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A finite deterministic (semi)automaton A = (Q, Σ, δ) is k-compressible if there is some word w ∈ Σ + such that the image of its state set Q under the natural action of w is reduced by at least k states. Such word w, if it exists, is called a k-compressing word for A and A is said to be k-compressed by w. A word is k-collapsing if it is k-compressing for each k-compressible automaton, and it is k-synchronizing if it is k-compressing for all k-compressible automata with k + 1 states. We compute a set W of short words such that each 3-compressible automaton on a two-letter alphabet is 3-compressed at least by a word in W . Then we construct a shortest common superstring of the words in W and, with a further refinement, we obtain a 3-collapsing word of length 53. Moreover, as previously announced, we show that the shortest 3-synchronizing word is not 3-collapsing, illustrating the new bounds 34 ≤ c(3, 2) ≤ 53 for the length c(3, 2) of the shortest 3-collapsing word on a two-letter alphabet.

Introduction

Let A = (Q, Σ, δ) be a finite deterministic complete (semi)automaton with state set Q, input alphabet Σ, and transition function δ : Q × Σ → Q. For any word w ∈ Σ + , the deficiency of w is the difference between the cardinality of Q and the cardinality of the image of Q under the natural action of w. For a fixed k ≥ 1, the word w is called k-compressing for A if its deficiency is greater than or equal to k. An automaton A is k-compressible, if there exists a k-compressing word w for A and in such case A is said to be k-compressed by w. A word w ∈ Σ + is k-collapsing, if it is k-compressing for every k-compressible automaton with input alphabet Σ. A word w ∈ Σ + is called k-synchronizing if it is k-compressing for all k-compressible automata with k + 1 states and input alphabet Σ. Obviously each k-collapsing word is also k-synchronizing.

The concept of k-collapsing words arose (under a different name) in the beginning of the 1990s with original motivations coming from combinatorics [START_REF] Sauer | Composing functions to reduce image size[END_REF]) and from abstract algebra [START_REF] Pöschel | Identities in full transformation semigroups[END_REF]). In [START_REF] Sauer | Composing functions to reduce image size[END_REF] it has been proved that k-collapsing words always exist, for any Σ and any k ≥ 1, by means of a recursive construction which gives a k-collapsing word whose length is O(2 2 k ). Better bounds for c(k, t) and s(k, t), the length of the shortest k-collapsing and k-synchronizing words respectively, on an alphabet of cardinality t were given in [START_REF] Margolis | Words guaranteeing minimum image[END_REF]. The bounds for c (2, t) were slightly improved in [START_REF] Pribavkina | On some properties of the language of 2-collapsing words[END_REF] and [START_REF] Cherubini | A bound for the length of shortest 2 collapsing words[END_REF], but the gaps between lower and upper bounds are quite large even for small values of k and t. Exact values of s(k, t) and c(k, t) are known for k = 2 and t = 2, 3 and are quite far from the theoretical upper bounds [START_REF] Ananichev | Collapsing words: A progress report[END_REF]). Moreover it is known that s(3, 2) = 33 and that the words s 3,2 = ab 2 aba 3 b 2 a 2 babab 2 a 2 b 3 aba 2 ba 2 b 2 a and its dual s3,2 are the unique shortest 3-synchronizing words on {a, b} [START_REF] Ananichev | Quest for short synchronizing words and short collapsing words[END_REF]). Observing that s(k, t) ≤ c(k, t), and applying the construction in [START_REF] Margolis | Words guaranteeing minimum image[END_REF], one gets 33 ≤ c(3, 2) ≤ 154.

The reader is referred to [START_REF] Ananichev | Collapsing words: A progress report[END_REF]; [START_REF] Cherubini | Synchronizing and collapsing words[END_REF]; [START_REF] Cherubini | A bound for the length of shortest 2 collapsing words[END_REF]; [START_REF] Margolis | Words guaranteeing minimum image[END_REF] for references and connections to theoretical computer science and language theory. The paper is organized as follows: in Section 2 we introduce some general concepts about 3-compressible automata and the main tool we use to study them, i.e., 3-Missing State Automata. In Section 3 we give a complete characterization of proper 3-compressible automata on a two-letter alphabet with a letter acting as a permutation, while in Section 4 we characterize all proper 3-compressible automata without permutations. In Section 5 we describe how to use the previous characterization to obtain a short 3collapsing word, improving the known upper bound for c (3,2), as already announced in [START_REF] Cherubini | Short 3-collapsing words over a 2-letter alphabet. In Developments in Language Theory[END_REF]. Section 6 ends the paper with some considerations about the quest for short 3-collapsing words in general and the relationship between 3-synchronizing and 3-collapsing words, and how our analysis can be exploited to obtain more general results, as already done in [START_REF] Cherubini | Synchronizing and collapsing words[END_REF]Kisielewicz (2014, 2016).

Background

Let A = (Q, Σ, δ) be a finite deterministic complete (semi)automaton with state set Q, input alphabet Σ = {a, b}, and transition function δ : Q × Σ → Q. The action of Σ on Q given by δ extends naturally, by composition, to the action of any word w ∈ Σ + on q ∈ Q; we denote it by qw = δ(q, w), while the action of w on the entire state set Q is denoted by Qw = {qw|q ∈ Q}.

Definition 1 The difference |Q| -|Qw| is called the deficiency of the word w with respect to A and denoted by df A (w). For a fixed k ≥ 1, a word w ∈ Σ + is called k-compressing for A, if df A (w) ≥ k. An automaton A is k-compressible, if there exists a k-compressing word for A. A word w ∈ Σ + is kcollapsing, if it is k-compressing for every k-compressible automaton with input alphabet Σ. A word w is called k-synchronizing if it is k-compressing for all k-compressible automata with k + 1 states and input alphabet Σ. Obviously each k-collapsing word is also k-synchronizing.

Actually, we view the automaton A as a set of transformations on Q induced via δ and labeled by letters of Σ, rather than as a standard triple. Indeed, in order to define an automaton, it is just enough to assign to every letter a ∈ Σ the corresponding transformation τ a : q → δ(q, a) on Q. Now, for a ∈ Σ, we get df A (a) = |Q| -| Im(τ a )|, hence df A (a) = 0 if and only if τ a is a permutation on Q. If df A (a) = m ≥ 1, then there are exactly m different states y 1 , y 2 , . . . , y m / ∈ Im(a), and there are some elements of Q whose images under τ a are equal.

Definition 2 Let P = {{x 1 1 , . . . , x 1 j }, . . . , {x r 1 , . . . , x r j }} be a partition of Q (where singleton sets are omitted), and y 1 , . . . , y m ∈ Q. We say that τ a is a transformation of type [x 1 1 , . . . , x 1 j ] . . . [x r 1 , . . . , x r j ]\y 1 , . . . , y m if P is induced by the kernel of τ a and the states y 1 , y 2 , . . . , y m do not belong to Im(τ a ).

For instance, if A has at least three states denoted by 1, 2 and 3, a transformation τ is of type [1,2]\3, if and only if τ (1) = τ (2), the preimage of 3 is empty, and for any q, q ′ / ∈ {1, 2}, τ (q) = τ (q ′ ) if and only if q = q ′ . So, with an abuse of notation, we will write τ = [1, 2]\3 (actually [1, 2]\3 is a family of transformations). Then, in the sequel we will identify each letter of the input alphabet with its corresponding transformation.

Definition 3 Let a ∈ Σ, we say that a is a permutation letter if it induces a permutation on the set of states, i.e., it has deficiency 0.

We assume that permutations on Q, viewed as elements of the symmetric group S n with |Q| = n, are written in the factorization in disjoint cycles where sometimes also cycles of length 1 are explicitly written. So we will write a = (1)(23)π to denote that (the permutation induced by) a fixes state 1, swaps states 2 and 3, and π is a permutation that acts on Q \ {1, 2, 3} (π is not necessarily a cycle).

