2) = Γ2
L/γ

2
L by the

power iteration as in Section 4.1.2, approximating the inverse M−1 as described in
Section 3.2.2. The temporal transformation Vt is given by the inverse wavelet trans-
form from Section 3.3 with ν = 2 orthogonalization steps. Since the main difficulty
is in the application of the inverse of M, we apply the block-diagonal N−1 by direct
inversion in each case. The spatial discretization VL ⊂ H1

0 (D) is fixed as the space
of continuous piecewise affine functions with respect to the uniform partition of the
interval D into 29 equal elements.

First, no multigrid approximation is employed, and all spatial matrices are in-
verted directly. The number of temporal elements is varied as N = 20, 21, 22, . . . , 211.
The dependence of the condition number on the number of temporal elements N for
different the drift velocities β = 0, 0.01, . . . , 0.1, is documented in Figure 6 (left). The
condition number increases dramatically with N even for these small values of the
drift velocity. Note that the drift velocity is here two orders of magnitude smaller
than in Section 4.1.3.

Now we set β = 0 for the drift velocity and switch on the multigrid-in-space
approximation in the application of the inverse of M. We use the multigrid following
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Fig. 6. Condition number of the preconditioned system matrix for the nonsymmetric space-
time variational formulation as a function of the number of temporal intervals, see Section 4.1.4.
Left: Wavelet-in-time and exact computation in space. Each line from bottom to top corresponds
to a value of drift velocity β = 0, 0.01, . . . , 0.1. Right: For β = 0, wavelet-in-time multigrid-in-space
preconditioner with different multigrid parameters: V- or W-cycle and the number of pre-/post-
smoothing steps.

[30, Section 4.1]. The pre-smoother is defined by the Gauss–Seidel iteration q 7→
(L + D)−1(−Uq + f) and the post-smoother by q 7→ (U + D)−1(−Lq + f) for the
equation (L + D + U)q = f with strictly lower/upper triangular L/U and diagonal
D. This ensures symmetry of the multrigrid procedure when the number of pre-
and post-smoothing steps is the same. As the prolongation we use the canonical
embedding of Vk into Vk+1, the restriction is its transpose. In order to approximate
the action of (43), the multigrid procedure with one pre-smoothing step is applied

with the matrix Âx + γMx, then Âx is applied, then again the multigrid procedure.
For four configurations of the multigrid determined by whether the V- or the W-cycle
is executed, and whether none or one post-smoothing step is performed, the resulting
condition numbers for the space-time preconditioned system are visualized in Figure 6
(right). Based on those measurements we recommend to use the V-cycle with one pre-
and one post-smoothing step, since the resulting condition number remains below ten
and the resulting preconditioner is symmetric.

4.2. Resolution of parabolic evolution equations. In this section we de-
scribe the basic form of the complete algorithm for the space-time resolution of
parabolic evolution equations based on the nonsymmetric variational formulation (10),
and discuss some of its properties. See [2, 3, 4, 5, 6] for further numerical experiments.
We briefly comment on the symmetric one (14) in Section 4.2.6.

4.2.1. Model problem, discretization and setup. As a specific model prob-
lem we take the heat equation posed on the L-shaped domain D = (−1, 1)2 \ [0, 1)2

in d = 2 spatial dimensions, with the initial datum g(x) := (1− |x1|)(1− |x2|), right
hand side f(t) := 2t, and homogeneous Dirichlet boundary conditions. The fact that
the initial datum does not satisfy the boundary conditions leads to a solution with low
space-time regularity, which is reflected in the convergence rates, see Section 4.2.3.

The spatial domain is partitioned into two pairs of congruent triangles such that
|x1|−|x2| has constant sign on each triangle. Thereafter, global uniform red refinement
is applied resulting in 3, 21, 105, 465, 1′953, 8′001, 32′385 internal degrees of freedom
of the P1 Lagrangian finite element discretization.

The temporal interval is partitioned into N = 25, 26, . . . , 213 temporal elements
of equal size. As temporal discretization EL ⊂ H1(J) and FL ⊂ L2(J) we take the
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space of continuous piecewise affine and piecewise constant functions with respect
to this partition, respectively, which results in N + 1 temporal degrees of freedom.
This discretization, which is fact equivalent to Crank–Nicholson time-stepping, is not
unconditionally space-time stable, more precisely [5]

γ−1
L ∼ 1 + min{

√
TΛL,CFLL} (55)

in (17) for ΛL := supχ∈VL\{0} ‖χ‖H1/‖χ‖L2
and CFLL := Λ2

LT/N .
The computations are performed on a SGI UV 2000 shared memory machine with

160 cores on 16 CPUs of the Laboratoire J.-L. Lions. The spatial finite element c++

code used was originally developed in the context of [13]. Linear algebra dense and
sparse data structures are provided by the boost ublas library with preprocessor
macro NDEBUG defined, row or column major ordering is used as appropriate. All LU
factorizations (disregarding matrix symmetry) are done through UMFPACK 4.4 linking
to OpenBLAS 0.2.14 on default settings and with access to one core per process, whether
in parallel or serial computation. Parallelism (described below) is achieved with the
boost mpi 1.57 library wrapping OpenMPI 1.8.3. The code is compiled using g++ 4.9.2
with the -O2 optimization flag.