The notion of transformation induced by a letter naturally extends to words, and then the semigroup generated by the transformations of A consists precisely of the transformations corresponding to words in Σ + . If A is k-compressible, at least one letter of its input alphabet has deficiency greater than 0. It is well known that each k-collapsing word over a fixed alphabet Σ is k-full [START_REF] Sauer | Composing functions to reduce image size[END_REF]), i.e., contains each word of length k on the alphabet Σ among its factors. Hence, to characterize k-collapsing words it is enough to consider k-full words compressing all k-compressible automata that are proper, i.e., k-compressible automata which are not compressed by any word of length k.

Proposition 4 Let A be a finite complete automaton on the alphabet {a, b}: it is 3-compressible and not proper if at least one letter, say a, fulfills one of the following conditions:

1. it has deficiency greater than 2;

2. it has deficiency 2 and is of type [x, y, z]\u, v, with {u, v} {x, y, z};

3. it has deficiency 2 and is of type [x, y][z, v] The proof of the previous proposition is trivial, indeed if the letter a fulfills one of the above conditions, then either a or a 2 or a 3 has deficiency 3. Since we are looking for a proper 3-compressible automaton we may assume that each letter of the alphabet is either a permutation or one of the following types (we assume different letters represent different states):

1. [x, y, z]\x, y; 2. [x, y][z, v]\x, z; 3. [x, y]\x; 4. [x, y]\z with za = x.
In the sequel we view the set Q of the states of A as a set of natural numbers: Q = {1, 2, . . . , n}, so that, when no confusion arises, a letter a of types 1, 2, 3, 4 is denoted respectively by [1,2,3]\1,2,[1,2][3,4]\1,3,[1,2]\1,[1,2]\3 with 3a = 1.

Definition 5 Let w ∈ Σ + . We call M(w) = Q \ Qw the missing set of w. Let Q 1 ⊆ Q. We denote by M(Q 1 , w) the missing set of w when we have already missed Q 1 , i.e., the set M(w) ∪ {qw | q ∈ Q 1 and ∀q ′ ∈ Q \ Q 1 , qw = q ′ w}. Observe that M(∅, w) = M(w), and if a ∈ Σ is a permutation, M(Q 1 , a) = Q 1 a. Moreover, |M(w)| ≥ |M(w 1 )|, whenever w 1 is a factor of w.
Definition 6 With abuse of language, for a letter a and

Q 1 ⊆ Q, we call the orbit of a over Q 1 the set Orb a (Q 1 ) = ∞ n=0 Q 1 a n .
In order to increase the readability, we will write Orb a (q 1 , . . . , q n ) instead of Orb a ({q 1 , . . . , q n }).

We say that A is a (i, j)-automaton, 1 ≤ i, j ≤ 4, if it is an automaton on a two-letter alphabet {a, b} and the letter a is of type i and b is of type j. We say that A is a (i, p)-automaton, with 1 ≤ i ≤ 4, to denote that the letter a is of type i and b is a permutation. In the sequel, without loss of generality, we will always suppose that in a (i, j)-automaton (resp. (i, p)-automaton) the letter a is of type i and b is of type j (resp. a permutation).

Although the notion of missing set is sufficient to describe the compressibility of an automaton, it is in general quite intricate to use, especially when long words are involved. So, to easily calculate the set M(Q 1 , w), we introduce a graphical device, the missing state automaton of A.

Definition 7 Let A = (Q, Σ, δ) be a deterministic (semi)automaton with |Q| = n, and let m < n. The m-Missing State Automaton (mMSA for short) of A is the automaton M = (℘ m-1 (Q) ∪ {m}, Σ, τ, ∅, m), where ℘ m-1 (Q) is the set of subsets of Q of cardinality less than or equal to m -1, m is a special state not belonging to ℘ m-1 (Q) graphically denoted by a circle with m tokens inside, and τ :

℘ m-1 (Q)×Σ → ℘ m-1 (Q) ∪ {m} is the transition relation defined by τ (Q 1 , a) = M(Q 1 , a), if |M(Q 1 , a)| < m; m, otherwise.
notice that τ is not defined at the state m.

For example, in Fig. 1 we draw the 2MSA of a simple semiautomaton, proving that it is synchronizable. The notion of missing state automaton is similar to that of power state automaton, which is a standard tool in computing synchronizing words, see [START_REF] Trahtman | An efficient algorithm finds noticeable trends and examples concerning the Černý conjecture[END_REF]; [START_REF] Kudlacik | Effective synchronizing algorithms[END_REF][START_REF] Volkov | Synchronizing automata and the Černý conjecture[END_REF]. The difference is that the names of states are replaced by their complements and all superstates made by more than m states are identified. Although power set automata are only used to design algorithm to find possibly shortest synchronizing words of a fixed automaton, we need to consider a whole class of automata. Moreover, as we are only interested in knowing if an automaton is 3-compressible, often we will draw only a Partial 3-Missing State Automaton (P3MSA), i.e., a path (possibly the shortest) from the initial to the final state of the whole 3MSA. Lastly, we observe that when considering a family of automata, dozens of subcases arise when we try to find some (short) 3-collapsing word for such family. So, to capture a greater number of cases and improve the readability, we gather several subcases using a conditional 3MSA. In this case, a label can be of the form a|qw ∈ Q ′ . So, τ (q 1 , a|qw ∈ Q ′ ) = q 2 means that M({q 1 }, a) = {q 2 } under the hypothesis (condition) that qw ∈ Q ′ . Observe that the condition qw ∈ Q ′ spreads over all the states reached from q 2 , so two different states can share the same name, when belonging to different branches. For example, in the conditional 3MSA in Fig. 4(1), the two states named by {1, 3} have different behavior as the one in the first row inherits the condition 3a = 3 and then M({1, 3}, a) = {1, 3}, while the one in the second row inherits the condition 3a = 2 and then M({1, 3}, a) = {1, 2}.

3-compressible (i, p)-automata

In this section we characterize all proper 3-compressible automata on the alphabet {a, b} in which the letter b acts as a permutation on the set Q of states. In particular in the following propositions we give a small set of short 3-collapsing words when letter a is of type i, 1 ≤ i ≤ 4.

Proposition 8 Let A be a (1, p)-automaton with a = [1, 2, 3]\1, 2. Then A is 3-compressible and proper if and only if the following conditions hold:

1. Orb b (1, 2) {1, 2, 3}, and 2. {1, 2}b ⊂ {1, 2, 3}.

Moreover, if A is 3-compressible and proper, then the word ab 2 a 3-compresses A.

Proof: Let A be a (1, p)-automaton that does not satisfy one of the conditions 1. or 2. If Orb b (1, 2) ⊆ {1, 2, 3}, then for each word w ∈ {a, b} * we have that M(wa) = {1, 2}, whence A is not 3-compressible. Else, if {1, 2}b {1, 2, 3}, then M(a) = {1, 2}, M(ab) = {1b, 2b} {1, 2, 3}, and |M(aba)| ≥ 3, so A is not proper.

Conversely, let A be an automaton satisfying conditions 1. and 2. A 3-compressing word for A must have at least two non-consecutive occurrences of letter a, and the word aba is not 3-compressing. Moreover, {1, 2}b 2 {1, 2, 3}, else Orb b (1, 2) ⊆ {1, 2, 3}, against the hypothesis, and then the word ab 2 a 3-compresses A.
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Proposition 9 Let A be a (2, p)-automaton with a = [1, 2][3, 4]\1, 3. Then A is 3-compressible and proper if and only if one of the following conditions holds:

1. {1, 3}b = {2, 4} and {2, 4}b = {1, 3};

2. {1, 3}b ∈ {{1, 4}, {2, 3}} and at least one of the following conditions is true:

(a) Orb b (1, 3) {1, 2, 3, 4}; (b) |Orb b (1)| = 3; (c) |Orb b (3)| = 3.
Moreover, if A is 3-compressible and proper, then one of the words ab 2 a or ab 3 a 3-compresses A.

Proof: Let A be a (2, p)-automaton that does not satisfy both conditions 1. and 2. If {1, 3}b {1, 2, 3, 4}, then the word aba 3-compresses A, which is not proper. So, let {1, 3}b ⊆ {1, 2, 3, 4}, then we have to consider only the following cases:

1. {1, 3}b ∈ {{1, 2}, {3, 4}}, then again the word aba 3-compresses A, so A is not proper;

2. {1, 3}b = {1, 3}, then for all w ∈ b * , M(w) = ∅, while for all w ∈ {a, b} * \ b * , M(w) = {1, 3}, then A is not 3-compressible; and is of the form (34x)π for some x ∈ {1, 3, 4}. In any cases, {1, 3}b 2 ∈ {{1, x}, {3, 4}}, so the word ab 2 a 3-compresses A. The case {1, 3}b = {2, 3} is symmetric, and then either the word ab 2 a or ab 3 a 3-compresses A.
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Observe that each 3-compressible (3, p)-or (4, p)-automaton A is proper. Indeed each 3-compressing word for A contains at least three occurrences of the letter a which are not all consecutive. So in the next two propositions, we only look for 3-compressible automata.

Proposition 10 Let A be a (3, p)-automaton with a = [1, 2]\1. Then A is 3-compressible (and proper) if and only if the following conditions hold:

1. |Orb b (1)| ≥ 2 and {1, 2}b = {1, 2}; 2. if b = (13)π, then (a) 3a = 3; (b) if 3a = 2, then 2b = 2 or 2a = 3; (c) if 3a = 2b and 2b ∈ {2, 3}, then 2b 2 = 2 or 2ba = 3; 3. if b = (123)π, or b = (132)π, then {2, 3}a = {2, 3}; 4. if b = (1324)π, then {3, 4}a = {3, 4}.
Moreover, if A is 3-compressible (and proper), then one of the words ababa, aba 2 ba, ab 2 ab 2 a, ab 2 a 2 b 2 a, ab 2 abab 2 a, abab 2 aba, ab 3 aba, abab 3 a or ab 3 ab 3 a 3-compresses A.

Proof: Let A be a (3, p)-automaton that does not satisfy one of the conditions 1.-4. We prove that it is not 3-compressible. Conversely, let A be an automaton satisfying conditions 1.-4. Since |Orb b (1)| ≥ 2 and {1, 2}b = {1, 2}, we have 1b = 1 and b is not of the form (12)π. Moreover, observe that if b is of the form (134 . . .)π, then one of the words abab 2 a, ababa, ab 2 ab 2 a or ab 2 aba 3-compresses A, as shown in Fig. 6. for this reason in the following we do not consider such cases. 24)π, then {2b, 3}a = {2b, 3} and in Fig. 7(1) we draw a P3MSA for those cases, proving that either the word ababa or aba 2 ba 3-compresses A.

(b) If |Orb b (2)| ≥ 3, i.e
., b = (13)(245 . . .)π, then in Fig. 7(2) we draw a P3MSA for this case, proving that either the word ababa or abab 3 a 3-compresses A. 1345)π were already analyzed in Fig. 6.

1 3 1, 3a 1, 3a 2 
1 2 3 1, 3a 1, 2a 2, 2ab 3, 2ab 2 2, 3ab 3, 3ab 2 1, 2 1, 2a 2, 2ab 3, 2ab 2 a b b a a|3a = 2 b|3a = 3 b|3a ∈ {2, 3} b b a b a a b b a
Fig. 8: P3MSA for 3-compressible automata with b = (123)π and {2, 3}a = {2, 3}. (a) If b = (1234)π, then in Fig. 10 we draw a P3MSA for this case, proving that one of the words ab 2 ab 2 a, ab 3 ab 3 a, ab 2 abab 2 a or ab 2 a 2 b 2 a 3-compresses A. Indeed, observe that: (a) If b = (12345 . . .)π, then in Fig. 12 we draw a P3MSA for this case, proving that one of the words ab 2 ab 2 a, ab

1 3 1, 3a 1, 2a 3, 2ab 3, 3ab 2, 3 1, 2 1, 2a 3, 2ab a b a a|3a = 2 b|3a = 3 b|3a ∈ {2, 3}
i. if 3a ∈ {3, 4}, then 3ab 2 = 1 implies 3a = 3,
2 abab 2 a or ab 2 a 2 b 2 a 3-compresses A. Note that if 3ab 2 = 1 and 3a 2 b 2 = 2, then 3abab 2 ∈ {1, 2}. In fact if 3abab 2 = 1, then 3a = 3aba, hence 3a = 2 and 3ab 2 = 4, a contradiction. If 3abab 2 = 2, then 3aba = 3a 2 , hence 3ab = 3a and 3ab 2 = 3ab = 1, again a contradiction. Similarly, if 3ab 2 = 2 and 4ab 3 = 2, then 3abab 2 ∈ {1, 2}; in fact if 3abab 2 = 1 then 3ab 2 ab 2 = 4ab 2 and 3ab 2 = 4, else if 3abab 2 = 2 then 3ab 2 = 3abab 2
hence 3ab = 3 and 3ab 2 = 4, and in both cases this is a contradiction. (b) If b = (13245 . . .)π, then in Fig. 13 we draw a P3MSA for this case, proving that one of the words ab 3 ab 3 a, ab 3 aba or abab 3 a or ababa 3-compresses A. 2

1 2 3 1, 3a 2, 3ab 3, 3ab 2 4 1, 4 1, 2 2, 3 3, 4 1, 3 2, 4 1, 4a 2, 4ab 3, 4ab 2 1, 4 1, 4a 2, 4ab 3, 4ab 2 1, 4 1, 2 1, 2a 2, 2ab 3, 2ab 2 a b b a|3a ∈ {3, 4} b|3a 
2 3 1, 3a 2, 3ab 3, 3ab 2 1, 3a 2 2, 3a 2 b 3, 3a 2 b 2 2, 3ab 1, 3aba 2, 3abab 3, 3abab 2 a b b a b|3ab 2 ∈ {1, 2} b a a|3ab 2 ∈ {1, 2}, 3a 2 b 2 ∈ {1, 2} b b a b|{3ab 2 , 3a 2 b 2 } = {1, 2}
Proposition 11 Let A be a (4, p)-automaton with a = [1, 2]\3, 3a = 1. Then A is 3-compressible (and proper) if and only if the following conditions hold:

1. {1, 3}b = {1, 3}; 2. b = (12)(3)π; 3. if b = (1)(23)π, or b = (123)π, or b = (132)π, then 2a = 2; 4. if b = (1)(2)(34)π, or b = (12)(34)π, or b = (14)(23)π, or b = (1423)π, or b = (1324)π, then 4a = 2.
Moreover, if A is 3-compressible (and proper), then one of the words a 2 ba 2 , a 2 b 2 a 2 , a 2 b 3 a, a 2 baba 2 or ab 3 ab 3 a 3-compresses A.

Proof: Let A be a (4, p)-automaton that does not satisfy one of the conditions 1.-4. We prove that it is not 3-compressible.

1. Let condition 1. be false, i.e., {1, 3}b = {1, 3}, then the 3MSA in Fig. 14(1) proves that A is not 3-compressible.

2. Let condition 2. be false, i.e., b = (12)(3)π, then the 3MSA in Fig. 14(2) proves that A is not 3-compressible. (1) 3MSA for the case {1, 3}b = {1, 3}. Fig. 14: 3MSA for automata that do not satisfy conditions 1. or 2. of Proposition 11. 

(b) if b = (124 . . .)(3)π, then M(a 2 b) = {2, 3}, M(a 2 b 2 ) = {3, 4}, M(a 2 b 2 a) = {1, 3, 4a},
and the word a 2 b 2 a 3-compresses A. 