The inverse of N is computed (only once per MPI process) by LU factorization
of the spatial mass/stiffness matrix, see Section 3.2.1. Unless specified otherwise, the
application of M−1 is approximated as in Section 3.2.2 using the strategy 2 described
following (43) with γref

i = 2i for integer i. Every MPI process keeps its own list of
required i, necessitating no more than 11 LU factorizations per process (this number
increases as log2N in our setup and decreases with the number of processes). The
temporal transformation Vt is the inverse wavelet transform from Section 3.3 with
ν = 2 orthogonalization step, the difference to ν = 1 in the timings is marginal. All
LU factorizations are included in the timings shown.

4.2.2. Complete algorithm for the nonsymmetric formulation. The non-
symmetric space-time resolution algorithm for parabolic evolution equations proceeds
as follows.

1. Assemble the “temporal FEM” matrices CFE
t , MFE

t , ME
t , AE

t , MF
t , and

the “spatial FEM” mass and stiffness matrices Mx, Ax, as in Section 3.1.
Compute the inverse wavelet transform Tt as in Section 3.3.1. Assemble the
space-time load vector F as in [4, Section 7.2].

2. Define the functions w 7→ Bw and d 7→ BTd as in Section 3.1.
3. Define the functions that approximate the action d 7→ N−1d and w 7→M−1w

of the preconditioners as in Section 3.2.1 and 3.2.2, respectively.
4. Compute an approximate solution to the Gauss normal equations (24) using

the generalized LSQR algorithm provided in the Appendix.

4.2.3. Numerical convergence analysis. We document the convergence of
the discrete space-time solution after 10 LSQR iterations with respect to the number of
temporal and spatial degrees of freedom in the norms of L∞(J ;L2(D)), L2(J ;H1(D)),
and L2(J ;L2(D)) in Figure 7. The discrete solution computed with 20 LSQR iter-
ations at (213 + 1) × 32′385 ≈ 265M degrees of freedom is taken as the reference
solution for error estimation. Since the trial space is defined on a uniform mesh both
in space and time, the low regularity of the exact solution implies low convergence
rates that can be expected from quasi-optimality (25), see for instance [46, Section 7]
for a discussion.

The error of the discrete solution with 8′001 spatial degrees of freedom as a func-
tion of the LSQR iteration number is depicted in Figure 8 (left) for different temporal
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resolutions. At the first iteration, the influence of the temporal discretization on the
discrete inf-sup constant (55) can be seen: increasing the temporal resolution increases
the inf-sup constant γL, improving the condition number (27) of the preconditioned
algebraic system and leading to a smaller error. In Figure 8 (right) we show the same
data as a function of walltime computed on 64 MPI processes, see Section 4.2.5.

Figure 9 shows the same computation but with a multigrid iteration replacing
the exact LU factorization for the Helmholtz problems (43). The mesh hierarchy is
the one generated by the refinement starting from the coarsest mesh with 4 elements.
The timings do not include the assembly of the matrices on different levels or their
lexicographic reordering. As suggested by the 1d computations in Section 4.1.4, we
apply the V-cycle with one pre- and one post-smoothing Gauss–Seidel step. The
frequency γ is again rounded to the next power of two (on logarithmic scale). The
LU factorization and themultigrid iteration show a similar behavior both in terms of
the error and the computational time, except most notably in the initialize phase of
the LSQR algorithm where all the necessary LU factorizations are computed.

4.2.4. Data structures and parallelization. The space-time tensor product
discretization of the trial space described in Section 3.1 implies that the discrete
solution vector u, whose components we index by the basis functions (θ, σ) ∈ Θ×Σ,
can be written as a rectangular array U ∈ RΣ×Θ where each column corresponds to
a spatial vector of size #Σ associated to one of the temporal basis functions θ ∈ Θ.
We write Vec(U) := u. As anticipated in the introduction, for parallel computation
we evenly distribute this rectangular array columnwise across the MPI processes. For
example, for 210 + 1 temporal degrees of freedom and 64 MPI processes, the first one
hosts 17 columns, all the others 16 columns each. Mutatis mutandis, this applies to
the space-time part of the load vector F and all the vector quantities in the LSQR
algorithm. The initial datum part of the load vector F (and similar quantities in the
LSQR algorithm) is assembled and kept on each MPI process. The “spatial FEM”
matrices are computed, stored, and LU factorized on demand by each MPI process
independently.