= (145 . . .)(23)π, then M(a 2 b) = {2, 4}, M(a 2 b 2 ) = {3, 5}, M(a 2 b 2 a) = {1, 3, 5a},
and the word a 2 b 2 a 3-compresses A. (a) 3b = 1.

i. If b = (3124 . . .)π, then M(a 2 b) = {1, 2}, M(a 2 b 2 ) = {2, 4}, M(a 2 b 3 ) = {4, 4b}, M(a 2 b 3 a) = {3, 4a, 4ba}
and the word a 2 b 3 a 3-compresses A.

ii. If b = (314 . . .)π, then the P3MSA in Fig. 18 proves that one of the words a 2 baba 2 , a 2 b 2 a or ab 2 a 2 3-compresses A. Observe that if 4a = 2 and 4b = 2, then b is of the form (31425 . . .)π, otherwise condition 4. is not satisfied. (b) 3b = 2.

i. If b = (3214 . . .)π, then the P3MSA in Fig. 19 proves that either the word a 2 ba 2 or ab 3 ab 3 a 3-compresses A. In this section we characterize proper 3-compressible automata on 2-letter alphabet where no letter acts as a permutation.

Proposition 12 Let A a (i, j)-automaton with i ∈ {1, 2} and j ∈ {1, 2, 4}, then A is either not 3compressible or not proper.

Proof: We have to consider five different cases. (c) if {x, z} = {1, 3}. If x = 1 and z = 3, the P3MSA in Fig. 21(1) proves that if 2b = y = 2 then A is not 3-compressible, else it is not proper. If x = 3 and z = 31, the P3MSA in Fig. 21(2) proves that if y = 2 then A is not 3-compressible, else it is not proper; (d) if {x, z} = {2, 3}, this case reduces to the previous exchanging the state 1 and 2. , then for all w ∈ {a, b} + , we have M(wa) = {1, 3} and M(wb) = {1, 4}, so A is not 3-compressible; ii. if x = 1 and z = 4, then if y = 2 the P3MSA in Fig. 22(1) proves that A is not proper. Else, if y = 2 and 3b = 2, then the word aba 3-compresses A which is not proper. Otherwise, if y = 2 and 3b = 2, then the 3MSA in Fig. 22 proves that A is not 3-compressible;

1, 2 3, 2b z 1, 3 1, 2 2 
(e) if {x, z} = {2, 3}, this case reduces to the previous exchanging the state 1 and 3, as well as the states 2 and 4; 3]\2 and q = 1 then, if qb = y we have M(ab) = {z, qb} and M(aba) = {1, 3, qba}, so the automaton is not proper, else if qb = y A is not 3-compressible, as shown in Fig. 22(2);

(f) if {x, z} = {2, 4} and {x, y} ∩ {1, 3} = ∅ then y ∈ {1, 3}. Let q ∈ {1, 3} \ {y}: i. if b = [2, 1]\4 and q = 3, or b = [4,
ii. if b = [2,3]\4 and q = 1, or b = [4, 1]\2 and q = 3 then either the word ab 2 or aba 3-compresses A, so it is not proper. 1. x ∈ {1, 2, 3};

2. {1, 2} ∩ {x, y} = ∅; 3. if x ∈ {1, 2}, then for q ∈ {1, 2} \ {x} it is qb ∈ {1, 2, 3} and Orb b (q) ⊆ {1, 2,
4. if x = 3, then for q ∈ {1, 2} \ {y} it is qb ∈ {1, 2, 3} and Orb b (q) ⊆ {1, 2, 3}.

Moreover, if A is 3-compressible and proper, then the word ab 2 a 3-compresses A.

Proof: Let A be a (1, 3)-automaton that does not satisfy one of the conditions 1.-3.

1. Let x ∈ {1, 2, 3}, then the word ba 3-compresses A, and so it is not proper.

2. Let {1, 2} ∩ {x, y} = ∅, then the word ab 3-compresses A, and so it is not proper.

3. Now let x ∈ {1, 2, 3} and {1, 2} ∩ {x, y} = ∅.

(a) Suppose x ∈ {1, 2} and let q ∈ {1, 2} \ {x}.

i. If qb ∈ {1, 2, 3}, then M(ab) = {qb, x} and M(aba) = {1, 2, qba}, so the word aba 3-compresses A which is not proper. ii. Suppose qb ∈ {1, 2, 3} and Orb b (q) ⊆ {1, 2, 3}, then qb ∈ {q, 3} and 3b = q, so A is not 3-compressible, as shown in Fig. 23(1).

(b) Lastly, suppose x = 3 and let q ∈ {1, 2} \ {y}.

i. If qb ∈ {1, 2, 3}, then M(ab) = {qb, x} and M(aba) = {1, 2, qba}, so the word aba 3-compresses A which is not proper. ii. Suppose qb ∈ {1, 2, 3} and Orb b (q) ⊆ {1, 2, 3}. Then y ∈ {1, 2} (as {1, 2}∩{x, y} = ∅) and qb ∈ {1, 2} = {q, y} (as x = 3 does not belong to the image of b). Moreover, as Orb b (q) ⊆ {1, 2} = {q, y}, also yb ∈ {1, 2} and then A is not 3-compressible, as shown in Fig. 23(2). (1) 3MSA for the case x ∈ {1, 2}, q ∈ {1, 2} \ {x}, qb ∈ {q, 3} and 3b = q.

1, 2 3, q 1, 2 Moreover, if A is 3-compressible and proper, then either the word ab 2 a or ab 3 a 3-compresses A.

Proof: Let A be a (2, 3)-automaton that does not satisfy one of the conditions 1.-5.

1. Let x ∈ {1, 2, 3, 4}, then the word ba 3-compresses A, and so it is not proper.

Let x = 1:

(a) if 3b = 4, then if 3b = 3 A is not 3-compressible, while if 3b = 3 the word aba 3-compresses A that it is not proper, as shown in Fig. 24(1);

(b) if 3b = 4 and Orb b (3) ⊆ {3, 4}, then A is not 3-compressible, as shown in Fig. 24(2). Fig. 24: 3MSA for automata that do not satisfy condition 2. of Proposition 14.

Let x = 2:

(a) if y ∈ {1, 3}, then the word ab 3-compresses A, and so it is not proper;

(b) if y = 1, then if 3b = 4, then A is not 3-compressible, as shown in Fig. 25(1); while if 3b = 4 and 4b = 3, then A is not 3-compressible, as shown in Fig. 25(2); (c) if y = 3 and 1b ∈ {3, 4}, then M(ab) = {2, 1b}, and M(aba) = {1, 3, 1ba}, so the word aba 3-compresses A that it is not proper.

The cases with x = 3 and x = 4 are symmetrical to case 3. and 4., respectively. Conversely, suppose x ∈ {1, 2, 3, 4}.

1. Let x = 1, 3b = 4 and Orb b (3) ⊆ {3, 4}, this implies 4b = 3b 2 ∈ {3, 4}. Then M(ab) = {1, 4}, M(ab 2 ) = {1, 4b} and M(ab 2 a) = {1, 3, 4ba}, so ab 2 a 3-compresses A.

Let x = 2:

(a) if y = 1, 3b = 4 and 4b = 3, then M(ab) = {2, 4}, M(ab 2 ) = {2, 4b} and M(ab 2 a) = {1, 3, 4ba}, so ab 2 a 3-compresses A;

(b) if y = 3 and 1b ∈ {3, 4}, then either the word ab 2 a or ab 3 a 3-compresses A, as shown in Fig. 26. The cases with x = 3 and x = 4 are symmetrical to those with x = 1 and x = 2, respectively. 2

1, 3 2, 1b 2, 1b 2 2, 1b 3 a b b b|1b 2 ∈ {3, 4} b|1b 
The following lemma is straightforward.

Lemma 15 Let A be a 1. {1ba, 1b 2 a, 1b 3 a} ⊆ {2, y}, or 2. Orb a (1ba) ⊆ {2, y}.

Proof: Let A be a (3, 3)-automaton that does not satisfy the above conditions, we prove that it is not 3-compressible.

1. Let 1b = 1 and Orb a (1ba) ⊆ {2, y}.

(a) If 1ba = 1a = 2a = 2, then the 3MSA in Fig. 27(1) proves that A is not 3-compressible.

(b) If 1ba = 1a = 2a = y, then ya = 1ba 2 = 2 and the 3MSA in Fig. 27(2) proves that A is not 3-compressible.

2. Let 1b = 1, {1ba, 1b 2 a, 1b 3 a} ⊆ {2, y} and Orb a (1ba) ⊆ {2, y}. If 1ba = 1b 2 a or 1b 2 a = 1b 3 a, then, since for all h > 0 we have that 1b h = 2, we obtain that 1 = 1b, against the hypothesis. If 1b 2 a = 1b 3 a, as 1b 2 = 2, then 1b 2 = 1b 3 , and then 1 = 1b, against the hypothesis. So, as |{1ba, 1b 2 a, 1b 3 a}| ≤ 2, 1ba = 1b 3 a, then 1b = 1b 3 and 1 = 1b 2 .

(a) If 1ba = 2, then 1b 2 a = y, hence 1a = 2a = y, ya = 2 and 1b = y. The 3MSA in Fig. 28(1) proves that A is not 3-compressible. (2) Case 1a = y.

Fig. 27: 3MSA for automata that do not satisfy conditions 1. and 2. of Lemma 16 with 1b = 1. Proof: Let A be a (3, 3)-automaton that does not satisfy the above conditions, we prove that it is not 3-compressible or not proper. In all the subcases, A is not 3-compressible. Proof: First observe that from the previous corollary a proper 3-compressible (3, 4)-automaton always satisfies the antecedent of one of the above conditions, so all the possible cases are taken into account.

We start proving that a (3, 4)-automaton that does not satisfy the conditions 1.-3. is not 3-compressible.

1. Let condition 1. be false, i.e., b = [x, y]\1 and Orb a (x) ⊆ {x, y}. The 3MSA in Fig. 30 proves that A is not 3-compressible. The 3MSA in Fig. 31(3) proves that A is not 3-compressible. (1) 3MSA for the case b = [1, y]\2, 2b = 1, Orba(2) ⊆ {2, y} and 2ab ∈ {1, y}. 32(1) proves that A is not 3compressible. Else, if x = 2 and y = 1, then the 3MSA in Fig. 32(2) proves that A is not 3-compressible. Proof: First observe that from Corollary 24, a proper 3-compressible (4, 4)-automaton always satisfies the antecedent of one of the above conditions, so all the possible cases are taken into account.

1 1, x 1, x 1, y 1, x a,
2 1 2, x 2, x 1, 2 1, x 1, x 1, 2 2 
z 1 1, z 1, za 1, z 1, za 2 
We start proving that a (4, 4)-automaton that does not satisfy conditions 1.-4. is not proper or it is not 3-compressible.

1. Let condition 1. be false, i.e., b = [x, y]\1 but either y = 3 or xa = 2 and 2b = 3. Observe that if y = 3 then from the previous corollary we have x = 3. The 3MSA in Fig. 38 proves that if condition 1. is false, then A is not 3-compressible. then the P3MSA in Fig. 42(1) proves that the word a 2 b 2 3-compresses A. If 2a = 2, then the P3MSA in Fig. 42(2) proves that the word a 2 ba 2 3-compresses A. Then, in order to construct a short 3-collasing word, we find a word having as factor all the words above, i.e., we solve the Shortest Common Supersequence problem (SCS) for W . It is well-known that SCS is NP-complete [START_REF] Raiha | The shortest common supersequence problem over binary alphabet in NPcomplete[END_REF]) even on a two-letter alphabet, thus approximation algorithm are often used. Nevertheless, the cost of finding a good approximation is comparable to the cost of finding an optimal solution [START_REF] Karpinski | Improved inapproximability results for the shortest superstring and related problems[END_REF]) and, on the other hand, efficient algorithms give poor approximation [START_REF] Turner | Approximation algorithms for the shortest common superstring problem[END_REF]).

So, as no near-optimal solutions can be found in reasonable time, we decided to code the problem in the bounded satisfiability problem for a set of linear-time temporal logic (LTL) formulae, and to solve it with the tool described in [START_REF] Bersani | Constraint LTL satisfiability checking without automata[END_REF]. More precisely, let S be a propositional letter, a word w of length n is coded in the LTL formula w that is satisfied if and only if for all 1 ≤ i ≤ n the i-th letter of w is "a" if and only if at the i-th time instant S is true. E.g., the word aba is encoded in the formula S ∧ (X(¬S ∧ X(S))), where X is the "next" operator. Then we look for the shortest model that satisfy the formula w∈W w: such model encodes the shortest word having as factor all the words in W and has length 55.

However, we were well aware that such "greedy approach", i.e., to find an optimal solution for each subcase and combining them to obtain a global one, is not suitable in order to achieve a global optimum.

We observed that the words a 2 b 3 a 2 and b 2 a 3 b 2 are needed only to solve a special subcase of (3, 4)automata, so we tried to replace them with a longer factor in order to obtain a shorter 3-collapsing word.

Actually, the shortest word having as a factor the words in W \ {a It is known that in general the language C k,t of k-collapsing words on an alphabet of t letters differs from the language S k,t of k-synchronizing words on the same alphabet. However, this not excludes that in some cases c(k, t) and s(k, t), respectively the length of the shortest k-collapsing and k-synchronizing word on an alphabet of t letters, can be equal. Up to now it was only known that c(2, 2) = s(2, 2) [START_REF] Sauer | Composing functions to reduce image size[END_REF]) and that c(2, 3) = s(2, 3) [START_REF] Ananichev | Quest for short synchronizing words and short collapsing words[END_REF]). We find a counterexample proving that c(3, 2) = s(3, 2) (and so c(3, 2) ≥ 34). In fact, the semiautomaton in Fig. 44(2) is 3compressible (and also 3-synchronizing), but the word s 3,2 do not compresses it. On the other hand, its dual s3,2 synchronizes it.

We believed that any 3-compressible 5-states automaton on a two-letter alphabet were 3-compressed either by s 3,2 or by s3,2 , but an Anonymous reviewer observed that this is not the case: the semiautomaton in Fig. 44 is 3-synchronizable but it is not 3-compressed neither by s 3,2 nor by s3,2 . 

Conclusion

Although very technical, our analysis can be effectively exploited in order to obtain more general results and to investigate some conjectures. In [START_REF] Cherubini | Synchronizing and collapsing words[END_REF]Kisielewicz (2014, 2016), the authors exploit the characterization of (3, p)-automata (Proposition 10) to prove that the problem of recognizing whether a binary word is 3-collapsing is co-NP-complete. Moreover, the word w 3 can be used to improve the procedure arising from Margolis et al. ( 2004) (Theorem 3.5) to obtain shorter k-collapsing words for k ≥ 4. In particular, it follows that c(4, 2) ≤ 1741 and c(5, 2) ≤ 109941. Though very lengthy, they can be effectively used in testing the compressibility of an automaton. In particular, this can accelerate the algorithm presented in [START_REF] Ananichev | Quest for short synchronizing words and short collapsing words[END_REF]; [START_REF] Petrov | An algorithm for recognition of n-collapsing words[END_REF] to find short (possibly shortest) 4-and 5-synchronizing words.

Fig. 1 :

 1 Fig.1: The Cerný semiautomaton with 3 states and its 2MSA: the set of synchronizing words for A is the regular language b * a(a + ba + b 3 ) * bba.

3 .

 3 {1, 3}b ∈ {{1, 4}, {2, 3}} with Orb b (1, 3) ⊆ {1, 2, 3, 4}, |Orb b (1)| = 3 and |Orb b (3)| = 3, then b = (1423)π or b = (1324)π or b = (1)(34)π or b = (12)(3)π. The 3MSA in figures 2(1) and 2(2) prove that in any case A is not 3-compressible; 4. {1, 3}b = {2, 4}. If {2, 4}b ⊆ {1, 2, 3, 4}, then b = (12)(34)π or b = (14)(32)π or b = (1234)π or b = (1432)π, and the 3MSA in Fig. 2(2) proves that A is not 3-compressible. 3MSA for the case b = (1423)π or b = (1324)π. for the case b = (1)(34)π, b = (12)(4)π, or {1, 3}b = {2, 4}.