The above data layout is tailored to the identity (St⊗Sx)Vec(U) = Vec(SxUST
t ),

where Sx and St are matrices of appropriate size. Using this identity in the appli-
cation of B, N−1, etc., allows to avoid the formation of the Kronecker product of
matrices. This remains true for the preconditioners M and N even if the generator
A is time-dependent. Moreover, since the application of Sx is columnwise, it is per-
formed in parallel. It is thus only in the multiplication by “temporal FEM” matrices
and in the wavelet transform that communication between the MPI processes is re-
quired. In particular, the application of the approximate inverse of the block-diagonal
preconditioner (40) is performed in parallel without any interprocess communication.

4.2.5. Parallel scaling. In this section we comment on the parallel scaling
of the complete space-time algorithm from Section 4.2.2. In order to focus on the
parallelization in the temporal direction, we fix the number of spatial degrees of
freedom to 1′953. We compare the run time of the space-time algorithm on 16, 32,
64, 128 MPI processes with that of a sequential implementation of the implicit Euler
time-stepping scheme on the same temporal mesh (the timings for Crank–Nicholson
time-stepping are, of course, similar). In each step, the linear system is solved by LU
factorization. We point out that the factorization is performed anew for each time
step, although the matrix remains the same. This simulates the situation of a diffusion
coefficient with a nontrivial temporal dependence or of a nonuniform time step size;
otherwise many more MPI processes and time steps, or a finer spatial discretization
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would be required to compete with the time-stepping scheme in terms of walltime.
To compare the run times of the space-time algorithm and the time-stepping

scheme we do not include mass/stiffness matrix and load vector assembly time, and
other elements that are common to both methods. We report on the walltime of the
LSQR algorithm with exactly 20 iterations (a rather generous number, see Figures 8
and 9) for the space-time algorithm and essentially the N matrix factorizations that
are necessary for time-stepping.

For the wavelet transform in time we use a preliminary parallel implementation
of the pyramid scheme, on which we intend to elaborate in a forthcoming work. The
application of Tt and TT

t in the approximation of M−1 together require approximately
a quarter of the walltime for each LSQR iteration. Our implementation of the wavelet
transform through matrix representation and matrix multiplication instead of the
pyramid scheme does not scale as well, and we therefore omit the details.

The results are displayed in Figure 10 as a function of the number of MPI processes
(left) and as a function of the number of temporal elements (right). The parallel space-
time algorithm shows a decent speed up compared to the sequential time-stepping,
for instance by a factor of 16 for N = 212 temporal elements on 128 MPI processes.
Concerning weak scaling, a computation with 8x the number of MPI processes and
8x the number of temporal intervals takes approximately 2x longer.

4.2.6. On the implementation of the symmetric formulation. The main
potential of the symmetric formulation (14) is in that the discretization is uniformly
stable in XL ⊂ X. Moreover, the Lagrangian from which it derives [2, Section 3.2.4]
assumes its minimum at the exact solution, and can therefore drive the a posteriori
refinement [48]. The different spatial resolutions may be associated with the single
scale temporal hat functions (complicating the application of the preconditioner) or
directly with the temporal wavelets. In any case, the application of the discretized
parabolic operator involves the inverse of (the symmetric part of) the generator A,
say the Laplacian, that typically has to be computed on a yet finer spatial mesh up to
certain accuracy. This limits the accuracy of the resulting discrete solution but these
spatial problems are independent and can therefore be computed in parallel. Details
are delegated to future work.

5. Conclusions. We have developed a wavelet-in-time multigrid-in-space pre-
conditioner for algebraic linear systems arising from space-time Petrov–Galerkin dis-
cretizations of linear parabolic evolution equations. The sparsity of the wavelet-in-
time transformation is crucial to reduce the inter-process communication cost when
the parallelization is done along the temporal direction. This transformation ap-
proximately block-diagonalizes the canonical preconditioner given by the continuous
space-time norms, and allows to invert the resulting spatial blocks in parallel using
for instance standard spatial multigrid methods. We have presented several numeri-
cal experiments documenting the excellent performance of the preconditioner in the
regime of small Péclet numbers, including a first application to robust preconditioning
of optimality systems from optimal control constrained by parabolic PDEs, as well as
parallel-in-time computations.
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Fig. 7. Error of the approximate discrete space-time solution after 10 LSQR iterations in the
setup of Section 4.2.3; top row: in L∞(J ;L2(D)), middle row: in L2(J ;H1(D)); bottom row: in
L2(J ;L2(D)). Left: as a function of the temporal resolution for 21, 105, . . . , 8′001 spatial degrees
of freedom (top to bottom in each graph). Right: as a function of the spatial resolution for N =
25, . . . , 212 temporal elements (top to bottom in each graph).
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Fig. 8. Error in L∞(J ;L2(D)) of the approximate discrete solution at step f) of the LSQR
iteration for N = 25, . . . , 212 temporal elements and 8′001 spatial degrees of freedom in the setup of
Section 4.2.3. Left: as a function of the iteration number. Right: first 7 iterations as a function of
elapsed walltime from the start of LSQR (computation with 64 MPI processes).
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Fig. 9. Same as Figure 8 but with the “V, 1/1” multigrid iteration instead of the direct
resolution for the Helmholtz problems.
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Appendix A: Matlab code. Below we include the Matlab code for the con-
struction of the inverse wavelet transform matrix Tt, see Section 3.3.

1 % Given: Real vector TE = [ a < b < ... ], real nu > 1
2 % Computes: Inverse wavelet transformation matrix Tt
3
4 % Temporal mass and stiffness matrix on the mesh TE
5 N = length(TE); h = diff(TE); g = 1./h;
6 Mt = spdiags ([h 0; 0 h]’ * [1 2 0; 0 2 1]/6, -1:1, N, N);
7 At = spdiags ([g 0; 0 g]’ * [-1 1 0; 0 1 -1], -1:1, N, N);
8
9 % Rows of Tt are coefficients of wavelets wrt finest hats

10 Tt = speye(N);
11
12 % Auxiliary variables corresponding to current coarse level
13 mc = Mt; ac = At; IC = 1:N;
14 while (IC(end) >= 3)
15 % Find most energetic hats
16 eta = 1.9; % Relative energy bandwidth
17 IF = []; e0 = 0;
18 while (length(IC) >= 3)
19 e1 = diag(ac) ./ diag(mc); e1([1 end]) = 0;
20 [e1 , j] = max(e1);
21 if (e1 <= e0 / eta); break; end
22 if (e0 == 0); e0 = e1; end
23
24 % Neighbors of the fine hat j get coarsened:
25 J = j + (-1:1);
26 dt = speye (3); dt([1;3] , 2) = -ac(j+[-1;1], j) / ac(j, j);
27 ac(J, :) = dt * ac(J, :); ac(:, J) = ac(:, J) * dt ’;
28 mc(J, :) = dt * mc(J, :); mc(:, J) = mc(:, J) * dt ’;
29 ac(j, :) = []; ac(:, j) = []; mc(j, :) = []; mc(:, j) = [];
30 Tt(IC(J), :) = dt * Tt(IC(J), :);
31 % There is one more fine hat and one less coarse hat
32 IF = [IF , IC(j)]; IC(j) = [];
33 end
34
35 % Approximate nu-fold orthogonalization
36 P = @(X) X - (X * Mt * Tt(IC ,:) ’) * diag (1./ sum(mc)) * Tt(IC ,:);
37 for k = 1:nu; Tt(IF ,:) = P(Tt(IF ,:)); end
38
39 % Reorder rows (first coarse then fine basis functions)
40 Tt(1:IC(end), :) = Tt([IC , IF], :); IC = 1: length(IC);
41 end

Appendix B: Generalized LSQR algorithm. We give an adaptation of the
LSQR algorithm [44, 11] for the generalized Gauss normal equations B>N−1Bu =
B>N−1F with a preconditioner M. The residual ri := ‖BTN−1(Bui −F)‖M−1 may
be used as a stopping criterion. It is available in each iteration as ri = |δ|γ following
step f). Here, Norm : (s,S) 7→ (ẑ, z, z) for a s.p.d. matrix S is the “normalization”

procedure: Approximate ŝ ≈ S−1s, set z :=
√
sTŝ and (ẑ, z) := (z−1ŝ, z−1s). The

generalized LSQR algorithm consists of an initialization and an iteration phase:

I. Initialize:
a) d← 0
b) (v̂,v, β)← Norm(F,N)
c) (ŵ,w, α)← Norm(BTv̂,M)
d) ρ← ‖(α, β)‖2
e) u0 ← 0
f) (δ, γ)← (α, β)

II. Iterate for i = 1, 2, . . . (until convergence):
a) d← ŵ − (αβ/ρ2)d
b) (v̂,v, β)← Norm(Bŵ − αv,N)
c) (ŵ,w, α)← Norm(BTv̂ − βw,M)
d) ρ← ‖(δ, β)‖2
e) ui ← ui−1 + (δγ/ρ2)d
f) (δ, γ)← (−δα/ρ, γβ/ρ)
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