Fig. 2 :

 2 Fig.2: 3MSA for automata that do not satisfy conditions 1. and 2. of Proposition 9.

  1. Let |Orb b (1)| = 1 or {1, 2}b = {1, 2}, then 1b = 1 or b = (12)π. In the former case for all w ∈ (a + b) * , M(w) ∈ {∅, {1}}, in the latter M(w) ∈ {∅, {1}, {2}}, so A is not 3-compressible. 2. Let b = (13)π and either 3a = 3, or 3a = 2, 2b = 2 and 2a = 3, or 3a = 2b = 4, 2b 2 = 2 and 2ba = 3. Observe that in the last two cases 3a 2 = 3 and 3ab = 2, indeed if 3a = 2, 2b = 2 and 2a = 3 then (3a)a = 2a = 3 and (3a)b = 2b = 2, while if 3a = 2b = 4, 2b 2 = 2 and 2ba = 3, then again (3a)a = (2b)a = 3 and (3a)b = (2b)b = 2. The 3MSA in Fig. 3 proves that in any case A is not 3-compressible. 3. Let b = (123)π, or b = (132)π, and {2, 3}a = {2, 3}. The 3MSA in figures 4(1) and 4(2) prove that A is not 3-compressible. 4. Let b = (1324)π, and {3, 4}a = {3, 4}. The 3MSA in Fig. 5 proves that A is not 3-compressible.

Fig. 3 :

 3 Fig.3: 3MSA for automata that do not satisfy condition 2. of Proposition 10.

Fig. 4 :

 4 Fig. 4: 3MSA for automata that do not satisfy condition 3. of Proposition 10.

Fig. 5 :

 5 Fig. 5: 3MSA for automata that do not satisfy condition 4. of Proposition 10.

Fig. 6 :

 6 Fig. 6: P3MSA for 3-compressible automata with b = (134 . . .)π.

( 2 )

 2 for the case b = (13)(2)π or b = (13)(24)π, and {2b, 3}a = {2b, P3MSA for the case b = (13)(245 . . .)π.

Fig. 7 : 3 .

 73 Fig. 7: P3MSA for 3-compressible automata with b = (13)π and 3a = 3.

Fig. 9 :

 9 Fig. 9: P3MSA for 3-compressible automata with b = (132)π and {2, 3}a = {2, 3}.

and 3ab 2 = 2

 22 implies 3a = 4, and both of them are contradictions; ii. if 3a = 4 and 4a = 3, then 2ab 2 = 1 implies 2a = 3, and 2ab 2 = 2 implies 2a = 4, both contradictions; iii. if 3a = 3 and 4a = 4 or if 3a = 4 and 4a = 3, then 4ab 2 = 1 implies 4a = 3, and 4ab 2 = 2 implies 4a = 4, both contradictions. (b) If b = (1324)π, then {3, 4}a = {3, 4} and in Fig. 11 we draw a P3MSA for this case, proving that either the word ababa or ab 3 aba 3-compresses A. Observe that if 3ab = 1, then 3a = 4, 4a = 3, and so 4ab ∈ {1, 2}, else if 3ab = 2, then 3a = 3, 4a ∈ {3, 4}, and again 4ab ∈ {1, 2}. 4. Let |Orb b (1)| ≥ 5, then we have to considered the two subcases b = (12345)π and b = (13245)π, as the cases b = (13425 . . .)π, b = (13452 . . .)π, and b = (13456 . . .)π were already analyzed in Fig. 6.

Fig. 10 :

 10 Fig. 10: P3MSA for the case b = (1234)π.

Fig. 11 :

 11 Fig. 11: P3MSA for the case b = (1324)π and {3, 4}a = {3, 4}.

  1

Fig. 12 :

 12 Fig. 12: P3MSA for the case b = (12345 . . .)π.

Fig. 13 :

 13 Fig. 13: 3MSA for the case b = (13245 . . .)π.

3 .

 3 Let condition 3. be false, i.e., b = (1)(23)π or b = (123)π or b = (132)π, and 2a = 2. Then the 3MSA in figures 15(1), 15(2) and 15(3) prove that A is not 3-compressible. 4. Let condition 4. be false, i.e., b = (1)(2)(34)π or b = (12)(34)π or b = (14)(23)π or b = (1423)π or b = (1324)π, and 4a = 2. Then the 3MSA in figures 16(1), 16(2), 16(3) and 16(4) prove that A is not 3-compressible.

( 2 )

 2 3MSA for the case b = (12)(3)π.

  3MSA for the case b = (1)(23)π and 2a = 2.

  3MSA for the case b = (123)π and 2a = 2.

  3MSA for the case b = (132)π and 2a = 2.

Fig. 15 :

 15 Fig. 15: 3MSA for automata that do not satisfy condition 3. of Proposition 11.

2 .( 3 )

 23 Let Orb b (3) = {2, 3}, then there are two further subcases: (a) if b = (14)(23)π, and 4a = 2, then M(a 2 b) = {2, 4}, M(a 2 ba) = {3, 4a}, M(a 2 ba 2 ) = {1, 3, 4a 2 }, and the word a 2 ba 2 3-compresses A; 3MSA for the case b = (1423)π and 4a = 23MSA for the case b = (1324)π and 4a = 2.

Fig. 16 :

 16 Fig. 16: 3MSA for automata that do not satisfy condition 4. of Proposition 11. (b) if b= (145 . . .)(23)π, then M(a 2 b) = {2, 4}, M(a 2 b 2 ) = {3, 5}, M(a 2 b 2 a) = {1, 3, 5a},and the word a 2 b 2 a 3-compresses A.

3 .

 3 Let Orb b (3) = {3, 4}, i.e., b = (34)π, then in Fig.17we draw a P3MSA for this case, proving that one of the words a 2 b 2 a, a 2 ba, aba 2 or ababa 3-compresses A. Observe that, if 4a = 2 and 1b = 1, then by condition 4. we have 2b = 2. Similarly, if 4a = 2 and 1b = 2, then 2b = 1.

Fig. 17 :

 17 Fig. 17: P3MSA for the case b = (34)π.

Fig. 18 :

 18 Fig. 18: P3MSA for the case b = (314 . . .)π.

Fig. 19 :

 19 Fig. 19: P3MSA for the case b = (3214 . . .)π.

Fig. 20 : 2 4 3 -

 2023 Fig. 20: P3MSA for the case b = (324 . . .)π.

  1. Let A be a (1, 1)-automaton with a = [1, 2, 3]\1, 2 and b = [x, y, z]\x, y:(a) if {1, 2} ⊆ {x, y, z} and {x, y} ⊆ {1, 2, 3}, then for any w ∈ {a, b} * , we have M(wa) = {1, 2} and M(wb) = {x, y}, so A is not 3-compressible; (b) if {1, 2}{x, y, z}, then |M(ab)| ≥ 3, so A is not proper; similarly if {x, y} {1, 2, 3}, then |M(ba)| ≥ 3, and again A is not proper. 2. Let A be a (1, 2)-automaton with a = [1, 2, 3]\1, 2 and b = [x, y][z, v]\x, z: (a) if {1, 2} ∈ {{x, z}, {x, v}, {y, z}, {y, v}} and {x, z} ⊆ {1, 2, 3}, then for any w ∈ {a, b} * , we have M(wa) = {1, 2} and M(wb) = {x, z}, so A is not 3-compressible; (b) if {1, 2} ∈ {{x, z}, {x, v}, {y, z}, {y, v}}, then |M(ab)| ≥ 3, so A is not proper; similarly if {x, z} {1, 2, 3}, then |M(ba)| ≥ 3, and again A is not proper. 3. Let A be a (2, 2)-automaton with a = [1, 2][3, 4]\1, 3 and b = [x, y][z, v]\x, z: (a) if {1, 3} ∈ {{x, z}, {x, v}, {y, z}, {y, v}} and {x, z} ∈ {{1, 3}, {1, 4}, {2, 3}, {2, 4}}, then for all w ∈ {a, b} * , we have M(wa) = {1, 3} and M(wb) = {x, z}, so A is not 3compressible; (b) if {1, 3} ∈ {{x, z}, {x, v}, {y, z}, {y, v}}, then |M(ab)| ≥ 3, so A is not proper; similarly if {x, z} ∈ {{1, 3}, {1, 4}, {2, 3}, {2, 4}}, then |M(ba)| ≥ 3, and again A is not proper.4. Let A be a (1, 4)-automaton with a = [1, 2, 3]\1, 2 and b = [x, y]\z, zb = x: (a) if {x, z} {1, 2, 3}, then M(b 2 ) = {x, z} and M(b 2 a) = {1, 2, xa, za}, so A is not proper; (b) if {x, z} = {1, 2}, then for all w ∈ {a, b} + \ {b}, we have M(w) = {1, 2}, so A is not 3-compressible;

  P3MSA for the case x = 1 and z = 3. for the case x = 3 and z = 1.

Fig. 21 :

 21 Fig. 21: 3MSA for a (1, 4)-automaton with a = [1, 2, 3]\1, 2, b = [x, y]\z, zb = x and {x, z} = {1, 3}.

5 .

 5 Let A be a (2, 4)-automaton with a = [1, 2][3, 4]\1, 3 and b = [x, y]\z, zb = x:(a) if {x, z} ∈ {{1, 3}, {1, 4}, {2, 3}, {2, 4}}, then M(b 2 ) = {x, z} and |M(b 2 a)| ≥ 3, so A is not proper; (b) if {x, y} ∩ {1, 3} = ∅, then M(ab) = {1b, 3b,z}, so A is not proper; (c) if {x, z} = {1, 3}, then for all w ∈ {a, b} + \ {b}, we have M(w) = {1, 3}, so A is not 3-compressible; (d) if {x, z} = {1, 4} and {x, y} ∩ {1, 3} = ∅, we consider two subcases: i. if x = 4 and z = 1, then y must be equal to 3. So b = [4, 3]\1

  for the case b = [1, 2]\4, 4b = 1, 3b = 2, or b = [2, 1]\4, 4b = 1 and 3b = 1, or b = [4, 3]\2, 2b = 4 and 1b = 3.

Fig. 22 :

 22 Fig. 22: 3MSA for a (2, 4)-automaton with a = [1, 2][3, 4]\1, 3 and b satisfying either condition (d).ii or (f).i.

  for the case x = 3, q ∈ {1, 2} \ {x}, y ∈ {1, 2} and {qb, yb} = {q, y} = {1, 2}.

Fig. 23 : 2

 232 Fig. 23: 3MSA for automata that do not satisfy condition 3. or 4. of Proposition 13.

( 2 )

 2 Case Orb b (3) ⊆ {3, 4} and 3b = 4.

( 2 )

 2 Case 3b = 4 and 4b = 3.

Fig. 25 :

 25 Fig. 25: 3MSA for automata that do not satisfy condition 3. of Proposition 14 with y = 1.

Fig. 26 :

 26 Fig. 26: P3MSA for the case b = [2, 3]\2 and 1b ∈ {3, 4}.

( 3 ,

 3 3) 3-compressible automaton with a = [1, 2]\1 and b = [x, y]\x. Then x = 1 and {x, y} = {1, 2}. Lemma 16 Let A be a (3, 3) 3-compressible automaton with a = [1, 2]\1 and b = [2, y]\2 with y = 1. Then:

( 2 )

 2 Case 1ba = y.

Fig. 28 : 2 Corollary 17 2 . 3 .

 2821723 Fig. 28: 3MSA for automata that do not satisfy conditions 1. and 2. of Lemma 16 with 1b = 1. (b) If 1ba = y, then 1b 2 a = 1a = 2a = 2. Moreover, 1ba 2 = y, otherwise 1ba 2 = 2 gives the contradiction 1ba = 1, hence ya = y, 1b = y and yb = 1b 2 = 1. The 3MSA in Fig. 28(2) proves that A is not 3-compressible. 2 Corollary 17 Let A be a (3, 3) 3-compressible automaton with a = [1, 2]\1 and b = [x, 1]\x with x = 2. Then: 1. {xab, xa 2 b, xa 3 b} ⊆ {1, 2}, or 2. Orb b (xab) ⊆ {1, 2}. Proof: It is a straightforward consequence of the previous lemma, simply replacing a with b, 1 with 2, 2 with y and x with 1. 2 Lemma 18 Let A be a proper (3, 3) 3-compressible automaton with a = [1, 2]\1 and b = [x, y]\x with x ∈ {1, 2} and y = 1. Then all the following conditions hold: 1. 1b ∈ {1, 2}; 2. xa ∈ {x, y}; 3. Orb b (1) ⊆ {1, 2} or Orb a (x) ⊆ {x, y}.

1. 3 .

 3 If 1b ∈ {1, 2}, then A is not proper, in fact M(ab) = {x, 1b} and |M(aba)| = 3; similarly 2. if 1b ∈ {1, 2} and xa ∈ {x, y}, then A is not proper, in fact M(ba) = {1, xa} and |M(bab)| = 3. If 1b ∈ {1, 2}, xa ∈ {x, y}, Orb b (1) ⊆ {1, 2} and Orb a (x) ⊆ {x, y}, then (a) if 1b = 1 and xa = x, the 3MSA of A is in Fig. 29(1); (b) if 1b = 1 and xa = y (and then ya = x), the 3MSA of A is in Fig. 29(2); (c) if 1b = 2 (and then 2b = 1) and xa = x, the 3MSA of A is in Fig. 29(3); (d) if 1b = 2 (and then 2b = 1) and xa = y (and then ya = x) the 3MSA of A is in Fig. 29(4). 1b = 2, 2b = 1, xa = y and ya = x.

Fig. 29 :

 29 Fig. 29: 3MSA for automata that do not satisfy conditions 3. of Lemma 18

2 Proposition 19 2 Lemma 20

 219220 Let A be a(3, 3)-automaton with a = [1, 2]\1 and b = [x, y]\x. Then A is 3-compressible and proper if and only if one of the following conditions holds:1. b =[2, y]\2, y = 1, and either {1ba, 1b 2 a, 1b 3 a} ⊆ {2, y} or Orb a (1ba) ⊆ {2, y}; 2. b = [x, 1]\x, x = 2, and either {xba, xb 2 a, xb 3 a} ⊆ {1, 2} or Orb b (xab) ⊆ {1, 2}; 3. b = [x, y]\x, x ∈ {1, 2}, y = 1, 1b ∈ {1, 2}, xa ∈ {x, y}, and either Orb b (1) ⊆ {1, 2} or Orb a (x) ⊆ {x, y}. Moreover, if A is 3-compressible and proper, then one of the words abab or ab 2 ab or ab 3 ab or aba 2 b or aba 3 b or baba or ba 2 ba or ba 3 ba or bab 2 a or bab 3 a 3-compresses A. Proof: If A is a 3-compressible (3, 3)-automaton with a = [1, 2]\1 and b = [x, y]\x, then, from lemmata 15, 16 and 18 and Corollary 17, one of the above conditions must hold. Conversely, we find for any automaton satisfying conditions 1. -3. a (short) 3-compressing word. 1. Let b = [2, y]\2 and y = 1: (a) if {1ba, 1b 2 a, 1b 3 a} ⊆ {2, y}, then either the word abab or ab 2 ab or ab 3 ab 3-compresses A, since M(aba) = {1, 1ba}, M(ab 2 a) = {1, 1b 2 a} and M(ab 3 a) = {1, 1b 3 a}; (b) if Orb a (1ba) ⊆ {2, y}, then {1ba, 1ba 2 , 1ba 3 } ⊆ {2, y} and either the word abab or aba 2 b or aba 3 b 3-compresses A, since M(aba) = {1, 1ba}, M(aba 2 ) = {1, 1ba 2 } and M(ab 3 a) = {1, 1ba 3 }. 2. Let b = [x, 1]\x, x = 2, and either {xba, xb 2 a, xb 3 a} ⊆ {1, 2} or Orb b (xab) ⊆ {1, 2}. This case reduces to the previous one replacing a with b, 1 with 2, 2 with y and x with 1, then either the word baba or ba 2 ba or ba 3 ba or bab 2 a or bab 3 a 3-compresses A. 3. Let b = [x, y]\x, x ∈ {1, 2}, y = 1, 1b ∈ {1, 2} and xa ∈ {x, y}. If Orb b (1) ⊆ {1, 2}, then 1b = 2 and 2b ∈ {1, 2}, and so the word ab 2 a 3-compresses A, as M(ab 2 ) = {x, 2b}; similarly, if Orb a (x) ⊆ {x, y}, exchanging b and a and so x with 1 and y with 2, the word ba 2 b 3-compresses A. Let A be a (3, 4) 3-compressible automaton with a = [1, 2]\1 and b = [x, y]\z, zb = x. If A is proper then all the following conditions hold: 1. {1, 2} ∩ {x, z} = ∅; 2. z ∈ {1, 2} or {1, za} ∩ {x, y} = ∅; 3. {1, 1b} ∩ {x, y} = ∅; 4. 1 ∈ {x, y} or {z, 1b} ∩ {1, 2} = ∅. Proof: If {1, 2} ∩ {x, z} = ∅, then |M(b 2 a)| = 3; if z ∈ {1, 2} and {1, za} ∩ {x, y} = ∅, then |M(bab)| = 3; if {1, 1b} ∩ {x, y} = ∅, then |M(ab 2 )| = 3; if 1 ∈ {x, y} and {z, 1b} ∩ {1, 2} = ∅, then |M(aba)| = 3. So each automaton that does not satisfy one of the conditions of the lemma is 3-compressed by a word of length 3, and then it is not proper. 2 Corollary 21 Let A be a proper (3, 4) 3-compressible automaton with a = [1, 2]\1 and b = [x, y]\z, zb = x. Then exactly one of following conditions holds: 1. z = 1; 2. z = 2 and {1, 1b} ∩ {x, y} = ∅; 3. z ∈ {1, 2} and either b = [1, y]\z or b = [2, 1]\z. Proof: It is a straightforward consequence of the previous lemma. 2 Proposition 22 Let A be a (3, 4)-automaton with a = [1, 2]\1 and b = [x, y]\z, zb = x. Then A is 3-compressible and proper if and only if the following conditions hold: 1. if b = [x, y]\1, then Orb a (x) ⊆ {x, y}; 2. if z = 2 and (a) b = [1, y]\2, then Orb a (2) ⊆ {2, y} or 2ab ∈ {1, y}; (b) b = [x, 1]\2, then {2a, xa} = {2, x} or {2ab, xab} = {1, x}; (c) b = [x, y]\2, 1b = y, and 1 ∈ {x, y}, then {xa, ya} = {x, y}; 3. if z ∈ {1, 2} and (a) b = [1, y]\z and y = 2, then za = z; (b) b = [x, y]\z and {x, y} = {1, 2}, then |Orb a (z)| > 2 or zab ∈ {1, 2}. Moreover, if A is 3-compressible and proper, then either the word b 2 ab 2 or b 2 a 2 b 2 or b 2 a 3 b 2 or b 2 abab 2 3-compresses A.

Fig. 30 :

 30 Fig. 30: 3MSA for the case in which condition 1. of Proposition 22 is false.

  for the case b = [x, 1]\2, 2b = x {2a, xa} = {2, x} and {2ab, xab} = {1, x}. for the case b = [x, y]\2, 2b = x, 1b = y, 1 ∈ {x, y} and {xa, ya} = {x, y}.

Fig. 31 :

 31 Fig. 31: 3MSA for the case in which condition 2. of Proposition 22 is false.

  (a) Let condition 3.(a) be false, i.e., b = [1, y]\z, y = 2 but za = z. Then for all w ∈ a * b and u ∈ {a, b} + , M(w) = {z} and M(wu) = {1, z}, so A is not 3-compressible. (b) Let condition 3.(b) be false, i.e., b = [x, y]\z and {x, y} = {1, 2}, but |Orb a (z)| ≤ 2 and zab ∈ {1, 2}. If x = 1 and y = 2, then the 3MSA in Fig.

  for the case b = [1, 2]\z, |Orba(z)| ≤ 2 and zab ∈ {1, 2}. for the case b = [2, 1]\z, |Orba(z)| ≤ 2 and zab ∈ {1, 2}.

Fig. 32 :

 32 Fig. 32: 3MSA for the case in which condition 3.(b) of Proposition 22 is false.

Fig. 33 :

 33 Fig. 33: P3MSA for the case 2.(a) of Proposition 22.

Fig. 34 :

 34 Fig. 34: P3MSA for the case b = [x, 1]\2 and {2ab, xab} = {1, x}.

Fig. 35 :

 35 Fig. 35: P3MSA for the case b = [x, 1]\2, 2ab = 1, xab = x and {2a, xa} = {2, x}.

  (c) Let b = [x, y]\2, 1b = y, 1 ∈ {x, y} and {xa, ya} = {x, y}. Observe that if xa ∈ {x, y}, then ya ∈ {x, y}. The P3MSA in Fig. 36 proves that in this case either the word b 2 ab or b 2 abab 3-compresses A.

Fig. 36 :

 36 Fig. 36: P3MSA for the case b = [x, y]\2, 1b = y, 1 ∈ {x, y} and {xa, ya} = {x, y}.

3 .Fig. 37 :

 337 Fig. 37: P3MSA for the case b = [x, y]\z, {x, y} = {1, 2} and |Orba(z)| > 2.

( 2 )

 2 Case xa = 2 and 2b = 3.

Fig. 38 : 3 .

 383 Fig. 38: 3MSA for the case in which condition 1. of Proposition 25 is false.

  b =[3, y]\2, ya = 2 and 1b = y.

Fig. 39 :

 39 Fig. 39: 3MSA for the case in which condition 3. of Proposition 25 is false.

( 2 )

 2 Case x = 2.

Fig. 40 : 2 .Fig. 41 :

 40241 Fig. 40: 3MSA for the case in which condition 4. of Proposition 25 is false and za = 2.

Fig. 42 :

 42 Fig. 42: P3MSA for the case b = [x, 1]\2, x = 3 and 3b ∈ {x, 1}.

3 .

 3 If b = [x, 3]\2 and xa = 2 or 1b = 3, then observe that xa = 1, as 3a = 1 and x = 3. If xa = 2, then M(b 2 ) = {2, x}, M(b 2 a) = {3, xa} and |M(b 2 a 2 )| = 3. If xa = 2 and 1b = 3, then M(a 2 ) = {1, 3}, M(a 2 b) = {1b, 2} and |M(a 2 b 2 )| = 3. Then either the word b 2 a 2 or a 2 b 2 3-compresses A. If b = [3, y]\2 and ya = 2 or 1b = y, then observe that ya = 1, as 3a = 1 and y = 3. The P3MSA in Fig. 43 proves that either the word a 2 b 2 or a 2 ba 2 3-compresses A.

Fig. 43 : 2 )

 432 Fig. 43: P3MSA for the case b = [3, y]\2 and ya = 2 or 1b = y.

2 b 3 3 u ab 3 a

 333 a 2 , b 2 a 3 b 2 } is w 3 = b 2 a 3 b a 3 b 3 aba 2 v baba 2 ba 2 b 2 a 2 b 2 ab 2 aba b 2 aba 3 bab which has as a factor the word u = b 2 aba 3 bab 2 and v = a 2 b 3 aba 2 . As u belongs to the language L defined in Proposition 22, case 2.b.iii, and v belongs to the dual of L, this proves that w 3 is a 3-collapsing word of length 53.

s 3 , 2 :

 32 Qs 3,2 = {4}, Qs 3,2 = {1, 2, 4}. The word ba 3 baba 2 bab is the shortest reset word. synchronizable semiautomaton which is not 3-compressed neither by s 3,2 nor by s3,2 : Qs 3,2 = {2, 4, 5}, Qs 3,2 = {1, 3, 5}. The words ab 3 ab 3 ab 2 a, ab 2 ab 4 ab 2 a, ab 3 ab 2 ab 3 a and ab 2 ab 3 ab 3 a are the shortest reset words.

Fig. 44 :

 44 Fig. 44: Synchronizable automaton with long reset words.
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